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Math. Slovaca 30,1980, No. 2,197—206 

ON WEAKLY RIGID MONOUNARY ALGEBRAS 

DANICA JAKUBÍKOVÁ-STUDENOVSKÁ 

An algebra .rA = (A, F) is said to be rigid if it has no endomorphisms except the 
identity mapping. The notion of rigidity has been applied for several types of 
algebraic structures (cf., e.g., [3] for the case of Boolean algebras and [2] for the 
case of order types). 

A monounary algebra .vt = (A, / ) is rigid if and only if A is a one-element set. 
The algebra ri = (A, f) will be said to be weakly rigid if there does not exist any 
isomorphism of .9/ into .9/ except the identity mapping. 

Let a be an infinite cardinal. Consider the following condition for the cardinal a: 
(c(a)) There exists a system y={(Ai9f): iel} of connected monounary 

algebras such that 
(i) card I = 2° and card A, = a for each iel; 

(ii) if iel, then there does not exist any isomorphism of (Ai9f) onto (A, , / ) 
except the identity mapping; 

(iii) if i, j are distinct elements of I, then there does not exist any isomorphism of 
(At,f)onto (A, , / ) . 

S. D. Comer and J. J. LeTourneau [1] proved that the condition (c(a)) holds 
for each infinite cardinal a. In this paper it will be shown that for a rather large 
class of cardinals a a stronger*result than (c(a)) is valid. 

Let us denote by (d(a)) the condition that we obtain from (c(a)) if we replace in 
(ii) and (iii) the word „ontoi( by „into" (thus, instead of (ii) we use the assumption 
that each (A,, / ) is weakly rigid). Let M be the class of all infinite cardinals having 
the property of (d(a)) being valid. 

The question whether (d(a)) holds for each infinite cardinal remains open. In 
this paper there are investigated conditons for a cardinal a under which (d(a)) is 
valid; the results are summarized in Thm. 2.6. 

Let us recall some notions concerning unary algebras. By a monounary algebra 
we understand a pair (A, / ) , where A is a nonempty set and / is a unary operation 
defined on A (i.e., / is a mapping of A into A) . A monounary algebra is said to be 
connected if for each x, y e A there are positive integers m, n with fn(x) = fm(y). 
By a root monounary algebra (or a root) we mean a connected monounary algebra 
( A , / ) such that A contains an element x with f(x) = x. 
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Let IV be the set of all positive integers. We put IVo = IVu{0}. 
Let ft be a cardinal. We denote (5(0) = ft and, for each neN, we set P(n) = 

20(«--> F u r ther we put /5(K0) = sup {j3(n): n eN0}. 

§ 1 . 

In this paragraph it will be shown that K0 e M, and that 2a eM whenever aeM. 
Let F be the system of all mappings of IV into {0, 1}. 

1.1. Construction. Let feF. Put J={ieN: / ( / )= 1}. We denote by D(f) = 
(B, f) a root monounary algebra such that 
(1) B = {xt: ieN0}u{yt: ieN0}u{zt: ieN}v{a, b, c, d}; 
(2) f(Xi) = Xi-U f(y) = yf_! for each i eIV, f(x0) = b, f(y0) = d; 
0) f(zd = * for each i e J, f(zt) = yt for each ieN-J; 
(4) f(a) = b,f(b) = f(d)=f(c) = c. 

(Here and below distinct symbols denote distinct elements. Cf. Fig. 1.) We assume 
that for f,g eF,f±g, the universes of the algebras D (f) and D (g) are disjoint. 

Fig. l .e.g. ,/= (0,1,1,...) 

1.2. Lemma. Let f, g eF. Then we have: 
(a) 7/ cp is an isomorphism of D(f) into D(g), then f = g. 
(b) / / cp is an isomorphism ofD (f) into D (g), then cp is the identity mapping. 
Proof. Suppose that D(f) = (B,f), D(Q) = (B', g), where 

B = {xt: ieN0}u{yi: ieN0}u{Zi: ieN}u{a, b,c,d}, 
B^&'i'.ieN^u&'i'.ieNJute'i-.ieWv&'tb'tC^d'} 
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and the operations / , g are defined according to 1.1. Since c (resp. c') is the only 
element in D(f) resp. D(g)) with f(c) = c (resp. f(c') = c') and cp is an isomorph
ism of D(f) into D(g)9 we obtain q>(c) = c'. Further, f~l(c) = {b9 d}9 g~l(c') = 
{b'9d'}9 card/"1(6) = 2, card/"1(rf)= 1, card g~l(b') = 29 card g~\d')= 1, and 
this implies cp(b) = b'9 cp(d) = d'. Similarly we can prove that q)(a) = a', (p(xt) = x'i9 

<p(y,) = y. for each ieN0 hold. Further we obtain that f(i)^g(i) and (1 -/(i))-_i 
(l — g(i)) for each i eN9 since q>(zi) = z\ for each i €N. Thus we get / = g. Then it 
is obvious that <p is the identity mapping. 

1.3. Lemma. K 0 eM. 
Proof. Put <f={D(f): feF}. Then card 3> = card F = 2K°. According to the 

construction 1.1 we have card D(f) = K0 for each feF. By Lemma 1.2 there does 
not exist any isomorphism oiD(f) into D(g) whenever/, g are distinct elements of 
F and Lemma 1.2 implies also that each algebra D(f)eSf is weakly rigid. Thus 
K 0 eM. 

1.4. Construction. Suppose that V is a system of roots with mutually disjoint 
universes, V = {(Bt, gt): iel}. If 0±JcI9W= {(Bi9 gt) :ieJ}9 then we denote by 
D(°U9 Y) = (B9g) a root monounary algebra such that 
(1) B = \JicIBiU{a9b9c9 d9 e9f}\ 
(2) g(x) = gt(x) for each xeBi9 ieI, if gt(x) + x ; 
(3) g(x) = b for each xeBi9 whenever i e J and gt(x) = x ; 
(4) g(x)=f for each x eBi9 whenever iel-J and gt(x) = x; 
(5) g(a) = g(b) = c9 g(e) = g(c) = g(d) = d9 g(f) = e. 

(Cf. Fig. 2.) We assume that for each nonempty °U9 W c f , °U* W the algebras 
D(°U9 Y) and D(W9 Y) have disjoint universes. 

1.5. Lemma. Let Y= {(Bi9 gt): iel} be a system of weakly rigid roots with 
disjoint universes such that if i9 j are distinct elements of I, then there does not exist 
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any isomorphism of (B(, gt) into (Bh g,). Suppose that °tt and W are nonempty 
subsystems of Y. If cp is an isomorphism ofD(°U, Y) into D(W, Y), then °U=W 
and cp is the identity mapping. 

Proof. Assume that <&={(Bt9gt): ieJ}, W={(Bi9gi)\ ieK}, D(W,Y) = 
(C, h), D(W, Y) = (C, h'), where 

C = U.6i-BiU{fl, b, c, d, e,f}, 
C' = Ui€lBiU{a',b',c',e',f'} 

and the operations h, h' are defined according to the construction 1.4. Let cp be an 
isomorphism of D(°U, Y) into D(W,Y). From 1.4 it follows that cp(d) = d', 
cp(c) = c', cp(e) = e', cp(b) = b', cp(a) = a' and q*(f) = f. Let iel and xeBt with 
gt(x) = x. If ieJ, then h(x) = b, and since cp(b) = b', there exist keK and y eBk 

such that gk(y) = y and cp(x) = y. For each v eBt there is w eBk with cp(v) = w. 
We put cp'(v) = w. Then cp' is an isomorphism of (Bt, gt) into (Bk, gk). From the 
fact that there is no isomorphism of one member of Y into another it follows that 
i = k. Thus JczK. Similarly we obtain that (I-J)^(I-K). Hence J = K. 
Moreover, the mapping cp is the identity, according to the fact that each algebra 
belonging to Y is weakly rigid. 

1.6. Lemma. If aeM, then 2a eM. 
Proof. Let aeM and let Sf be the system of weakly rigid monounary algebras 

corresponding to a. We denote 

T = {D(W,9>):0±Wczy}. 

Then we have card $P = 2card^ = 22a. From the construction 1.4 it follows that, for 
each D(W, <f)e<f', card D(W, 9>) = 2a holds. If D(°U, &>), D(W, <f) are distinct 
algebras belonging to y , then according to Lemma 1.5 there does not exist any 
isomorphism of D(W, <f) into D(W, &>). The fact that each algebra D(°U, 9>) e &" 
is weakly rigid follows from Lemma 1.5. 

§2. 

In this paragraph we shall use the previous results from § 1 in order to establish 
two generalizations of Lemma 1.6 (the main results are the assertions (c) and (d) of 
Thm. 2.6). 

2.1. Construction. We define a fixed monounary algebra (A, g) as follows: 
(1) A = {a0, b0, c0, d0, e0,fo}v\JncN{an, bn, cn, dn, en,fn,a'n, b'n, c'n, dn, en,fn,} ; 
(2) g(ai) = g(bi) = cl,g(a'i) = g(b'i) = c'i,g(fi) = ei,g(f'i) = e'i,g(Ci) = g(et) = di, 

g(c'i) = g(e't) = d'i for each ieN0; 
(3) g(d0) = d0, g(dx) = b0, g(d[) = f0, g(di) = b'i.u g(d'i) = f'i-l for each ieN, 

i>\. (Cf. Fig. 3.) 
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2.2. Lemma. If fie M, then p(K0)eM. 
Proof. We suppose that P = /3(0)eM. From Lemma 1.6 it follows (by induc

tion) that (3(n)eM for each neN0. For neN0 let &(n) be the system of 
monounary algebras corresponding to P(n). We can assume that all algebras of 
these systems have disjoint universes and we can denote the corresponding unary 
operation in each of these monounary algebras by the same symbol g. Let T by the 
system of all sequences 3~= {3~(n)}neNo such that 0i=3~(n)^y(n). 

Fig.З 

We need the following construction: 
2.2.1. Let 3~e r. Consider the set A (0~) of all ordered pairs of the form (JC, fT), 

where 

xeAu\J{B:(B,g)ey(n),neN0}. 

We introduce a unary operation g = g(!T) on the set A(3~) as follows: 
(a) If x e A, then we put g((x, 2T)) = (g(x), 3~). 
(b) Let x e A (ST) - A. Then there are n e N0 and (B,g)s &(n) with jceB.We 

distinguish two cases: 
(b 1) If g(x) *x, then we put g((x, 3~)) = (g(x), 3~). 
(b2) Suppose that g(x) = x. If (B, g)eST(n), then g((x, 3~)) = (bn+1, ST). If 

(B,g)$ZT(n), then g((x, 2T)) = (fn+1, 3~). 
Since for each n e N0 and each (B, g)e Sf(n) the algebra (B, g) is a root algebra, 

from the construction of (A (ST), g)it follows that (A(2T), g) is connected and it is 
a root monounary algebra. 

Now we prove the following statement: 
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2.2.2. Le 3~, 91 eT. Suppo e that cp is an isomorphism of (A(ST),g) into 
(A(9l),g). Then 91 = ST and cp is the identity mapping. 

Proof. From the construction 2.2.1 it follows that q)((d0,9~)) = (d0,91), 
cp((c0,ST)) = (c0,9t), cp((e0,ST)) = (e0,9l), cp((a0, ST)) = (a0, 91), cp((b0,ST)) = 
(b0,9l) and cp((f0,ST)) = (f0,9t). Then q?((du ST)) = (du 91) and cp((d[,0')) = 
(d[,9l). By induction we obtain that cp((x,9~)) = (x,9l) for each x e A. 

Let neN0, (B,g)eSf(n), xeB with g(x) = x. If (B,g)eST(n), then 
g((x, ST)) = (bn + u J) and since cp((bn+u ST)) = (bn+l, 91), there exist (C, g)e9l(n) 
and y eC such that g(y)-y and q)((x, 9~)) = (y, 91). \lveB, then there is w eC 
with<p((t>, ST)) = (w, 91). We put (p'(v) = w. Hence cp' is an isomorphism of (B, g) 
into (C, g). From the fact that there is no isomorphism of one member of Sf(n) into 
another and that each algebra belonging to Sf(n) is weakly rigid it follows that 
(B,g) = (C,g) and that cp' is the identity mapping. Thus cp((v, ST))=(v, 91) for 
each veB and we obtain SF(n)^9t(n). In the case when (B, g)eSf(n)-ST(n), 
the relat on cp((v, ST)) = (v,9l)ior each veB can be obtained in the same manner 
(with the distinction that e use the relations g((x, 9~)) = (fn+u ST) and 
cp((fn^,ST)) = (fn+u9l))\ then we have (Sf(n)-9~(n)) cz (Sf(n) - 9l(n)). Hence 
ST =91 and cp is the identity mapping. 

Now we denote Sf= {(A (ST), g): Q±2T(n)<=Sf(n) for each neN0}, a=jS(K0). 
From the construction 2.2.1 it follows that card A (ST) = a and also that card Sf = 
2a. With respect to 2.2.2 we obtain aeM. 

Consider the following condition: 

2.3. Condition. For each strictly increasing sequence of cardinals {an}neN and 
for each i eN there is jeN such that 2a =ia.. 

The condition 2.3 is fulfilled if the continuum hypothesis is valid, but it is not 
equivalent with the continuum hypothesis. 

2.4. Remark. If we suppose that the condition 2.3 is satisfied, the following result 
can be proved by the same method as in 2.2. Let {at}ieNo be a sequence of 
cardinals belonging to M. Then (i = sup {a,: i eN0} also belongs to M. 

Proof. Ifr ie No, we denote by Sf(n) the system corresponding to an. Construct, 
like in the proof of Lemma 2.2, the system Sf= {(A(9~), g): 0± ST(n)^Sf(n) for 
each n e N0}. Each algebra (A (ST), g) e Sf is then weakly rigid. If -4, 91 e Sf, r4± 91, 
then there does not exist any isomorphism of r4 into 91. Since the condition 2.3 is 
satisfied, we have 

card A (SF) = card A + sup {an • card Sf(n ):ne N0} = 

= sup{2 a ":n6N 0 }=sup{a n :nGiV}=/3 , card^ = 2p . 
Hence 0 e M. 

2.5. Lemma. Suppose that the condition 2.3 is satisfied. Let y be an ordinal such 
that card ye {tt0(n): n eN0} and let a, eM for each i ey. Then sup {a,: iey} e M . 
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Proof. Let card y = K0(n), neN. (For the case n = 0 cf. the remark 2.4.) If 
i e y, let Sf(i) be the system of monounary algebras corresponding to at. We can 
assume that all algebras of these systems have disjoint universes and so we can 
denote the unary operations in them by the same symbol g. Denote /? = sup {a,: 
iey}. 

Let Kx be the set of all mappings of IV into {0, 1} and, for each ieN,i>\, let K, 
be the set of all mappings of the set Ki-xXKt-2 X...X KxxN into {0, 1}. 
Obviously we have card Kt = K0(/) for each / e N. Hence there exists a one-to-one 
mapping rj of y onto the set K- x ... x KxxN. 

2.5.1. Construction. Let o, p, r, s, t, u, w, v be distinct elements. Denote 

W={o,p, r,s,t,u, w}, 
B = {v}uKnuKn XKn-xu...uKn x . . . x K , u 

u A xKnx...xKxvWxKnx...xKxxNx{\,2, ...,n}. 

(We may assume that the summands in the expression defining B are mutually 
disjoint.) Further let A have the same meaning as in the construction 2.1. We 
define a unary operation g on the set B as follows: 

(a) We put g(v) = v, g(kn) = v, g((K, kn-x)) = K, ... g((K, ..., k2, kx)) = (K, 
..., k2) for each (K, ..., K)eKn x . . . x Kx. 

(b) Let (kn, ..., ku i,j)eKn x...x KxxNx{\, ...,n}. We set g((d0, K, ..., 
K)) = (K, ..., kx). If xeA, x±d0, then we put g((x, K, ..., kx)) = (g(x), K, ..., 
kx). Further we set g((o,K,..., ku i,j)) = g((p, K, ..., kx, i,j)) = (r, K,..., kx, i, 
/ ) , g((u, K,..., ku / , / ) ) = (f, K,..., ku / , / ) , g((r, K,..., ku i,j)) = g((t, K,..., ku 

i,j)) = (s9 K, ..., ku / , / ) . 
(c) Let (K, ..., ku i)eKn x ...x K,xiV. Then we distinguish the following 

cases: 
( c l ) Let m e {2, . . . , / ! } . If km((km-u ..., ku i)) = 0, then g((s, K, ..., ku i, 

m)) = (o, K,..., kX91, m - 1) and g((w, K,..., ku i, m)) = (u, K,..., ku i, m - 1). 
If km((km-x,..., ku /)) = 1, then g((s, K,..., ku i, m)) = (u, K,..., ku i, m-\) and 
g((w, K, ..., ku i, m)) = (o, kn, ..., ku i, m-\). 

(c 2) If K(i) = 0, then g((s, K,..., ku i, \)) = (b{, K,..., kx) and g((w, kn,..., ku 

/, 1)) = (fi,K, . . . , / : , ) . likx(i)=\,theng((s,K, ...,kx, i, \)) = (fi,K, . . .^Oand 
g((w, kn, ..., kx, i, \)) = (bi, kn, ..., kx). 

2^.2. Construction. Let r be the set of all y-sequences :T= {3~(i)}i€Y such that 
0 9- 3~(i)<^<f(i) for each i e y. Let &~e r. Consider the set B(2T) of all ordered pairs 
of the form (y, 3~), where 

y eBv\J{C: (C, g)eSf(i), iey}. 

(We shall write (x, K, ..., kl9 3~) instead of ((JC, K,..., kx), 3~), and similarly for all 
elements of B.) We introduce a unary operation g on the set B(3~) as follows: 
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(a) If y GB, we put g((y, 3~)) = (g(y), &-). 
(b) Let yeB(3~)-B. Then there are i-y and (C, g)eSf(i)% with yeC. We 

distinguish two cases: 
(b 1) If _i()0*y, then we set g((y, 3~))^(g(y)9 3~). 
(b2) Suppose that^(y) = y.If(C,^)e_^(/),then^((y,3T)) = (o,r\(i),n,3~). 

If (C, 0) W ) , then </((>>, 3~)) = (u, IJ(I), „, £7). 
We proceed by proving the following assertion: 

2-53. Let 3', 3teT and suppose that cp is an isomorphism of (B(F), g) into 
(B(3t), g). Then 3t = 3~ and (p is the identity mapping. 

Proof. From the constructions 2.5.1 and 2.5.2 it follows that cp((v,3^)) = 
(v,3t).Let(kn,...,K)eKn x . . .x Ku Since g~\(v, 3~)) = (Kn,3~),g~\(v,3t)) 
= (Kn, 3t), there is /„ eKn with cp((K, 3~)) -=. (/„, 3t). Further we get that there is 
ln-xeKn-x with (p((K, kn-u 3~)) = (ln, /-_,, 3t). By induction there is (/„, ..., lx)eKn 

x .. .x Kx such that 

<p((K,...,km,3~)) = (ln9...9lm93t) 

for each m eN, l_!m__.n. 
By a reasoning analogous to that in the proof of 2.2.2 we obtain q>((x, K,..., ku 

3~)) = (x, ln, ..., /,, 3t) for each xeA. 
Now suppose that kx ± /„ i.e., there is / e IV with kx(i) 9- /,(/). Hence one of the 

following two cases occurs: 
(a) g((s, K,..., ku i, 3~)) = (bt, kn,..., ku 3~),g((w, kn,..., ku i, 1, 3~)) = (fi9 K, 

• ••,ku3~),g((s,ln,...,lui,l,3t)) = (fi,ln,...,lu3t),g((w,ln,...,lu 

*n- •••» *1» *sl) , 

(b) g((s, K,..., ku i, 1, 3~)) = (f(, kn,..., ku 3~), g((w, kn,..., ku i, 1, 3~))= (bu 

K, ..., ku 3~),g((s, ln, ..., /„ /, 1, 3t)) = (bu /_, ..., /„ 3t), g((w, ln, ..., /„ /, 1, 
3t))=(fiy ln, ..., l\, 3t). We shall consider the case (a) (the case (b) being 
analogous). In this case we have g~2((bi9 K,..., ku 3~))= {(t, K,..., ku i, 1, 3~), (r, 
K, ..., ku i, 1, ST)}, g~2((bi, ln, ..., /,, 3t)) = 0, which is a contradiction, since we 
have already proved that <p((bi9 K,..., ku 3')) = (bi, ln,..., /„ 3t). Thus kx(i) = /,(/) 
for each ieN, and according to (c 2) we have also cp((x, kn, ..., ku i, 1, 3~)) = (x, 
ln, ..., /„ /, 1, 3t) for each xe W, ieN. 

Suppose that k2 + l2, i.e., that there are ieN and k[eKx with k2((k[, /)) ± 
l2((k[, /)). Consider the element (kn, K-u ..., k2, k[). Then we have cp((K, 3~)) = 
(ln, 3t),cp((kn, K.u 3~)) = (ln, L-u 3t),..., q>((K,..., k2, 3~))=(ln,..., l2, 3t). Since 
(K,...,k2,k[,3-)eg-\(K,...,k2,3~))andg-\(ln,...,l2,3t))^({(l^ 
3t), there exists l[eKx with cp((K, ..., k2, k[, 3~)) = (ln, ..., l2, l[, 3t). Similarly as 
above we have <p((x, K,..., k2, k[, 3~)) = (x, L,..., h, l[, 3t) for each x e A and we 
obtain also that k[ = l[ and that cp((x, K,..., k2, k[, i, 1, 3~)) = (x, ln,..., l2, l[, i, 1, 
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01) for each x eW. Since we assume that k2((k[, /)) =5-= l2((l[, /)) , the following two 
cases are possible: 

(a) g((s, K, ..., k2, k[, i, 2, 3~)) = (o, K, ..., k2, k[, i, 1, 3~), g((w, K,..., k2, k[, 
i, 2, 3~)) = (u, K, ..., k2, k[, i, 1, 3~), g((s, /„, ..., l2, l[, i, 2, 01)) = (u, /„, .., l2, //, /, 
1, 01), g((w, ln, ..., l2, l[, i, 2, 0l))=(o, /„, ..., l2, /,', i, 1, 01); 

(b) g((s, K,..., k2, k[, i, 2, 3~)) = (u, K,..., k2, k[, i, 1, 3~), g((w, K,..., k2, k[, 
i, 2, 3~)) = (o, K, ..., k2, k[, i, 1, 3-),g((s, /„, ..., l2, /,', i, 2, 0l)) = (o, ln, ..., l2, l[ i, 
1, 31), g((w, ln, ..., l2, l[, i, 2, 0l)) = (u, ln, ..., l2, l[, i, 1, 01). In the case (a) (the 
case (b) being analogous) we have g~2((o, K, ..., k2, k[, i, 1, 3~)) = {(t, K, ..., k2, 
k[, i, 2, 3-), (r, K, ..., k2, k[, i, 2, 3~)},g~2((o, ln, ..., l2, l[, i, 1, 0l)) = 0, and this is 
a contradiction with cp((o, K, ..., k2, k[, i, 1, 3~)) = (o, /„, ..., l2, l[, i, 1, 01). 

Thus we have proved that k2 = l2, and by induction it can be shown that lm — km 

for each m = 1, 2, ..., n and that the relation 

cp((x, K,..., K, i,j, 3~)) = (x, kn,..., K, i,j, 01) 

for each x e W, ieN, j = 1, ..., n holds. Hence we have 

cp((y,3')) = (y,0l) for each yeB. 

Suppose that ST^01, i.e., there is / e y with 3T(i)±0t(i). Let (C, g)eSf(i), yeC 
such that g(y) = y. Assume that (C, g)e3~(i). Then g((y, 3~)) = (o, r/(/), n, 3~) 
and since cp((o, r\(i), n, 3~)) = (o, r\(i), n, 01), there exist (D, g)e0l(i) and z eD 
such that0(z) = z and cp((y, 3~)) = (z, 01). Let y'eC. Then there is z'eD with 
cp((y',3~))=(z',0l). We put cp'(y') = z'. Hence cp' is an isomorphism of (C, g) 
into (D,g). From the fact that there is no isomorphism of one member of Sf(i) into 
another and that each algebra belonging to Sf(i) is weakly rigid it follows that 
(C, g) = (D, g) and that cp' is the identity mapping. Thus cp((y', 3~)) = (y', 01) for 
each y' e C and we have 3~(i)<^Sf(i). In the case when (C, g) e Sf(i) - 3~(i), the 
relation cp((y', 3~)) = (y', 01) for each y' eC can be obtained similarly, only we 
use the fact that g((y, 3~)) = (u, r\(i), n, 3~) and cp((u, r\(i), n, 3~))=(u, r\(i), n, 
01)); then (Sf(i) - 3~(i)) c (Sf(i) - 0l(i)). Hence we have proved that 3'= 0t and 
that cp is the identity mapping. 

Now we denote Sf= {(B(3~), g): 3'eT}. Then card Sf = card T = 2* and card 
B(3~) = sup {a, • card SF(i): i e 7} = sup {2a<: / e y} = sup {a,: / e y} = ($ (we have 
used the condition 2.3). Further, from 2 5.3 it follows that each algebra belonging 
to Sf is weakly rigid and that there does not exist any isomorphism of one member 
of Sf into another. Therefore P eM and the proof of Lemma 2.5 is complete. 

2.6. Theorem, (a) K0eM. 
(b) IfaeM, then 2aeM. 
(c) IfaeM, then a(K0)eM. 
(d) Let the condition 2.3 be fulfilled and let y be an ordinal such that card y 

= Ko(Ko). -ff a« e -W f°r each * e Y> tuen sup {a,: ieY}e M. 
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Proof. According to Lemmas 1.3, 1.6 and 2.2 we have (a), (b) and (c). The 
result (d) follows from Lemma 2.5 and from the fact that 

Ko(Ko) = s u p { K 0 ( k ) . k e 1 V } . 
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О СЛАБО ЖЕСТКИХ МОНОУНАРНЫХ АЛГЕБРАХ 

Даница Якубикова-Студеновска 

Резюме 

Алгебра .<4 называется слабо жесткой, если не существует изоморфизм .Л в .^ кроме 
тождественного изоморфизма. В этой статье исследуются системы {г4,: 1в1} слабо жестких 
моноунарных алгебр такие, что если I, /е/, гФ]\ тогда не существует изоморфизм .9̂  в .г4}. 
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