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ON WEAKLY RIGID MONOUNARY ALGEBRAS

DANICA JAKUBIKOVA-STUDENOVSKA

An algebra .4 = (A, F) is said to be rigid if it has no endomorphisms except the
identity mapping. The notion of rigidity has been applied for several types of
algebraic structures (cf., e.g., [3] for the case of Boolean algebras and [2] for the
case of order types).

A monounary algebra .4 = (A, f) is rigid if and only if A is a one-element set.
The algebra «f = (A, f) will be said to be weakly rigid if there does not exist any
isomorphism of . into ./ except the identity mapping.

Let a be an infinite cardinal. Consider the following condition for the cardinal a:

(c(a)) There exists a system & ={(A: f): iel} of connected monounary
algebras such that

(i) card I=2" and card A, =« for each ieI;

(ii) if i eI, then there does not exist any isomorphism of (A, f) onto (A, f)
except the identity mapping ;

(iii) if i, j are distinct elements of I, then there does not exist any isomorphism of
(Ai, f) onto (Ai’ f)

S.D.ComerandlJ.J. LeTourneau [1] proved that the condition (c(a)) holds
for each infinite cardinal a. In this paper it will be shown that for a rather large
class of cardinals a a stronger result than (c(a)) is valid.

Let us denote by (d(a)) the condition that we obtain from (c(a)) if we replace in
(ii) and (iii) the word ,,onto** by ,,into* (thus, instead of (ii) we use the assumption
that each (A;, f) is weakly rigid). Let M be the class of all infinite cardinals having
the property of (d(a)) being valid.

The question whether (d(a)) holds for each infinite cardinal remains open. In
this paper there are investigated condit’ons for a cardinal a under which (d(a)) is
valid ; the results are summarized in Thm. 2.6.

Let us recall some notions concerning unary algebras. By a monounary algebra
we understand a pair (A, f), where A is a nonempty set and f is a unary operation
defined on A (i.e., f is a mapping of A into A). A monounary algebra is said to be
connected if for each x, y € A there are positive integers m, n with f*(x)=f"(y).
By a root monounary algebra (or a root) we mean a connected monounary algebra
(A, f) such that A contains an element x with f(x)=x.
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Let N be the set of all positive integers. We put No=Nu{0}.
Let B be a cardinal. We denote B(0)=p and, for each n e N, we set B(n)=
284D Further we put B(Ro)=sup {B(n): n e No}.

§1.

In this paragraph it will be shown that X, € M, and that 2 € M whenever a € M.
Let F be the system of all mappings of N into {0, 1}.

1.1. Construction. Let fe F. Put J={ieN: f(i)=1}. We denote by D(f)=
(B, f) a root monounary algebra such that
(1) B={x;: ie No}u{y:: ieNo}u{z:: ieN}U{a, b, c, d)};
(2) f(x)=xi-1, f(y:)=Yi-1 for each i€ N, f(xo)=b, f(yo)=d;
(3) f(z)=x for each iel, f(z)=y: foreachie N—1J;
(4) f(a)=>b, f(b)=f(d)=f(c)=c.

(Here and below distinct symbols denote distinct elements. Cf. Fig. 1.) We assume
that for f, § € F, f# g, the universes of the algebras D (f) and D (g) are disjoint.

Z

Z

Fig.1.e.g.,f=(0,1,1, ...)

1.2. Lemma. Let f, g € F. Then we have:

(a) If @ is an isomorphism of D(f) into D(g), then f=4g.

(b) If @ is an isomorphism of D (f) into D(g), then @ is the identity mapping.
Proof. Suppose that D(f)=(B, f), D(§)=(B’, g), where

B={x;:ieNo}u{y:ieNoyu{z:ieN}u{a,b,c,d},
B'={xi:ieNo}u{yi:ieNoyu{zi:ieN}u{a', b',c',d"}
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and the operations f, g are defined according to 1.1. Since ¢ (resp. ¢') is the only
element in D (f) resp. D(g)) with f(c)=c (resp. f(c')=c’') and g is an isomorph-
ism of D(f) into D(g), we obtain @(c)=c’. Further, f'(c)={b,d}, g7 '(c’)=
{b',d'}, card f(b)=2, card f'(d)=1, card g~'(b')=2, card g"'(d’)=1, and
this implies @(b)=b', ¢(d) =d’. Similarly we can prove that ¢(a)=a’, p(x) = x|,
@(y;) =y, for each i € N, hold. Further we obtain that f(i)=g (i) and (1 —f(i))=
(1—=g(i)) for each i € N, since @(z,) =1z for each i € N. Thus we get f=g. Then it
is obvious that ¢ is the identity mapping.

1.3. Lemma. R,e M.

Proof. Put ¥={D(f): feF}. Then card ¥ =card F =2", According to the
construction 1.1 we have card D(f) =&, for each f e F. By Lemma 1.2 there does
not exist any isomorphism of D (f) into D (§) whenever f, § are distinct elements of
F and Lemma 1.2 implies also that each algebra D(f) € & is weakly rigid. Thus
Roe M.

1.4. Construction. Suppose that V" is a system of roots with mutually disjoint
universes, V' ={(B;, g;):ieI}.If 0+ J I, % = {(Bi, g:) : i € J}, then we denote by
D(%, V)=(B, g) a root monounary algebra such that
(1) B=Ue:BiU{a,b,c,d, e, f};

(2) g(x)=g:(x) for each xeB,, i€l, if g.(x)#x;

(3) g(x)=0>b for each x € B;, whenever i €J and g;(x)=x;
(4) g(x)=f for each x € B;, whenever i eI —J and gi(x)=x;
(5) gla)=g(b)=c, g(e)=4g(c)=g(d)=d, g(f)=e.

(Cf. Fig. 2.) We assume that for each nonempty %, W V', U+ W the algebras
D(%, V) and D(W, V) have disjoint universes.

Fig. 2

1.5. Lemma. Let V'={(B;, g:): i eI} be a system of weakly rigid roots with
disjoint universes such that if i, j are distinct elements of I, then there does not exist
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any isomorphism of (B, g;) into (B;, g;). Suppose that % and W are nonempty
subsystems of V. If @ is an isomorphism of D(%, V') into D(W', V'), then U =W
and @ is the identity mapping.

Proof. Assume that %= {(B;, g.): ieJ}, W={(B:;,g:)): ieK}, D(, V)=
(C,h), D(W,V)=(C', h'), where

C=UieIBiU{a9 b’ C7 da ey f},
C'=UiEIB|‘U{a” bla cl, e,a fl}

and the operations 4, k' are defined according to the construction 1.4. Let @ be an
isomorphism of D(%, V") into D(W, ¥'). From 1.4 it follows that @(d)=d’,
@(c)=c', p(e)=e’, p(b)=b', p(a)=a’' and @(f)=f'. Let i eI and x € B, with
gi(x)=x.1If i eJ, then h(x)=b, and since @p(b)=>b", there exist k € K and y € B
such that g.(y)=y and @(x)=y. For each v € B; there is w € B, with p(v)=w.
We put ¢'(v)=w. Then ¢’ is an isomorphism of (B, g.) into (B, gi). From the
fact that there is no isomorphism of one member of %" into another it follows that
i=k. Thus JcK. Similarly we obtain that (I-J)c(I—K). Hence J=K.
Moreover, the mapping ¢ is the identity, according to the fact that each algebra
belonging to ¥ is weakly rigid.

1.6. Lemma. If a e M, then 2° e M.
Proof. Let a e M and let & be the system of weakly rigid monounary algebras
corresponding to . We denote

P =(DU,S):B+UY}.

Then we have card ¥’ = 2°*7 = 2*°, From the construction 1.4 it follows that, for
each D(%, ¥)e &', card D(%, ¥)=2" holds. If D(%, &), D(W, &) are distinct
algebras belonging to &’, then according to Lemma 1.5 there does not exist any
isomorphism of D(%, &) into D(W", &). The fact that each algebra D(%, ¥)e &'
~ is weakly rigid follows from Lemma 1.5.

§2.

In this paragraph we shall use the previous results from § 1 in order to establish
two generalizations of Lemma 1.6 (the main results are the assertions (c) and (d) of
Thm. 2.6).

2.1. Construction. We define a fixed monounary algebra (A, g) as follows:

(1) A ={ay, bo, co, do, eo,fo}UUn eN{@n, Bn, Cay A, 0y fa,an, bp, Chydns €0, frs)

(2) gla)=g(b)=c, gla)=g(b)=ci,g(f)=e,g(f)=ei, g(c)=9g(e)=d,
g(c))=g(e!)=d; for each i e N,;

(3) 9(do)=d,, g(di)=bo, g(di)=fo, g(d)=bi_, g(di)=fi-, for each ieN,
i>1. (Cf. Fig. 3.)
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2.2. Lemma. If $ e M, then B(8,) e M.

Proof. We suppose that § =B(0) e M. From Lemma 1.6 it follows (by induc-
tion) that f(n)e M for each neN, For neN, let ¥(n) be the system of
monounary algebras corresponding to 8(n). We can assume that all algebras of
these systems have disjoint universes and we can denote the corresponding unary
operation in each of these monounary algebras by the same symbol g. Let I by the
system of all sequences T = {J(n)}.en, such that @+ T (n) c F(n).

Fig. 3

We need the following construction:
2.2.1.Let T e I'. Consider the set A (J) of all ordered pairs of the form (x, ),
where

xe AUulJ{B: (B, g)e ¥(n), n € No}.

We introduce a unary operation g =g(J) on the set A(J) as follows:

(a) If xe A, then we put g((x, 7))=(g(x), 7).

(b) Let xe A(J)— A. Then there are n € N, and (B, g) € ¥(n) with x e B. We
distinguish two cases:

(b 1) If g(x)+#x, then we put g((x, 7))=(g(x), 7).

(b 2) Suppose that g(x)=x. If (B, g)eJ(n), then g((x, 7)) = (bas1, 7). If
(B, g) ¢ T (n), then g((x, 7))=fa+1, 7).

Since for each n € N, and each (B, g) € #(n) the algebra (B, g) is a root algebra,
from the construction of (A (7), g) it follows that (A (7), g) is connected and it is
a root monounary algebra.

Now we prove the following statement:
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2.2.2.Le T, Rel. Suppo e that @ is an isomorphism of (A(7), g) into
(A(R), g). Then R=JT and @ is the identity mapping.

Proof. From the construction 2.2.1 it follows that @((do, 7))=(do, R),
@((co, T))=(co, R), @((e0, T))=(e0, ®), @((a0, T))= (a0, R), @((bo, T))=
(bo, ) and @((fo, 7)) = (fo, ). Then @((d:, 7))=(di, R) and @((di, T))=
(d;, ®). By induction we obtain that ¢((x, 7))=(x, R) for each xe A.

Let neN,, (B,g)e¥(n), xeB with g(x)=x. If (B,g)eJ(n), then
g((x, 7)) = (bas1, J) and since @ ((bp+1, T)) = (bns1, R), there exist (C, g) € R(n)
and y € C such that g(y) —y and ¢((x, 7))=(y, R). If v € B, then there is w e C
with @((v, 7)) =(w, R). We put ¢’'(v) =w. Hence ¢’ is an isomorphism of (B, g)
into (C, g). From the fact that there is no isomorphism of one member of ¥(#n) into
another and that each algebra belonging to ¥(n) is weakly rigid it follows that
(B, g)=(C, g) and that ¢’ is the identity mapping. Thus @ ((v, 7))= (v, R) for
each v e B and we obtain 7(n)c ®(n). In the case when (B, g)e ¥(n)— T (n),
the relat on @((v, 7)) = (v, R) for each v € B can be obtained in the same manner
(with the distinction that e use the relations g((x,J))=(f.+1, 7) and
@((fas1 T))= (fas1, R)); then we have (¥(n)— T (n)) < (¥(n)— R(n)). Hence
I =R and @ is the identity mapping.

Now we denote ¥ ={(A(T), g): 0+ T(n) cF(n) for each n e Ny}, a =B (Ry).
From the construction 2.2.1 it follows that card A(7) = a and also that card & =
2%. With respect to 2.2.2 we obtain a e M.

Consider the following condition:

2.3. Condition. For each strictly increasing sequence of cardinals {a.}..~ and
for each i € N there is j € N such that 2% =q,.

The condition 2.3 is fulfilled if the continuum hypothesis is valid, but it is not
equivalent with the continuum hypothesis.

2.4. Remark. If we suppose that the condition 2.3 is satisfied, the following result
can be proved by the same method as in 2.2. Let {a,};cn, be a sequence of
cardinals belonging to M. Then B =sup {a,: i € No} also belongs to M.

Proof. If n € Ny, we denote by ¥(n) the system corresponding to a,. Construct,
like in the proof of Lemma 2.2, the system &= {(A(9),g): 0+ T (n) cF(n) for
each n € No}. Each algebra (A(7), g) € ¥ is then weakly rigid. If #, B € &, A+ B,
then there does not exist any isomorphism of ./ into %. Since the condition 2.3 is
satisfied, we have

card A(J)=card A +sup {a,-card (n): ne N} =
=sup {2*: neNo}=sup {a,: ne N} =B, card ¥=2°.
Hence g e M.

2.5. Lemma. Suppose that the condition 2.3 is satisfied. Let y be an ordinal such
that card y € {Ro(n): n e N,} andlet o, e M foreachiey. Then sup {a;: i€y} e M.

202



Proof. Let card y =R,(n), n € N. (For the case n =0 cf. the remark 2.4.) If
i ey, let (i) be the system of monounary algebras corresponding to a;. We can
assume that all algebras of these systems have disjoint universes and so we can
denote the unary operations in them by the same symbol g. Denote § =sup {a;:
iey}.

Let K, be the set of all mappings of N into {0, 1} and, foreachie N, i>1,let K;
be the set of all mappings of the set K,_;XK;_, X...X K;XN into {0, 1}.
Obviously we have card K; = R,(i) for each i € N. Hence there exists a one-to-one
mapping 1 of y onto the set K, X...X K;XN.

2.5.1. Construction. Let o, p, r, s, t, u, w, v be distinct elements. Denote

W={0’p’ r1s1 t1 u’ W},
B={v}uK,UK, XK, u...UK, X ... X KU
UVAXK, X..XKijUWXK,X.. XK, XNx{1,2,...,n}.

(We may assume that the summands in the expression defining B are mutually
disjoint.) Further let A have the same meaning as in the construction 2.1. We
define a unary operation g on the set B as follows:

(a) We put g(v)=v, g(k.)=v, g((kn, kn-1)) =kn, ... g((Kn, ..., k2, k1)) = (ka,
..., k;) for each (k,, ..., k)€K, X...x K,.

(b) Let (kn, ..., ki, i, j)EK, X...X K;xNXx{1, ..., n}. We set g((do, kn, ...,
k)= (ka, ..., k1). If x€e A, x+ do, then we put g((x, ka, ..., k1)) =(g(x), kn, ...,
k,). Further we set g((0, kn, ..., k1, 1, }))=g((D, kny .-, k1, 1, ) =(r, kn, ..., ky, i,
P9, Ky ooy by i, 1)) =t Ky s ks £, ), GU(rs Ky s b 8, 1)) = g (8, Ky s K,
i, )=C(s, kn, ..., k1, i, J).

(c) Let (k., ..., ki, i)eK, X...X K,;XN. Then we distinguish the following
cases:

(c1) Let me{2,...,n}. If kn((kn-1, ..., ki, ©))=0, then g((s, kn, ..., ki, i,
m))=(o0, k, ..., ky,i,m—1)and g((w, k., ..., k1, i,m))=(u, kn, ..., k1, i, m —1).
If ko ((Km—ys ..., k1, i)) =1, then g((s, ka, ..., k1, i,m))= (U, kn, ..., ki, i, m — 1) and
g(w, k., ..., ki, i, m))=(o, ka, ..., ki, i, m—1).

(c2) If k,(i)=0, then g((s, kn, ..., ky, i, 1)) = (bi, kn, ..., ki) and g((W, k.., ..., ki,
i, 1))=(fi, kn, ..., k1). If ki(i)=1, then g((s, kn, ..., k1, i, 1))=(f,, k., ..., k:) and
g((w, ka, ..., ki, i, 1))=(bi, kn, ..., k).

2.5.2. Construction. Let I be the set of all y-sequences I = {J (i)}, such that
B+ T(i)cF(i)foreachiey.Let T e I'. Consider the set B(J) of all ordered pairs
of the form (y, ), where

ye BUUJ{C: (C, g)e ¥(i), iey}.

(We shall write (x, k., ..., ki, 7) instead of ((x, kn, ..., k1), T'), and similarly for all
elements of B.) We introduce a unary operation g on the set B(7) as follows:
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(a) If yeB, we put g((y, 7))=(9(y), 7).

(b) Let ye B(7)—B. Then there are icy and (C, g) e #(i) with y e C. We
distinguish two cases:

(b1) If g(y)#y, then we set g((y, 7))=(g(y), 7).

(b 2) Suppose that g(y)=y.If (C, g) € I (i), then g((y, 7)) = (0, n(i),n, T).
If (C, 9)¢ (i), then g(y, 7)) = (w,n(i), n, 7).

We proceed by proving the following assertion:

2.5.3. Let I, ReT and suppose that @ js an isomorphism of (B(J), g) into
(B(R),g). Then R=J and ¢ is the identity mapping.

Proof. From the constructions 2.5.1 and 2.5.2 it follows that ¢((v,J))=
(v, R).Let (K, ..., k)€K, X...x K,.Since g™ (v, 7)) = (K., T), 9" (v, R))
= (K., R), there is [, € K, with ¢((k., 7)) = (I., R). Further we get that there is
.- e K, with @((kn, kn-1, 7)) = (ln, l.-1, R). By induction there is (I, ..., [\) €K,
X ...X K, such that '

@K —vos Fors D)= (s .oy Ly )

3

foreach meN, 1=m=n.

By a reasoning analogous to that in the proof of 2.2.2 we obtain @ ((x, k., ..., k1,
I))=x, L, ..., I, R) for each x € A.

Now suppose that k, #1,, i.e., there is i € N with k,(i) # [,(i). Hence one of the
following two cases occurs:

@g((s, kny ooy ki, 1,9))=(bis kny ooy k1, T), g(Ws Ky .., ko, i, 1, T)) = (i, ki,
ekt T), 955 Ly o Ly i L, R) = (oo by ooy by, R), g (W, L,y o Ly iy 1, R)) = (b,
by ooy Ly R);

®)g((s, kny oo kiy i, 1, D))= (fis Kns oo k1, T), g(W, ks ..., Koy B, 1, T))= (b,
Ky oo kis 7), 9((s5 by oo by iy 1, R))=(bs, Loy oo Ly R), g((W, by -, Iy 1, 1,
R)=(fiy b, ..., L, R). We shall consider the case (a) (the case (b) being
analogous). In this case we have g “*((b;, k., ..., ki, 7)) ={(t, kn, ..., k1, i, 1, T), (r,
ko .. ki, i, 1, D)}, g7 2((bis L, ..., I, R)) =0, which is a contradiction, since we
have already proved that @((b:, kn, ..., k1, 7)) = (bi, b, ..., [y, R). Thus k(i) = 1,(i)
for each i € N, and according to (c 2) we have also @((x, k., ..., ki, i, 1, 7)) =(x,
by ..., I, i, 1, R) for each xe W, ieN.

Suppose that k,#l,, i.e., that there are i € N and ki€ K, with kz((ki, i)) #
L,((k}, i)). Consider the element (k,, k._1, ..., k2, ki). Then we have @((k., 7)) =
(b, R), @ ((kns kn-1, T)) = (lur bcts R), ..., @((Kn .. k2, T))= (1, ..., [, R). Since
Koy oo Kz kb, T) €97 ((Kny s K2y T)) and g 7 (s -r s R)) S ({(Uns > 1)} X Koy
R), there exists I} € K, with @((kx, ..., k2, ki, T))= (b, .., b, 11, R). Similarly as
above we have @((x, kn, ..., k2, ki, 7)) = (x, b, ..., 12, 11, R) for each x € A and we
obtain also that k; =1 and that @((x, ku, ..., k2, k1,1, 1, T))=(x, L, ..., I, 11, i, 1,
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R) for each x € W. Since we assume that k,((k1, i)) # L,((l, i)), the following two
cases are possible:

@ g((s,kny ... k2, k1, 0,2, T))=(0, kn, ..., k2, k1,0, 1, T), g (W, k., ..., k2, ki,
i,2,7))=(u,kny ... k2, k1, 5,1, T),9((S, bns -0, 12, 11,8, 2, R)) = (u, L., .., 05, 1], 1,
1L, R),g(w, b, ..., L, 1, 0,2, R))=(0, by ..., L, 11, i, 1, R);

(1) g((s, Kns -oer k2, K1, 8,2, T))= (U, Ky .. ko, k1,6, 1, T), g(W, ks ..., k2, K,
i,2,9)=(0,ke,.... k2, k1,0,1,9),9((s, bn ..., 2, 11, 8,2, R))= (0, I, ..., I, 1] i,
L,R), g((W, buy .o, 1, 11,8, 2, R))=(u, L, ..., L, 11, i, 1, R). In the case (a) (the
case (b) being analogous) we have g (0, ku, ..., k2, ki, i, 1, 7)) ={(¢, ku, ..., ka2,

L2, ), (r ks e Koy k18,2, T)}, 92 ((0, by . 1y 1, 0, 1, R)) =, and this is
a contradiction with @((0, ka, ..., k2, ki, i, 1, T))=(0, L., ..., L,, 11, i, 1, R).

Thus we have proved that k, = /,, and by induction it can be shown that /,, = k.,
for each m=1, 2, ..., n and that the relation

(p((xykn’“-’kl’irj’ g-));_(x’ kn’---y kl’ i,jv %)
for each xe W, ie N, j=1, ..., n holds. Hence we have

o((y,7))=(y,R) foreach yeB.

Suppose that 7+ R, i.e., there is i € y with (i) # R(i). Let (C, g)e (i), y e C
such that g(y)=y. Assume that (C, g) € 7(i). Then g((y, 7))= (o, n(i), n, T)
and since @((o0, (i), n, 7)) = (o0, n(i), n, R), there exist (D, g) e R(1) and z € D
such that g(z)=z and @((y, 7)) = (z,R). Let y’ e C. Then there is z' € D with
o((y', 7))=(z', R). We put ¢'(y’')=2z'. Hence @' is an isomorphism of (C, g)
into (D, g). From the fact that there is no isomorphism of one member of #(i) into
another and that each algebra belonging to £(i) is weakly rigid it follows that
(C, g)=(D, g) and that ¢ is the identity mapping. Thus @¢((y’, 7)) = (y', ®) for
each y’ € C and we have 7 (i) < ¥(i). In the case when (C, g) € ¥(i)— I (i), the
relation @((y’, 7)) = (y', R) for each y’ € C can be obtained similarly, only we
use the fact that g((y, 7)) = (u, n(i), n, ) and ¢ ((u, n(i), n, 7)) = (u, n(i), n,
R)); then (L(i)— T (i)) c (i) — R(i)). Hence we have proved that 7 = & and
that @ is the identity mapping.

Now we denote ¥ ={(B(7),g): Tel}. Then card ¥ =card I'=2° and card
B(7)=sup {a;-card (i): iey}=sup {2%: iey}=sup {a: iey}=p (we have
used the condition 2.3). Further, from 2 5.3 it follows that each algebra belonging
to & is weakly rigid and that there does not exist any isomorphism of one member
of & into another. Therefore f € M and the proof of Lemma 2.5 is complete.

2.6. Theorem. (a) 8,e M.

(b) If a eM, then 2° e M.

(c) If a e M, then a(Ro) e M.

(d) Let the condition 2.3 be fulfilled and let y be an ordinal such that card y
=Ro(Ro). If a; € M for each i €y, then sup {o;: iy} eM.
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Proof. According to Lemmas 1.3, 1.6 and 2.2 we have (a), (b) and (c). The
result (d) follows from Lemma 2.5 and from the fact that

Ro(Ro) =sup {Ro(k): ke N}.
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Anre6pa .9{ Ha3biBaeTc caGo XKECTKOW, €CIM HE CywecTByeT u3omopdpuim of B .« Kpome
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