Mathematic Slovaca

František Štulajter
 Variance components estimators in a replicated regression model

Mathematica Slovaca, Vol. 36 (1986), No. 2, 191--198

Persistent URL: http://dml.cz/dmlcz/128867

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

VARIANCE COMPONENTS ESTIMATORS IN A REPLICATED REGRESSION MODEL

FRANTIŠEK ṠTULAJTER

Introduction

The locally and uniformly best estimators for the function $\gamma=\operatorname{tr}\left(\mathbf{D} \boldsymbol{\beta} \boldsymbol{\beta}^{\prime}\right)+\operatorname{tr}(\mathbf{C} \boldsymbol{\Sigma})$ in a replicated regression model

$$
\begin{equation*}
\boldsymbol{Y}=(\mathbf{1} \otimes \mathbf{X}) \boldsymbol{\beta}+\boldsymbol{\varepsilon} \tag{1}
\end{equation*}
$$

where $E[\boldsymbol{\varepsilon}]=0, E\left[\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^{\prime}\right]=\mathbf{I} \otimes \mathbf{\Sigma}, \mathbf{1}=(1, \ldots, 1)^{\prime}, \boldsymbol{Y}=\left(\boldsymbol{Y}_{1}^{\prime}, \ldots, \boldsymbol{Y}_{m}^{\prime}\right)^{\prime}$ - is a $m \cdot n$ random vector whose components $\boldsymbol{Y}_{i} ; i=1, \ldots, m$ are assumed to be independent, $N_{n}(\mathbf{X \beta}, \mathbf{\Sigma})$ distributed random vectors, are given in the paper [5]. These quadratic estimators are based on $\overline{\boldsymbol{Y}}=1 / m \sum_{i=1}^{m} \boldsymbol{Y}_{i}$ and

$$
\mathbf{S}=\frac{1}{m-1} \sum_{i=1}^{m}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)^{\prime}
$$

The aim of our paper is to study some (unbiased) invariant estimators for the fuction $\gamma=\operatorname{tr}(\mathbf{C \Sigma})$. This approach covers the problem of estimation of a covariance function of a stationary time series, the mean value of which is given by the usual linear regression model, on the base of repeated independent observations $\boldsymbol{Y}_{1}, \ldots, \boldsymbol{Y}_{m}$. Each observation is of the length n. If we denote by $\boldsymbol{\Sigma}$ the covariance matrix of any observation $\boldsymbol{Y}_{i} ; i=1, \ldots, m$ of the stationary time series \boldsymbol{Y}_{t}; $t=0,1, \ldots$ having the covariance function $R(\tau) ; \tau=0,1, \ldots$, then it can be written: $R(\tau)=\frac{1}{n-\tau} \operatorname{tr}(\mathbf{A}(\tau) \mathbf{\Sigma}) ; \tau=0, \ldots, \mathrm{n}-1$, where

$$
\mathbf{A}(\tau)_{i j}=\left\{\begin{array}{cc}
1 / 2 & \text { if }|i-j|=\tau \\
0 & \text { elsewhere }
\end{array} ; \mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{n} ; \tau=0, \ldots, \mathrm{n}-1 .\right.
$$

Thus the problem of estimation of a covariance function of a stationary time series with an unknown mean value given by the linear regression model on the basis of repeated independent observations is a special case of estimation of the function $\gamma=\operatorname{tr}(\mathbf{C \Sigma})$.

1. Unbiased invariant estimators for the function $\gamma=\operatorname{tr}(\mathbf{C} \mathbf{\Sigma})$

Let \mathbf{P} be any $n \times n$ matrix. Let us denote by

$$
\tilde{\boldsymbol{\Sigma}}=\frac{1}{m-1} \sum_{i=1}^{m}\left(\boldsymbol{Y}_{i}-\mathbf{P} \overline{\boldsymbol{Y}}\right)\left(\boldsymbol{Y}_{i}-\mathbf{P} \overline{\boldsymbol{Y}}\right)^{\prime}
$$

We show that the random matrix $\tilde{\boldsymbol{\Sigma}}$ can be expressed with the help of the matrix \mathbf{S} and some other matrix depending on the random vectory $\overline{\boldsymbol{Y}}$. Hence we have:

$$
\begin{gathered}
(m-1) \tilde{\mathbf{\Sigma}}=\sum_{i=1}^{m}\left(\boldsymbol{Y}_{i}-\overline{\mathbf{Y}}+\overline{\mathbf{Y}}-\mathbf{P} \overline{\mathbf{Y}}\right)\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}+\overline{\mathbf{Y}}-\mathbf{P} \overline{\mathbf{Y}}\right)^{\prime}= \\
=\sum_{i=1}^{m}\left[\left(\boldsymbol{Y}_{i}-\overline{\mathbf{Y}}\right)\left(\boldsymbol{Y}_{i}-\overline{\mathbf{Y}}\right)^{\prime}+(\overline{\mathbf{Y}}-\mathbf{P} \overline{\mathbf{Y}})(\overline{\mathbf{Y}}-\mathbf{P} \overline{\mathbf{Y}})^{\prime}\right]= \\
=(m-1) \mathbf{S}+m \mathbf{M} \overline{\mathbf{Y}} \overline{\mathbf{Y}}^{\prime} \mathbf{M}^{\prime}, \text { where } \mathbf{M}=\mathbf{I}-\mathbf{P} .
\end{gathered}
$$

Thus we can write:

$$
\begin{equation*}
\tilde{\mathbf{\Sigma}}=\mathbf{S}+\frac{m}{m-1} \mathbf{M} \overline{\mathbf{Y}} \overline{\mathbf{Y}}^{\prime} \mathbf{M}^{\prime} \tag{2}
\end{equation*}
$$

Let us denote

$$
\begin{equation*}
\tilde{\gamma}=\operatorname{tr}\left(\left(\mathbf{C}-\frac{1}{m} \mathbf{M}^{\prime} \mathbf{C M}\right) \tilde{\boldsymbol{\Sigma}}\right) . \tag{3}
\end{equation*}
$$

This random variable can be regarded as an estimator for the function $\gamma=\operatorname{tr}(\mathbf{C \Sigma})$. The following theorem describes the properties of $\tilde{\gamma}$.

Theorem 1. Let the matrix \mathbf{P} be such that $\mathbf{P}^{2}=\mathbf{P}$ and $\mathbf{P X}=\mathbf{X}$. Then the estimator $\tilde{\gamma}$ given by (3) is unbiased and invariant for the function $\gamma=\operatorname{tr}(\mathbf{C} \mathbf{\Sigma})$. It has the dispersion given by

$$
\begin{equation*}
D_{\mathbf{\Sigma}}(\tilde{\gamma})=\frac{2}{m-1} \operatorname{tr}(\mathbf{C} \boldsymbol{\Sigma})^{2}-\frac{2}{m(m-1)}\left[\operatorname{tr}(\mathbf{C} \boldsymbol{\Sigma})^{2}-\operatorname{tr}\left(\left(\mathbf{C}-\mathbf{M}^{\prime} \mathbf{C M}\right) \mathbf{\Sigma}\right)^{2}\right] \tag{4}
\end{equation*}
$$

Proof. The condition $\mathbf{P X}=\mathbf{X}$ guarantees that the random matrix $\tilde{\boldsymbol{\Sigma}}$ is invariant with respect to the mean value $\mathbf{X} \boldsymbol{\beta}$ of the random vectors $\boldsymbol{Y}_{i} ; i=1, \ldots, m$ and thus the estimator $\tilde{\gamma}$ is invariant too. The condition $\mathbf{P}^{2}=\mathbf{P}$ implies that $\mathbf{M}^{2}=\mathbf{M}$ and $\mathbf{M}^{\prime 2}=\mathbf{M}^{\prime}$. Using these factors and (2) we can write:

$$
\tilde{\gamma}=\operatorname{tr}\left(\left(\mathbf{C}-\frac{1}{m} \mathbf{M}^{\prime} \mathbf{C M}\right)\left(\mathbf{S}+\frac{m}{m-1} \mathbf{M} \overline{\mathbf{Y}} \bar{Y}^{\prime} \mathbf{M}^{\prime}\right)\right)
$$

from which we have

$$
\begin{equation*}
\tilde{\gamma}=\operatorname{tr}\left(\left(\mathbf{C}-\frac{1}{m} M^{\prime} \mathbf{C M}\right) \mathbf{S}\right)+\bar{Y}^{\prime} \mathbf{M}^{\prime} \mathbf{C M} \bar{Y} . \tag{5}
\end{equation*}
$$

Thus we can write, using (5):

$$
E_{\boldsymbol{\Sigma}}[\tilde{\gamma}]=\operatorname{tr}\left(\left(\mathbf{C}-\frac{1}{m} \mathbf{M}^{\prime} \mathbf{C M}\right) \boldsymbol{\Sigma}\right)+\frac{1}{m} \operatorname{tr}\left(\mathbf{M}^{\prime} \mathbf{C M} \mathbf{\Sigma}\right)=\operatorname{tr}(\mathbf{C} \mathbf{\Sigma}) .
$$

The last two equalities are consequences of the known facts that

$$
E_{\Sigma}[\operatorname{tr}(\mathbf{A S})]=\operatorname{tr}(\mathbf{A \Sigma}) \text { and } E_{\Sigma}\left[\boldsymbol{Y}^{\prime} \mathbf{B} \boldsymbol{Y}\right]=\boldsymbol{\beta}^{\prime} \mathbf{X}^{\prime} \mathbf{B X} \boldsymbol{\beta}+\operatorname{tr}(\mathbf{B \Sigma})
$$

for \mathbf{A}, \mathbf{B} any symmetric matrices and of the fact that $\mathbf{M X}=\mathbf{0}$ if $\mathbf{P X}=\mathbf{X}$. The dispersion of $\tilde{\gamma}$ can be computed using the known relations (see [3])

$$
D_{\boldsymbol{\Sigma}}[\operatorname{tr}(\mathbf{A S})]=\frac{2}{m-1} \operatorname{tr}(\mathbf{A} \boldsymbol{\Sigma})^{2} \text { and } D_{\boldsymbol{\Sigma}}\left[\boldsymbol{Y}^{\prime} \mathbf{B} \boldsymbol{Y}\right]=2 \operatorname{tr}(\boldsymbol{B \Sigma})^{2} \text { if } \mathbf{B X}=\mathbf{0}
$$

From these expresions, using the independence of \bar{Y} and \mathbf{S} and (5), we get:

$$
\begin{aligned}
& D_{\mathbf{\Sigma}}[\tilde{\gamma}]=D_{\mathbf{\Sigma}}\left[\operatorname{tr}\left(\left(\mathbf{C}-\frac{1}{m} \mathbf{M}^{\prime} \mathbf{C M}\right) \mathbf{S}\right)+\overline{\mathbf{Y}}^{\prime} \mathbf{M}^{\prime} \mathbf{C M} \overline{\mathbf{Y}}\right]= \\
= & \frac{2}{m-1} \operatorname{tr}\left(\left(\mathbf{C}-\frac{1}{m} \mathbf{M}^{\prime} \mathbf{C M}\right) \mathbf{\Sigma}\right)^{2}+\frac{2}{m} \operatorname{tr}\left(\mathbf{M}^{\prime} \mathbf{C M} \mathbf{\Sigma}\right)^{2}= \\
= & \frac{2}{m-1} \operatorname{tr}(\mathbf{C} \mathbf{\Sigma})^{2}-\frac{2}{m(m-1)} \operatorname{tr}\left(\left(2 \mathbf{C}-\mathbf{M}^{\prime} \mathbf{C M}\right) \mathbf{\Sigma} \mathbf{M}^{\prime} \mathbf{C M} \mathbf{\Sigma}\right)= \\
= & D_{\mathbf{\Sigma}}[\operatorname{tr}(\mathbf{C S})]-\frac{2}{m(m-1)}\left[\operatorname{tr}(\mathbf{C \Sigma})^{2}-\operatorname{tr}\left(\left(\mathbf{C}-\mathbf{M}^{\prime} \mathbf{C M}\right) \mathbf{\Sigma}\right)^{2}\right] .
\end{aligned}
$$

Remarks:

1. If we set $\mathbf{P}=\mathbf{I}$, then $\tilde{\boldsymbol{\Sigma}}=\mathbf{S}$ and $\tilde{\gamma}=\operatorname{tr}$ (CS).
2. \mathbf{P} can be equal to any projector on the space $\mathcal{M}(\mathbf{X})$, the subspace of E^{n} generated by the columns of the matrix \mathbf{X}. Especially the estimator

$$
\begin{equation*}
\hat{\gamma}=\operatorname{tr}\left(\left(C-\frac{1}{m} M C M\right) \hat{\Sigma}\right) \tag{6}
\end{equation*}
$$

given by (3) with $\mathbf{P}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$,

$$
\tilde{\Sigma}=\hat{\Sigma}=\frac{1}{m-1} \sum_{i=1}^{m}\left(Y_{i}-\mathbf{X} \hat{\beta}\right)\left(Y_{i}-\mathbf{X} \hat{\beta}\right)^{\prime}, \hat{\beta}=\left(X^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \overline{\mathbf{Y}}
$$

being the usual least squres estimator of β from the model (1) is unbiased and invariant for the function $\gamma=\operatorname{tr}(\mathbf{C \Sigma})$.

2. The locally best unbiased invariant estimator for the function $\gamma=\operatorname{tr}(\mathbf{C \Sigma})$

It is easy to show that in the model (1) the locally (at $\boldsymbol{\Sigma}=\mathbf{\Sigma}_{0}$) best unbiased estimator $\boldsymbol{\beta}^{*}$ of the regression vector $\boldsymbol{\beta}$ is given by

$$
\boldsymbol{\beta}^{*}=\frac{1}{m} \sum_{i=1}^{m} \boldsymbol{\beta}_{i}^{*} \text {, where } \boldsymbol{\beta}_{i}=\left(\mathbf{X}^{\prime} \mathbf{\Sigma}_{0}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Sigma}_{0}^{-1} \boldsymbol{Y}_{i} ;
$$

$i=1, \ldots, m$. Let $\boldsymbol{\Sigma}^{*}=\frac{1}{m-1} \sum_{i=1}^{m}\left(\boldsymbol{Y}_{i}-\mathbf{X} \boldsymbol{\beta}^{*}\right)\left(\boldsymbol{Y}_{i}-\mathbf{X} \boldsymbol{\beta}^{*}\right)^{\prime}$. It is clear that the matrix $\mathbf{\Sigma}^{*}$ is a special case of the matrix $\tilde{\boldsymbol{\Sigma}}$ with $\mathbf{P}=\mathbf{P}_{0}=\mathbf{X}\left(\mathbf{X}^{\prime} \boldsymbol{\Sigma}_{0}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{\Sigma}_{0}^{-1}$. Thus the estimator γ^{*} given by

$$
\gamma^{*}=\operatorname{tr}\left(\left(\mathbf{C}-\frac{1}{m} \mathbf{M}_{0}^{\prime} \mathbf{C} \mathbf{M}_{0}\right) \mathbf{\Sigma}^{*}\right), \quad \mathbf{M}_{0}=\mathbf{I}-\mathbf{P}_{0}
$$

is, according to the Theorem 1, an unbiased and invariant estimator for the function $\gamma=\operatorname{tr}(\mathbf{C} \mathbf{\Sigma})$. We shall prove now the following theorem.

Theorem 2. The estimator γ^{*} given by (7) is the locally (at $\mathbf{\Sigma}=\boldsymbol{\Sigma}_{0}$) best unbiased invariant estimator (LBUIE) for the function $\gamma=\operatorname{tr}(\mathbf{C} \mathbf{\Sigma})$.

Proof. The LBUIE γ_{0}^{*} for $\operatorname{tr}(\mathbf{C \Sigma})$ was derived in [5]. It was shown that

$$
\gamma_{0}^{*}=\operatorname{tr}\left(\left(\mathbf{C}-\frac{1}{m} \mathbf{M}_{0}^{\prime} \mathbf{C} \mathbf{M}_{0}\right) \mathbf{S}\right)+\overline{\mathbf{Y}}^{\prime} \mathbf{M}_{0}^{\prime} \mathbf{C M}_{0} \overline{\boldsymbol{Y}}, \text { with } \mathbf{M}_{0}=\mathbf{I}-\mathbf{P}_{0} .
$$

But using (5) we can see that $\gamma_{0}^{\prime}=\gamma^{*}$.
Remark: Since γ^{*} is the LBUIE and $\operatorname{tr}(\mathbf{C S})$ is an unbiased and invariant estimator for $\gamma=\operatorname{tr}(\mathbf{C \Sigma})$ too, the inequality $D_{\boldsymbol{\Sigma}_{0}}\left[\gamma^{*}\right] \leqslant D_{\boldsymbol{\Sigma}_{0}}[\operatorname{tr}(\mathbf{C S})]$ holds. From this inequality, using (4), we get the inequality $\operatorname{tr}\left(\mathbf{C} \boldsymbol{\Sigma}_{0}\right)^{2} \geqslant \operatorname{tr}\left(\left(\mathbf{C}-\mathbf{M}_{0}^{\prime} \mathbf{C} \mathbf{M}_{0}\right) \boldsymbol{\Sigma}_{0}\right)^{2}$, which holds for any symmetric matrix \mathbf{C} and any covariance matrix $\boldsymbol{\Sigma}_{0}$.

3. Comparison of some invariant estimators

The LBUIE has the disadvantage that it depends on the matrix $\boldsymbol{\Sigma}_{0}$ at which we want to minimize the dispersion of the estimator. The LBUIE γ^{*} given by (7) can have a great dispersion for $\boldsymbol{\Sigma} \neq \boldsymbol{\Sigma}_{0}$. In this part of the paper we shall compare the estimator tr (CS) with the estimator $\hat{\gamma}$ given by (6). These two estimators do not depend on $\boldsymbol{\Sigma}_{0}$. Our aim is to show that in some special cases the estimator tr (CS) is not admissible, because the estimator $\hat{\gamma}$ is uniformly better than tr (CS). To prove this, let us begin with the following lemma.

Lemma 1. The estimator $\hat{\gamma}$ given (6) is uniformly better than the estimator $\operatorname{tr}(\mathbf{C S})$ iff for any covariance matrix $\mathbf{\Sigma}$ the inequality

$$
\begin{equation*}
\operatorname{tr}(\mathbf{C} \boldsymbol{\Sigma})^{2} \geqslant \operatorname{tr}((\mathbf{C}-\mathbf{M C M}) \boldsymbol{\Sigma})^{2} \tag{8}
\end{equation*}
$$

holds, where $\mathbf{M}=\mathbf{I}-\mathbf{P}=\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$.
Proof: It follows from (4) and from the fact that $D_{\boldsymbol{\Sigma}}[\operatorname{tr}(\mathbf{C S})]=\frac{2}{m-1} \operatorname{tr}(\mathbf{C} \boldsymbol{\Sigma})^{2}$.
Consequence: If $E\left[\boldsymbol{Y}_{\boldsymbol{i}}\right]=0 ; i=1, \ldots, m \quad(\mathbf{X}=\mathbf{0})$, then the estimator $\hat{\gamma}=$ $\frac{1}{m} \operatorname{tr}\left(C \sum_{i=1}^{m} Y_{i} Y_{i}^{\prime}\right)$ is uniformly better than $\operatorname{tr}(\mathbf{C S})$.

Proof: The equality (8) holds trivially for $\mathbf{M}=\mathbf{I}$.
The following theorem can be proved now.
Theorem 3. Let $\gamma=\operatorname{tr} \mathbf{\Sigma},(\mathbf{C}=\mathbf{I})$. Then in the model (1) the unbiased invariant estimator $\hat{\gamma}$ given by (6) with $\mathbf{C}=\mathbf{I}$ is uniformly better than the unbiased invariant estimator $\operatorname{tr} \mathbf{S}$.

Proof: According to (8) it is enough to prove that for any covariance matrix Σ the inequality $\operatorname{tr}\left(\boldsymbol{\Sigma}^{2}\right) \geqslant \operatorname{tr}(\mathbf{P} \boldsymbol{\Sigma})^{2}$ holds. Here $\mathbf{P}=\mathbf{P}^{\prime}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$. Because $\operatorname{tr}\left(\mathbf{A} \mathbf{B}^{\prime}\right)=(\mathbf{A}, \mathbf{B})$ is an inner product in the space of $n \times n$ matrices, we can write (using the Schwarz inequality and the properties $\mathbf{P}^{2}=\mathbf{P}, \mathbf{P}=\mathbf{P}^{\prime}$ and $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{\prime}$):

$$
\begin{aligned}
& \operatorname{tr}(\mathbf{P} \boldsymbol{\Sigma})^{2}=(\mathbf{P} \boldsymbol{\Sigma}, \mathbf{\Sigma} \mathbf{P}) \leqslant\|\mathbf{P} \boldsymbol{\Sigma}\|^{2} \leqslant\|\mathbf{P} \boldsymbol{\Sigma}\|^{2}+\|\mathbf{M} \boldsymbol{\Sigma}\|^{2}= \\
& =\operatorname{tr}\left(\mathbf{P} \boldsymbol{\Sigma}^{2} \mathbf{P}\right)+\operatorname{tr}\left(\mathbf{M} \boldsymbol{\Sigma}^{2} \mathbf{M}\right)=\operatorname{tr}\left((\mathbf{P}+\mathbf{M}) \mathbf{\Sigma}^{2}\right)=\operatorname{tr} \boldsymbol{\Sigma}^{2}
\end{aligned}
$$

Now we shall study the problem, whether the estimator $\hat{\gamma}$ given by (6) is admissible in the class of invariant (not necesserily unbiased) estimators for the function $\gamma=\operatorname{tr}(\mathbf{C} \mathbf{\Sigma})$. Let $k>0$ be any constant. Then the mean square error (MSE) of the estimator $k \cdot \hat{\gamma}$ is

$$
E_{\Sigma}[k \cdot \hat{\gamma}-\operatorname{tr}(\mathbf{C \Sigma})]^{2}=\mathrm{k}^{2} \cdot \mathrm{D}_{\boldsymbol{\Sigma}}[\hat{\gamma}]+(1-k)^{2} \cdot[\operatorname{tr}(\mathbf{C} \mathbf{\Sigma})]^{2}
$$

Thus the MSE of $k \cdot \gamma$ is uniformly smaller than the MSE of the estimator $\hat{\gamma}$ iff

$$
[\operatorname{tr}(\mathbf{C} \boldsymbol{\Sigma})]^{2} \leqslant \frac{1+k}{1-k} D_{\Sigma}[\hat{\gamma}] \text { for all } \boldsymbol{\Sigma}
$$

The following lemma is obvious.
Lemma 2. The invariant estimator $k \cdot \hat{\gamma}$ for the function $\gamma=\operatorname{tr}(\mathbf{C \Sigma})$ is uniformly better than the unbiased invariant estimator $\hat{\gamma}$ given by (6) iff there exists such a constant $d, 1<d<\infty$, that for every $\mathbf{\Sigma}$ the inequality

$$
\begin{equation*}
[\operatorname{tr}(\mathbf{C \Sigma})]^{2} \leqslant d \cdot D_{\mathbf{\Sigma}}[\hat{\gamma}] \text { holds. } \tag{9}
\end{equation*}
$$

For k and d we have: $k=\frac{d-1}{d+1}$.
Now we are able to prove the following theorem.

Theorem 4. Let $\gamma=\operatorname{tr} \boldsymbol{\Sigma}$. Then the invariant estimator $\frac{m \cdot n-1}{m \cdot n+1} \hat{\gamma}$ for γ is uniformly better than the unbiased invariant estimator $\hat{\gamma}$ defined by (6) with $\mathbf{C}=\mathbf{I}$.

Proof:: It is enough to prove that the inequality (9) is true for $d=m \cdot n$. This last inequality is, using (4) with $\mathbf{C}=\mathbf{I}$, equivalent to the inequality

$$
(\operatorname{tr} \mathbf{\Sigma})^{2} \leqslant 2 n \cdot\left[\operatorname{tr} \mathbf{\Sigma}^{2}+\frac{1}{m-1} \operatorname{tr}(\mathbf{P} \boldsymbol{\Sigma})^{2}\right]
$$

But, using the Schwarz inequality, we get:

$$
(\operatorname{tr} \boldsymbol{\Sigma})^{2} \leqslant\|\mathbf{I}\|^{2} \cdot\|\mathbf{\Sigma}\|^{2}=n \cdot \operatorname{tr} \boldsymbol{\Sigma}^{2} \leqslant 2 n \cdot\left[\operatorname{tr} \boldsymbol{\Sigma}^{2}+\frac{1}{m-1} \operatorname{tr}(\mathbf{P} \boldsymbol{\Sigma})^{2}\right]=d \cdot D_{\mathbf{\Sigma}}[\hat{\gamma}] \text { for any }
$$ covariance matrix $\boldsymbol{\Sigma}$.

Remark: For the special case $n=1$, when $Y_{i} ; i=1, \ldots, m$ are independent $N\left(\beta, \sigma^{2}\right)$ distributed random variables,

$$
\hat{\gamma}=\frac{1}{m-1} \sum_{i=1}^{m}\left(Y_{i}-\bar{Y}\right)^{2}:
$$

The estimator $\frac{m-1}{m+1} \hat{\gamma}$ is the uniformly best invariant estimator for $\gamma=\sigma^{2}$.
Examples.
For $\mathbf{C} \neq \mathbf{I}$ the estimator $\hat{\gamma}$ given by (6) for $\gamma=\operatorname{tr}(\mathbf{C \Sigma})$ is not uniformly better than the estimator $\operatorname{tr}(\mathbf{C S})$. Thus the Theorem 3 is not true for $\mathbf{C} \neq \mathbf{I}$ (see Example 3).

Example 1. Let $n=2, \mathbf{C}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \mathbf{\Sigma}=\left(\begin{array}{ll}\mathbf{R}(0) & \mathbf{R}(1) \\ \mathbf{R}(1) & \mathbf{R}(0)\end{array}\right)$.
Then $\gamma=\operatorname{tr}(\mathbf{C} \boldsymbol{\Sigma})=2 \cdot R(1)$. It is easy to show that $\operatorname{tr}(\mathbf{C} \boldsymbol{\Sigma})^{2}=\operatorname{tr} \boldsymbol{\Sigma}^{2}$ and $\operatorname{tr}((\mathbf{C}-\mathbf{M C M}) \boldsymbol{\Sigma})^{2}=\operatorname{tr}(\mathbf{P \Sigma})^{2}$. Thus from the proof of the Theorem 3 we have that the estimator $\hat{\gamma}$ given by (6) is uniformly better than $\operatorname{tr}(\mathbf{C S})$.

Example 2.
Let $n=2$,

$$
\Sigma=\left(\begin{array}{lll}
R(0) & R(1) & R(2) \\
R(1) & R(0) & R(1) \\
R(2) & R(1) & R(0)
\end{array}\right), \quad \mathbf{C}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

and $X=(1,1,1)^{\prime}$. Then $\operatorname{tr}(\mathbf{C \Sigma})=2 R(2), \operatorname{tr}(\mathbf{C \Sigma})^{2}=2 \cdot\left(R(0)^{2}+R(2)^{2}\right)$ and $\operatorname{tr}((C-M C M) \Sigma)^{2}=\frac{4}{81} \cdot\left(18 R^{2}(0)-14 R^{2}(1)+16 R^{2}(2)+12 R(0) R(1)\right.$ $+33 R(0) R(2)+16 R(1) R(2))$. So, $\operatorname{tr}(\mathbf{C \Sigma})^{2} \geqslant \operatorname{tr}((C-M C M) \Sigma)^{2}$ iff the function
$\phi\left(r_{1}, r_{2}\right)=49 r_{2}^{2}+28 r_{1}^{2}-24 r_{1}-66 r_{2}-32 r_{1} r_{2}+45$ is nonnegative for every $r_{i}=\frac{R(i)}{R(0)} ; i=1,2$ such that $\left|r_{i}\right| \leqslant 1$. A solution of the equations $\frac{\partial \phi}{\partial r_{1}}=\frac{\partial \phi}{\partial r_{2}}=0$ is $r_{1}=r_{2}=1$ and $\phi(1,1)=0$.
The matrix $K=\left\{\frac{\partial^{2} \phi}{\partial r_{i} \partial r_{j}}\right\}_{i, j=1}^{2}=\left(\begin{array}{rr}56 & -32 \\ -32 & 98\end{array}\right)$ is positive definite and the function ϕ has its minimum at the point $(1,1)$. Thus we have proved that the estimator $\hat{\gamma}$ is uniformly better than tr (CS).

Example 3. Let $n, \boldsymbol{\Sigma}$ and \boldsymbol{X} be the same as in the previous example and let $\mathbf{C}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) . \quad$ Then $\operatorname{tr}(\mathbf{C \Sigma})=4 R(1), \quad \operatorname{tr}(\mathbf{C \Sigma})^{2}=4 \cdot\left(R^{2}(0)+\quad 2 R^{2}(1)\right.$ $+R(0) R(2))$ and $\operatorname{tr}((C-M C M) \Sigma)^{2}=\frac{4}{81}\left(45 R^{2}(0)+82 R^{2}(1)+4 R^{2}(2)\right.$ $+120 R(0) R(1)+33 R(0) R(2)+40 R(1) R(2))$.
Now let $\boldsymbol{\Sigma}_{0}=\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right)$. Then $\operatorname{tr}\left(\mathbf{C \Sigma _ { 0 }}\right)^{2}=0$, but $\operatorname{tr}\left((\mathbf{C}-\mathbf{M C M}) \boldsymbol{\Sigma}_{0}\right)^{2}=\frac{64}{81}$.
Thus in this case $\operatorname{tr}(\mathbf{C S})$ is the locally (at $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{0}$) best unbiased invariant estimator for $\gamma=\operatorname{tr}(\mathbf{C \Sigma})$ with $D_{\Sigma_{,}}(\operatorname{tr}(\mathbf{C S})]=0$.

REFERENCES

[1] LAMOTTE, L. R.: Quadratic estimation of variance components. Biometrics 29, 1973, 311-330.
[2] KLEFFE, J.: Simultaneous estimation of expectation and covariance matrix in linear models. Math. Operationsforsch. Stat. 9, 1978, 443-478.
[3] KUBÁČEK, L.: Repeated regression experiment and estimation of variance components. Math. Slovaca 34, 1984, 103-1 14.
[4] ŠTULAJTER, F.: On estimation of covariance function of stationary Gaussian time series. Proc. of the third Prague symp. on asympt. stat. (in print).
[5] VOLAUFOVÁ, J., KUBÁČEK, L. : Locally and uniformly best estimators in replicated regression model. Applikace matematiky 28, 1983, 386-390.

Received September 19, 1984

František Štulajter

Резюме

Предложены (несмещенные) инвариантные оценки функции $\gamma=\operatorname{tr}(\mathbf{C \Sigma})$, кде $\boldsymbol{\Sigma}$ - ковариационная матрица случайных векторов $\mathbf{Y}_{i} \sim N_{n}(\mathbf{X} \boldsymbol{\beta}, \mathbf{\Sigma}) ; i=1, \ldots, m, \mathbf{C}-$ любая симметричная матрица. Эти оценки сравниваются с несмещенной инвариантной оценкой $\operatorname{tr}(\mathbf{C S})$, где

$$
\mathbf{S}=\frac{1}{m-1} \sum_{i-1}^{m}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)^{\prime}
$$

Показано, что для некоторых \mathbf{C} оценка $\operatorname{tr}(\mathbf{C S})$ недопустима.

