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ABSTRACT. We show tha t the minimum number of components in a cotree of a 
connected graph G equals the maximum value of the expression 2c(G — A) — 1 — |A | , 
where A is a set of edges of G and c(G — A) denotes the number of components 
of G — A. This invariant was previously studied in [3]. 

By a graph, we shall mean a multigraph in the sense of [1]. Assume that 
G is a graph with vertex set V(G) and edge set E(G). Let W be a nonempty 
subset of V(G); we denote by (W)G the graph G— (V(G) — W) ; in other words, 
(W)G is the subgraph of G induced by W. Moreover, we denote by c(G) and 
T(G) the number of components of G and the set of all spanning trees of G, 
respectively. 

If G is a connected graph, then the decay number ((G) of G is defined as 
follows: 

((G) = min c(G-E(T)). 
TeT(G) v ' 

This concept was introduced by S k o v i e r a in [3] and was used for studying 
the maximum genus of a graph. 

The following theorem gives a characterization of the decay number. 

THEOREM. Let G be a connected graph. Then 

C(G) = Am^{2c(G-A)-l-\A\). 

P r o o f . For every connected graph H, we denote 

z(H) = max (2c(H - A) - I - \A\) 
ACE(H)K ' 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C70. 
K e y w o r d s : decay number , spanning tree . 
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We wish to prove that ((G) = z(G). We proceed by induction on |V(G)| . The 
case when |V(G) | = 1 is obvious. Assume that | ^ (G) | > 2. 

Consider an arbitrary T E T(G) and an arbitrary A C E(G). We denote by 
m the number of components F of G — A such that ( T ) T is connected. It is 
clear that 

c(G - E(T)) >m-\A- E(T)\. 

Moreover, we see that 

c(T -A)> 2c(G -A)-m. 

Since T E T(G), hence 

c(G - E(T)) > 2c(G -A)-1-\A\. 

The above three inequalities imply that ((G) > z(G). 
It remains to prove that ((G) < z(G). We denote by 1Z the set of all ordered 

pairs (T, F) such that T E T(G), F is a spanning forest of G - .E(T) and 
c(T) = ((G). Clearly, 7£ ^ 0. We distinguish two cases: 

Case 1. Assume that there exist (T, F) E TZ and W C F(G) such that 
both (VV)r and (W)p are connected and \W\ > 2. Let H denote the graph 
obtained from G — E((W)G) by identifying the vertices of W into one vertex. 
According to the induction hypothesis, ((H) = Z(H). It is easy to see that 
z(H) < z(G). Since both (W)T and (W)p are connected, we see that for 
every T' E T(H) there exists T" E T(G) such that E(T') C F;(T") and 
c(G - £ (T" ) ) = c(H - E(T')). We conclude that ((G) < z(G). 

Case 2. Assume that either (W)T or (W)F is disconnected for any (T, F) E 
Tl and any VV C V(G), \W\ > 2. This means that C(G) > 2. 

Consider an arbitrary (T, F) E 7£. Put F = Ji = J3 = J 5 = . . . and 
T = J2 = J4 = JQ = ... . We shall say that a sequence ( G i , . . . , G n ) , n > 1, is 
a key to (T, F) if 

(a) G, = G, 
(b) if n > 2 and k E { 2 , . . . , n } , then there exists a component L of 

( ^ (Gfe - i ) ) ^ . , such that Gfc = ( ^ ( T ) ) G , 

(c) there exists e E E(Gn) — E(Jn+i) such that e is incident with vertices 
of distinct components of (V(Gn))jn . 

It follows from the definition of z(G) that 

2 | V - ( G ) | - 1 - | E ( G ) | < ~ ( G ) . 

Recall that we wish to prove that ((G) < z(G). To the contrary, let us assume 
that C(G) >z(G). Then 

\E(G)\>(\V(G)\-l) + (\V(G)\-C(G)). 

350 



A CHARACTERIZATION OF THE DECAY NUMBER OF A CONNECTED GRAPH 

Consider an arbitrary (T0,Fb) E 1Z. We have 

\E(G)\>\E(T0)\ + \E(F0)\. 

Combining this statement with the assumption of Case 2, we see that there 
exists a key to (To, Fn). 

Let (T,F) E 11, and let (Gu...,Gn) be a key to (T ,F ) . Without loss 
of generality, we assume that, if n > 2, then ( G i , . . . ,G?n_i) is a key to no 
(T*, F*) E TZ. We put F = J i = J 3 = J 5 = • • • and T = J2 = J4 = J6 = . •. . 
By the definition of a key, there exists e £ E(Gn) — E(Jn+i) such that e is 
incident with vertices of distinct components of (V(Gn))jn. If n = 1, then 
F + e is a spanning forest of G — E(T) and c(F + e) = ((G) — 1, which is a 
contradiction. 

Let n > 2. Then it follows from the definition of a key that J n + e contains 
a cycle passing through an edge e' which is incident with vertices of distinct 
components of (V(Gn-i))jn_1. Put J n = ( J n — e') + e. Certainly, Jn is a 
spanning forest of G — E(Jn_i) and c(J'n) = c(Jn). This implies that either 
( J n , J n _ i ) E 7£, or ( J n _ i , J n ) E 1Z. It is clear that ( G j , . . . , G n _i ) is a key to 
( J n , J n _ i ) or to ( J n _ i , J n ) , which is a contradiction. 

We conclude that ((G) < z(G), and this completes the proof of the theorem. 

• 

R e m a r k 1. S k o v i e r a [3] introduced the notion of the decay number 
for graphs with possible loops, i.e., for pseudographs in the sense of [1]. It is 
obvious that our theorem can also be extended to pseudographs. 

R e m a r k 2. Let n be a positive integer. T u 11 e [4] and N a s h -
W i l l i a m s [2] proved that a graph G has n edge-disjoint spanning trees 
if and only if n(c(G - _ _ ) - _ ) < \A\, for every A C E(G). For n = 2 this result 
immediately follows from our theorem. 
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