
Mathematica Slovaca

Anton Škerlík
Integral criteria of oscillation for a third order linear differential equation

Mathematica Slovaca, Vol. 45 (1995), No. 4, 403--412

Persistent URL: http://dml.cz/dmlcz/128918

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/128918
http://project.dml.cz


Mathematica 
Slovaca 

© 1 9 9 5 
, . , _ . . _ / ^ _ _ _ x . . ,, , ,__ „., _ M a t h e m a t i c a l I n s t i t u t e 
Math. Slovaca, 45 (1995), No. 4, 403-412 Slovák Academy of Sciences 

INTEGRAL CRITERIA OF OSCILLATION 

FOR A THIRD ORDER LINEAR 

DIFFERENTIAL EQUATION 

ANTON SKERLIK 

(Communicated by Milan Medved') 

ABSTRACT. A new oscillation criterion for the equa t ion y'" +p(t)y' + q(t)y = 0 
with a nonpositive coefficient p and a positive coefficient q is established. This 
result extends and improves some oscillation criteria for third order linear differ
ential equations in this case. 

1. Introduction 

Consider the differential equation 

y"' + p(t)y' + q(t)y = 0, (L) 

where p, q, p': I —> M, / = (a, oo) C (0, oo), IR = ( -co , oo), are continuous. 
We shall investigate two cases: 

p(t)<0, q(t)>0, t e i (P) 

and 
P ( * ) < 0 , p'(t)-q(t)>0, t e i . (PA) 

We consider only nontrivial solutions of (L). Such a solution is called oscil
latory on I if it has arbitrarily large zeros, otherwise, it is called nonosdilatory 
on I. Equation (L) is said to be oscillatory on I if it has at least one oscillatory 
solution. Furthermore, equation (L) is said to be of Class I (Class II) on I if 
and only if every solution y of (L) with y(c) = y'(c) = 0, y"(c) > 0, c E (a, oo), 
has the property that y(t) > 0 in (a,c) (in (c, oo)) . 

In the particular case, when p(t)-= 0, q(t) > 0, t G / , there is the well-known 
oscillation criterion for (L) of the form 

oo 

/ 
t2 єq(t) dt = oo for some є > 0, (1.1) 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 34C10. 
K e y w o r d s : oscillatory (nonoscillatory) solution, second order Rica t t i equa t ion. 
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see, e.g., [1] and [11]. 
The condition (1.1) has been improved several times. We present a result of 

C h a n t u r i y a . For analogous results, the reader is referred to [3] and [13]. 

THEOREM A. ([2; Theorem 2.1]) Let p(t) = 0 and q(t) > 0 for t <E I. If 

oo 

liminf t2 f q(s) ds > -^= , (1.2) 

t 

then equation (L) is oscillatory. 

In general, we assume that p(t) =£ 0 on I. For equation (L) there are oscil
lation criteria due to L a z e r and E r b e . 

THEOREM B. ([10; Theorem 1.3]) Let condition (P) hold. If 

oo 

/ ( 9 ( < )~ivf ("p ( i ) ) 3 / 2)d i = <X)' (L3) 

then equation (L) is oscillatory. 

THEOREM C. ([5; Theorem 2.4-2.6]) Let condition (P) hold and 2q(t) -
p'(t) > 0 for t E I. Assume further that for each A > 0 there exists t\ > a 
such that q(t) + Xp(t) > 0 for every t > t\ and such that the equation 
y"1 + [q(t) + Xp(t)]y = 0 is oscillatory. Finally assume that 

00 

I p(t) dt > - o o or that \p(t)\ < K for some K > 0 . 

/ / f t2(2q(t) —p'(t)) dt = oc, then equation (L) is oscillatory. 

The result of L a z e r is applicable to the equation with constant coefficients 
y"r + PuV + Qoy = 0, where p0 < 0, q0 > 0 are some constants, Theorem C of 
E r b e is not applicable to the equation above. On the other hand, E r b e 
presented an example (see [5; p. 378, Remark]) when Theorem C is applicable, 
but Theorem B is not. Neither Theorem B nor Theorem C is applicable to the 
Euler equation t3y'" +poty' + qoy = 0, where po < 0, r/o > 0 are some constants. 

The aim of this paper is to establish some new criteria for equation (L) which 
extend and improve Theorem B and Theorem C. Our results are applicable to the 
Euler equation and equations with constant coefficients. Also they are verified 
easier than Theorem C. Even in the case when p(t) = 0, t E / , our result is not 
worse than condition (1.2). 

R e m a r k . For Kneser-type oscillation criteria, the reader is referred to [7], 
[9] and [14]. 

404 



INTEGRAL CRITERIA OF OSCILLATION 

2. Some helpful assertions 

The following assertions describe the structure of solutions of equation (L). 
The proofs of these assertions may be omitted since they are similar to proofs 
in the references. 

Let us note that, if y is a solution of equation (L), then also — y is a solution 
of this equation. Thus, concerning nonoscillatory solutions of (L) we can restrict 
our attention only to positive ones. 

The following lemmas are satisfied even for some third order nonlinear dif
ferential equations, see [4], [6], [12], [15], and [16]. 

LEMMA 2.1. Let (P) hold and y be a nontrivial nonoscillatory solution of 
(L) . Then there exists b> a such that 

y(t)y'(t) < 0 (2.1a) 

or 
y(t)y'(t)>o, y(t)^o (2.1b) 

for every t>b. 
Furthermore, some positive solution y of type (2.1a) satisfies 

y(t)>0, y'(t)<0, y " ( * ) > 0 , y"'(t)<0 for all t>a 

and (2.2) 

lim y"(t) = lim y'(t) = 0, lim y(t) = L < oo. 
£—•00 t—• o o t—+oo 

P r o o f . See [10; Lemma 1.1, Lemma 1.3, Theorem 1.1], [5; Lemma 2.2]. 

LEMMA 2.2. Let (P) hold. Then there exists a positive solution y of (L) with 
property (2.1a). 

P r o o f . See [10; Theorem 1.1]. 

THEOREM 2 .3 . Let (P) hold. A necessary and sufficient condition for (L) 
to be oscillatory is that for any nontrivial nonoscillatory solution y the condi
tion (2.1a) hold. 

P r o o f . See [10; Theorem 1.2]. 

THEOREM 2.4. Let (P) hold and equation (L) be oscillatory. Then any 
nonoscillatory solution y satisfies 

lim y(t) = 0 . 
t—>oo 

P r o o f . See [8]. 
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DEFINITION 2.5. Equation (L) is said to have property A if each solution y 
of this equation is either oscillatory, or satisfies condition (2.2) with L = 0. 

R e m a r k 2.6. From Theorem 2.3 and Theorem 2.4, it follows that equa
tion (L) is oscillatory if and only if it has the property A. 

R e m a r k 2.7. From the above results, it follows that, in order to prove 
oscillatoriness of equation (L), it is sufficient to prove that (L) does not have 
any nonoscillatory positive solution of type (2.1b) . 

3 . Oscil lat ion c r i te r ia 

The following lemma is elementary but quite useful in the sequel. 

LEMMA 3 .1 . Let (P) hold. Let Q be the polynomial in the variable z, 

Q(z) = jlz3-^z2+(jl+ Pit)) z + t2q(t), t > 0 . 

Then 
#~n\ , *„n\ 2 íi ,2 , ^ 3 / 2 Q(z) > t2q(t) + tp(t) - - - -=- (1 - t2p(t))' = Q(zo) (3A) 

for all z > 0. 

R e m a r k 3.2. The right-hand side of (3.1) is the local minimum of Q in 

the point z0 = t(l + 3 - ! / 2 ( l - t2p(t))1/2^J . 

The following theorem generalizes, improves and extends Theorem B and 
Theorem C. 

oo 

/ 
t2q(t) + tp(t)-^-t{l-t2p(t))3/2 

T H E O R E M 3.3. Let (P) hold. If 

O ~ . Q / O l 

d£ = oo, (3.2) 
6\/6t -1 

then equation (L) is oscillatory. 

P r o o f . Let y be a nonoscillatory solution of (L). Suppose without loss of 
generality that y is positive. We prove that y cannot have property (2.1b). To 
prove this, we assume the contrary, i.e., y(t) > 0, y'(t) > 0, t > b > a. Now, 
we denote 

So z(t) > 0, and it is easy to verify that z satisfies the second-order Riccati 
equation 

z, + ^t-2z2-4t~1z +t-4z3-3t-3z2+[2t-2+p(t)]z + t2q(t) = 0, t>b. 

(3.3) 
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Substituting the estimate (3.1) to (3.3) we have 

z' + h~2z2 - 4í" < -
,3/2" 

t\(t) +tp(t) - ^ - ( 1 - t*p(t))i/Z\ = -Q(z0(t)) 

for all t > b. 

Integrating the above inequality from b to t > b we get 

t 

s'(t) + f l"2^2(ť) - 4 r t ( í ) < K 0 - ÍQ{zo(s)) ds, 

o o 

where I\~n is a constant. Since —t~2z2(t) — 4t_1z(t) > —~r, integration of the 
above inequality from b to t > b yields 

t S 

t(t) <K! + K 2 t - í ÍQ [Z0(U)] du ds , 

ь ь 

(3.4) 

where Kx = z(b) + - |6 - K0b, K2 = K0 + f . So it follows from (3.2) and (3.4) 
o o 

that z < 0 for sufficiently large £, which contradicts the nonnegativity of z. 
Therefore equation (L) cannot have any solution with property (2.1b), and, by 
Remark 2.7, we get the assertion of Theorem 3.3. • 

The next result generalizes, improves, and extends [10; Theorem 2.6] and 
[5; Corollary 2.7-2.8]. 

COROLLARY 3.4. Let (PA) hold. If 

oo 

/ 
[t2 [At) - q(t)] + tp(t) - - ^ - (1 - Mt)) 

then equation (L) is oscillatory. 

P r o o f . The adjoint equation to (L) is 

y'"+p(t)y'+[p'(t)-q(t)]y = o. 

3/2 
dí = 

(LA) 

By results of H a n a n [7, Theorem 3.3, Lemma 2.9], equation (LA) is of Class I, 
and so equation (L) is of Class II. Hence, by [7; Theorem 4.7], equation (L) is 
oscillatory if and only if equation (LA) is oscillatory. So, applying Theorem 3.3 
to equation (LA) we obtain the assertion of Corollary 3.4. 
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4. Final remarks and comparisons 

In this section, we compare our results with previous results obtained for 
equation (L). 

In the special case when p(t) = 0 on 7, there is the well-known Kneser-type 
condition of oscillation for the equation 

y"' + q(t)y = 0. (4.1) 

Let q(t) > 0 on / . Then (4.1) is oscillatory if 

W ^ > irz' (42) 

see [7; Theorem 5.7]. From (4.2), it follows that there exist e > 0 and T > a 
such that 

* < ' ) " ^ a £ ' " 3 ' <43 ) 

and 

ť q(t) - 2 >є/t, (4.4) 
3\/3t3J 

for all t>T. 

For equation (4.1) conditions (1.2) and (3.2) may be rewritten as 

oo 

liminfíy(g(S)-^-J)dS>0, (4.5) 

and 
CO 

/ ' ( • "
{')--^?)ds=0°- (46) 

respectively. 

Using inequalities (4.3) and (4.4) respectively, we get 

R e m a r k 4.1. Let p(t) = 0, q(t) > 0 on I. Then (4.2) implies (4.5) and 
(4.2) implies (4.6). 

To compare conditions (4.5) and (4.6), we suppose that 

2 
q(t) —— > 0 for sufficiently large t. (4.7) 

Oy OZ 
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ASSERTION 4.2. Let p(t) = 0. and q(t) > 0 on I and assume (4.7) satisfied. 
Then (4.5) implies (4.6). 

P r o o f . Let (4.5) and (4.7) hold. So there exist 6 > 0 and T\ > a such 
that 

oo !7(' ( s )-w)d , a 6 toraU ,aTi-
t 

oo 

If / s2 ( q(s) j=— ) ds < oo, then there exists T2 > Ti such that 
J V 3\/353 J 

oo 

ds < 5 /2 . Js2(q(s) 

So we have 
oo 

T2 

lim inf 
t—• oo 

< / 2 a / s ! ( « s ) - ^ ) d s 

t oo 

/ s 2 G ( s ) - ^ ) d s + /s 2( ' ( s )-5^)d s 

T2 t 
o oo 

> lijnijf/."(,<.) - J ^ J ) dS > VgMf^M - J ^ J ) d» 

OO 

= lim inf *2 / (q(s) %— ) ds > 6, 
t_oo J yK J 3y/3s3J 

t 

a contradiction. Hence (4.6) is satisfied. • 

R e m a r k 4.3. Condition (1.1) cannot be applied to the Euler equation, 
while (4.5) and (4.6) may be applied. 

Now we suppose that (P) holds, and p(t) ^ 0 for t E I. To compare our 
result with known oscillation criteria, we consider the equation 

y"'+Potf3y' + qot6y = 0, (4.8) 

where po < 0, Orj > 0 are some constants, and 6 > —3, 26 > 3/3. 
For (3 = — 2, »5 = —3 equation (4.8) becomes the Euler equation. Neither 

Theorem B nor Theorem C is applicable. The necessary and sufficient condition 
for oscillation of Euler's equation (4.8) is 

qo+Po-^(l-Po)3/2>0. (4.9) 
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It is easy to check that for oscillation of Euler's equation (4.8) condition (4.9) 
is equivalent to condition (3.2) of Theorem 3.3. 

In the case 6 = — 3, 28 > 3/3, Theorem B is not applicable and Theorem C 
is applicable only when (3 < — 3, and q0 > 2/(3\/3), also see example of E r b e 
in [5; p. 378, Remark]. 

ASSERTION 4.4. Let 8 = - 3 . /3 < - 2 , and q0 > 2/(3>/3). Then equa
tion (4.8) is oscillatory. 

P r o o f . Since 

d+^=i+f»+|«'+^g ( -^; ) ,
1 ) "- ' , H<., («») 

where (2k — 1)!! = (1)(3)(5). . . (2k — 1), substituting the coefficients of equa
tion (4.8) to the left-hand side of (3.2) for t > a0 > ( - P 0 ) " 1 / ( / 3 + 2 ) we obtain 

dť 
a 0 

oo 

- / ! [ • + »Ѓ» - jä| (i - fpo^ + § # " « + • •.) 
CLo 

oo 

= /łh-à + ^ + 2 -à(- i p У + 2 + i* и + 4 + -) d í . 

Since q0 > 2 / ( 3 \ / 3 ) , /3-h 2 < 0, it is easy to see that condition (3.2) is fulfilled. 
So the assertion follows immediately by Theorem 3.3. • 

In the case 8 > —3, 28 = 3/3, Theorem B may be applied only when 8 > — 1, 
and g0 > 2(— Po) 3 / 2 / (3 \ /3 ) . Theorem C is not at all applicable. 

ASSERTION 4.5. Fe6 6 > - 3 , 28 = 3/3, and q0 > 2 ( - p 0 ) 3 / 2 / ( 3 \ / 3 ) . PbeH 
equation (4.8) is oscillatory. 

P r o o f . Since 6 > — 3, 28 = 3/3, there exists e > 0 such that 6 = — 3 + e, 
and /3 = - 2 + (2/3)6:. Let t > a0 > ( - p 0 ) " 3 / 2 e . Substituting the coefficients of 
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equation (4.8) to the left-hand side of (3.2) and using (4.10) we get 

oo 

/ 
a0 

oo 

Чot-^+Pot^/3-^({-Po^/3)( 
t-2є/ЗyЗ/2 

Po 
dt 

FІ-^-á'-*^1-3^3^-") = r dť 

a0 

oo 

. / « -
ao 

9o (-í>o)3 /2+Po!-£ /3 

Зл/ 

2 ;(-P0)3/2{ 
ш-2e/3 Ҙг-4g/3 

+ ^ o Г • • 
3>/ V ^U У ^ 2Po ' 8p^ 

d£ = co 

since q0 - 2(-p0)
3/2 / (Sy/3) > 0. The proof is complete. D 

In the last case <5 > —3, 28 > 3/3, Theorem B may be applied again only 
when 8 > — 1. Theorem C is applicable only when (3 < 8, and /3 < 0. 

ASSERTION 4.6. Let 8 > - 3 . 28 > 3/3. Then equation (4.8) is oscillatory. 

P r o o f . Similarly as before, after substituting the coefficients of equa
tion (4.8) to the left-hand side of (3.2) and using (4.10) for sufficiently large r, 
we obtain: 

oo 

J LtS+2 +pot0+1 - -2=-(-p0)3 / 2<3 ( / 3 + 2 ) / 2 ( l • зt-e-2 зt-2?-4 

2p0 Sp2o + •) 
dť. 

a0 

for /3 + 2 > 0 ; 

OO 

/ 
g 0 ť г + 2 + p o l - 1 - ^ 2

¥ ( l - P o ) 3 / 2 dť. for ß + 2 = 0; 

CO 

/ o t
s+2+potP+1- (i - Џ0t

ß+2 + Џt2ß+4 +...) 
3\/ ~ť 

for ß + 2 < 0. 

dť, 

It is easy to check that (5+2 > /3 — 1, and since 8+2 > — 1, all the integrals above 
satisfy (3.2). So, from Theorem 3.3, it follows that equation (4.8) is oscillatory. 

D 
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R e m a r k 4.7. If condition (PA) holds, then using Corollary 3.4 we can 
derive analogous assertions for equation (4.8). 
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