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ON SINGULAR SOLUTIONS OF THIRD ORDER 
DIFFERENTIAL EQUATIONS 

MlROSLAV BARTUSEK 

(Communicated by Milan Medved') 

ABSTRACT. The structure of singular solutions, defined on R+ , of the nonlinear 
differential equation y'" + py" + qy' + rf(y,y',y") = 0 is studied. Sufficient 
conditions are given under which a set of all zeros of a singular solution is a 
neighbourhood of oo. 

1. Introduction 

Consider the third-order differential equation 

y'"+py" + qy' + rf(y,yf,y") = 0, (1) 

where PeC1^). g G C ° ( R + ) , r G L l o c ( R + ) , / G C ° ( R 3 ) , r > 0 on R+ and 

f(x1,x2,x3)x1>0 on R3 . (2) 

DEFINITION 1. Let I C R+ , y G C2(I) and y" be absolutely continuous 
on I. Then y is called a solution of (1) if equation (1) is valid for almost all t 
on I. 

A solution y is called proper if I = R+ and sup \y(t)\ > 0 for all r G R+ . 
r<t<oo 

A proper solution is called oscillatory if it has infinitely many zeros tending 
to oo. 

A solution y defined on R+ is called singular if there exists T > 0, such 
that y = 0 on [T' , oo) and y is not trivial in any left neighbourhood of T . 

Many authors studied the following problem, see e.g. [3]-[7], [10]-[14]: 
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To give sufficient conditions on p , g, r and / under which a solution 
y of (1), defined on R + , with a zero is oscillatory. 

Note, that they denned oscillatory solution y as a solution denned on R+ , 
that has a sequence of zeros tending to oo, Thus oscillatory solution in this sense 
is, according to Definition 1, either proper oscillatory or singular. 

One of significant problems is to study the existence of (proper) oscillatory 
solutions. To use the results of the above mentioned authors, it is useful to seek 
conditions under which a solution of (1) with a zero 

— is defined on R+ ; 
— is not singular. 

In this paper we give sufficient conditions under which for a singular solu
tion y of (1) 

y(t)?0, t € [ 0 , T y ) , (3) 

holds, where T is given by Definition 1. 

The following example shows that the singular solution may exist, for which 
(3) does not hold. 

E X A M P L E . Let 

( t{ —15(* - l ) 3 + l l ( t - l ) 2 - 5(t - 1) + 1} for t e [0,1], 

(2-t)4 for * G ( 1 , 2 ] , 

0 for t > 2 , 

r(t) = 24, 
,(*).-. §[3 +(?)*] on K+ , 

í {-y'" - qy' - ry^y")-1 for t e [0,1], t ± 

P(t) = { 

2 
3 ' 

¥ + Ш ' for * = | , 
§ ( 2 - t ) f o г ť є [ l , 2 ] , 

^ 0 for t > 2 . 

Then p G C ° ( R + ) , y(0) = 0, y > 0 on (0,2) and y is the singular solution of 

y'" +py" + qy' + r |y | A sgny = 0 with A = \. Thus (3) is not valid for t e [0,2). 

2. Structure of singular solutions 

The following theorem is often used and gives the sufficient condition under 
which singular solutions do not exist at all. 
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T H E O R E M 1 . ([9]) Let e > 0 exist such that 

3 

1/(̂ 1̂ 2̂ 3)1 < ] L N on H ^ ] 3 - (4) 
І-1 

Then there exists no singular solution of (1). 

It is evident that the assumption of Theorem 1 is not valid for Emden-Fowler 
equation: 

y'" + Py" + qy' + r\y\x sgn y = 0, A G (0,1). (5) 

Moreover, singular solutions may exist, see [9] for p = q = 0. 
In [1] the structure of a singular solution y is studied for two-terms equa

tion (1), i.e. for p = 0 and q = 0. It was proved that 

y(t)y'(t)<0, y(t)y"(t)>0 on [0,Ty). 

In the following theorem the same result is proved for singular solutions of (1) 
in a neighbourhood of Ty. 

First, sum up the needed results in the following lemma: 

LEMMA 1. Let / C l + and let there exist positive solution h of 

h" +pti + qh = 0 (6) 

on I. Then (1) can be expresed on I in an equivalent form 

y[3] + h{t,y[»\yW,yM)=0, (7) 

t 

J p(s) ds 
where R(t) = e° ; 

y[°l = y, j,0] = Rh2(yWy = R(y"h - y'h'), 

y M - - £ , yN.-(yP])'. (8) 

/ 1 ( i , x 1 , x 2 , x 3 ) - - r ( t ) M i ) - ? ( i ) / ( x 1 , M i ) * 2 . ^ ^ + / l ' ( * ) - J 2 ) -

Moreover, if t0 € I and y is a solution of equation (7) (and thus of equation (1), 
too) such that 

y(to)y
[1](t0)<0, y(t0)y

[2](t0)>0, (9) 
then 

7/ (%WW<0, y(t)yW(t)>0 for t e l , t < t0. (10) 

P r o o f . The transformation of (1) into (7) can be obtained by the direct 
computation, see [2]. Further (2), (7) and (8) yield 

y[3](t)y(t)<0 a.e. on I (11) 
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and 
y [ < 1 (*)>0(<0) on I^CI, ie {1,2,3}, 

implies (12) 

y[l~l] is nondecreasing (nonincreasing) on Ix . 

Let (9) be valid with y(t0) > 0 for simplicity. Put I2 = {t : t G I, t < *0} . We 
prove that 

2 

[ T > [ i l ( l ) l > 0 on 72. (13) 

Thus, suppose indirectly, that r G J2 is the maximal number, such that 
2 

f] |j/W(r)| = 0. From this, from (9), (11) and (12) 
i=0 

y(t)>0, y[1](t)<0, y[2](t)>0, y[3](t)<0 on (r,t0] 

and, evidently, y[2](r) = 0. Thus 

y[2](t0) = y[2](t0)-y
[2Hr) = jy^(s)ds<o. 

T 

The contradiction with (9) and y(t0) > 0 proves that (13) holds. The conclusion 
(10) follows from (9), (11), (12) and (13). • 

THEOREM 2. Let y be a singular solution of (1) and let T be the number 
from its definition. Then there exists left open neighbourhood I of T such that 

!/(%'(«) < 0 , y(t)y"(t)>0 on I. (14) 

P r o o f . Let h be a solution of equation (6) such that h(T ) = 1, h'(T ) — 0, 
and let J be an open left neighbourhood of Ty on which h > 0 holds. Then 
according to Lemma 1, (1) can be expresed in the equivalent form (7). Further 

y(i)(Tv) = 0, t = 0 , l ,2 , (15) 

and we prove that 

y(t)y[1](t)<0, y(t)y[2](t)>0 on J. (16) 

First suppose that y ^ 0, say y > 0, in a left neighbourhood JY of Ty, Jx C J. 
Then (11) yields y[3] < 0 a.e. on J1. Moreover, y[3^ ^ 0 a.e. in any left neigh
bourhood J2 of Ty as, otherwise, (8) and (15) yield y = 0 in J2 that contradicts 
y ^ 0. From this 

yW(t) = - I y[3](s) ds>0 for tG J-

234 



ON SINGULAR SOLUTIONS OF THIRD ORDER DIFFERENTIAL EQUATIONS 

and, using (8) and (15), y[l](t) < 0, y(t) > 0 o n J 1 . The validity of (16) follows 
from Lemma 1. 

The last possible case consists in the existence of an increasing sequence 
{rk}°° such that 

y ^ 0 in any left neighbourhood of T , (17) 

and r, e J, lim r. = T and y(r,) = 0 for k = 1, 2 , . . . . 

Let J2 = [a, T ], a £ J be such an interval that 

W = ^m'mh(s) - ±mcix\(R(s)h3(s))'\A(Ty) > 0, (18) 
sЄJ * 5Є. 

t 
where A(t) = J ^ ( r ^ 2 ( r ) and J is the closure of J . If 

a 

F(t) = -A(t)yM(t)y(t) + ±A(t)R(t)h3(t)(y[1\t))2 + y(t)y[1\t), t€J2, 

then, using (8), (11) and (18), we have 

F'(t) = -A(t)y[3](t)y(t) + [\h(t) + \A(t)(R(t)h\t))'} (y[1\t)f 

> W(y[1\t))2 > 0 on J2. 

Thus F is nondecreasing and F(Ty) = 0 yields F(t) < 0 for t G J2. On the 
other hand, if Tk 6 J2 , then E(Tfc) > 0, and thus F(t) = 0 on [rk,T.' ] . From 
this, and from (19) we have 

Ty Ty 

0 = f F'(s) ds>W f(y[1](s))2 ds>0. 

Tk Tk 

Thus, using (18), y'(t) E 0 on [rk,Ty], which contradicts (15) and (17). The 
contradiction proves that (16) is valid and applying (8) 

y(t)y'(t)<0, teJ. (20) 

Further suppose that there exists a sequence {T }̂]50 such that rk < T , k = 
1,2,... l i m r f c = T j/"(rfc) = 0. 

Let z be the solution of 

z"-(zp)' + zq = 0, z(Ty) = l, z'(Ty)<p(Ty), 

and v be the solution of 

v" - (vp)' + qv = 3z' - 2zp, v(Ty) = l, v'(Ty)<l+p(Ty). 
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Let J 3 C J be an open left neighbourhood of T such that 

z(t) > 0 , z'(t)-z(t)p(t) < 0 , 

v(t) > 0 , z(t) - v'(t) + v(t)p(t) > 0, 

Define F on J 3 U {Ty} by 

* Є J 3 . (21) 

F = - V ' y + (*' - zv)y'y + ^(z-vl + vp)y'2 + vy"y'. 

Then, using (20) and (2) 

F' = -vry'f(y, y', y") + zry/fo, y', y") + V ' 2 > 0 on J 3 . 

From this, F is nondecreasing and using F(T ) — 0 we have F(t) < 0, t e J3. 
Let T G J 3 be a zero of H". Then 

* \ r ) = (z' - zp)y'y + i ( z - v' + Up)y/2 | , = r < 0 

that contradicts (20) and (21). Thus y" ^ 0 on J 3 and it follows from (21) and 
yW(Ty) = 0, i = 0,1,2, that y(t)y"(t) > 0, t <E J 3 , must be valid. Put 7 = J 3 . 

• 
R e m a r k 1. Note, that for a singular solution y of (1), (16) is valid in a left 
neighbourhood of T . 

R e m a r k 2. Singular solution y of (1), fulfilling (14) in an open left neighbour
hood of T , is called Kneser singular solution. Thus every singular solution is 
Kneser singular solution. 

In the light of Theorem 2 our problem can be formulated in the following 
way: 

PROBLEM 1. To give sufficient conditions under which for Kneser solution y 
the inequality (3) is valid (if (4) does not hold). 

3. Problem 1 

In the two following theorems, further assumptions are posed only on p and q. 

THEOREM 3. Let q < 0 on M+ . Then for a singular solution y of (1). (3) is 
valid. 

P r o o f . Let y be a singular solution of (1). Then, according to [8], there 
exists a positive solution h > 0 of equation (6) on R+ and the assupmtions of 
Lemma 1 are fulfilled with / = R+ . As, according to Remark 1, the inequalities 
(9) are valid for tQ lying in a left neighbourhood of T , (10) yields (3). • 
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T H E O R E M 4. Let C e R, p G C 2 ( R + ) , q G C X ( R + ) , 

(1-C){p" + 3Cpp' + C2p3}-q'-Cpq>0 on R + 

l C > f and p>0 on R + 

oг 
and either < C < § and p < 0 оn 1R+ 

(22) 

or 

Then /or a singular solution y of (1) the inequality (3) holds. 

P r o o f . Let y be singular solution of (1) and let T be a number from its 

definition. Contrarily, suppose that there exists r G [0, T ) such that IJ(T) = 0. 
Put 

C / p ( 5 ) d 5 

ғ(t) = e ° s {_ 2 í / 2 / " + y ' 2 +H + (i-c)p' + (c-cV]y2 

+2p(C-l)yy'} ť > т . 

(23) 
Then 

t 

F'(t) = eCoP(s) dS{y2[-q' - Cpq + 3pp'(C - C2) +p3(C2 - C3) +p"(l - Q] 

+y'2[3C -2]p + 2ryf(y,y',y")} . 

(24) 
Assumptions of the theorem yield F'(t) > 0. As F(Ty) = 0 and F(T) = 

[y'(T)] > 0, we can conclude that F = 0 on [r,Ty] and thus, by integra
tion of (24) on [r,T' ] and by (22), y = 0 on [r,T' ). It is in contradiction with 
the definition of the singular solution y. D 

CONSEQUENCE 1. Let q G C X ( R + ) and let one of the following assumptions 
hold: 

(i) p G C 2 ( R + ) , p < 0, p" - q' > 0 on R + ; 
(ii) p > 0, q' -f pg < 0 on R + ; 

(iii) p G C 2 ( R + ) , 9p7/ -1- 18pp' + 4p3 - 27qr - 18pq > 0 on R + . 

Then /or a singular solution y of (1) the relation (3) holds. 

P r o o f . It follows from Theorem 4 for C -= 0,1, | , respectively. Note, that 
according to (23) the assumption p G C 2 ( R + ) is not needed in case C = 1. D 

In the following theorem assumptions are posed also on the nonlinearity / . 
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THEOREM 5. Let a > 0 exist such that 

\f(x1,x2,x3)\>a\x1\ on R3 . (25) 

Further, let one of the following assumptions be valid on R + : 

(a) p > 0. q < yjarp; 
(b) p>0; qeCx(R+), 2ar-qf -qp>0; 
(c) P<0; peC2{R+), qeC1^), ar+p" - q' > 0 . 

Then for a singular solution of (1) the inequality (3) holds. 

P r o o f . Let y be a singular solution, Ty be defined by Definition 1. 
a) Suppose, contrarily, that T G [0, T ) exists such that 

2/(T) = 0 . 

Theorem 2 and Definition 1 yield, for simplicity, 

y ( t ) > 0 , y ' ( t ) < 0 , i / " ( t ) > 0 (26) 

in a left neighbourhood of T , and thus TX G (j^T ) must exist such that 

y'"^) = 0 , and (26) is valid on [TX , T y ) . 

In both of the following cases 

— y"f has the maximal zero on [T,T ) , 
— there exists an increasing sequence of zeros of y'" tending to Ty, 

it is possible to choose TX such that 

max y"(0 = 2 / " ^ ) . (27) 
1"lS*S-'y 

From this 
q\y'\ = Py" + rf(y,y', y") > py" + ray \i=Ti . (28) 

On the other hand, using y(Ty) = y'(Ty) = 0 , (26) and (27), we have 

Ty 

y'2(Tl) = 2 J \y'(s)\y"(s) ds < 2y"(r1)y(r1). 

Thus, together with (28), 

q{2y"y)^ >py" + ray\t=Ti, 

(x/ra77 - y/afy) + (y/2apr - q)\/2yy" < 0 | t = n 

that contradicts the assumption q < arp on R, . 
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b), c) The statement can be proved similarly as that of Theorem 4 for C = 1 
or C = 0, respectively. Instead of (22) a more precise estimation of Ff must be 
used, using (22) and (25): 

C fp(s) ds, 0 

F\t) = e o {y*l-qi - Cpq + 3pp'(C - C2) 

+ p 3 (C 2 - C73) + p " ( l - C) + 2ar] + y,2[ЗC - 2]p} . 

D 
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