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ON DISJOINT COVERING OF GROUPS
BY THEIR COSETS

IVAN KOREC—STEFAN ZNAM

A system of residue classes of the additive group of integers Z
(1) a(mod n) i=1, ..., k(=2)
is said to be disjoint covering if every integer belongs to exactly one of the
residue classes (1).

Among other facts the following properties of disjoint covering systems are
known (see [1]):

A 3=

sl»—'

B. (n;, n)>1 for any £, j=1, ..., k.

Our article is devoted to the study of the disjoint covering of any group by its
cosets (an obvious generalization of the above mentioned problem), and properties
analogous to A and B are shown. Further we show that for studying this problem it
is sufficient to consider finite groups only.

I

Let G be a group, G, ..., G,, k>1 be its subgroups (not necessary distinct) and
a,, ..., a, some elements of G.
The sequence

(2) : a,G,, ..., aka

will be called a disjoint covering system (DCS) of G if every element of G
belongs to exactly one coset of (2) (see [3]).

Remark. For any subgroup H and any element x of G the equality
Hx =x(x""Hx) holds and therefore every right coset of G is also a left coset.
Hence it is sufficient to consider DCS consisting of left cosets only.

Denote by [G: H] the index of the subgroup H in G.

Lemma 1. Let G be a group, G,, ..., G, its subgroups, H=G,n...n G;. Then



|G: HIZ|G: G\]...|G: Gi].

Proof. Every coset xH can be written as xG,n...nxG,. For

every
ie{l, ..., k} there are [G: G| possibilities for the choice of xG,.

Theorem 1. If (2) is a DCS of G, then the indices [G: G,| (i=1...., k) are
finite.

Proof. Let k& be the smallest natural for which there exists a DCS (2) of some
group G in which [G: G,] is infinite for some r. Consider two possibilities :

a) there exist some 7, je{l, ..., k} such that [G,: G,n G,] is infinite ;
b) all the indices [G;: G; n G;] are finite.

a) Without loss of generality we can suppose g, = e. Consider the sequence
3) GnadG,..GnaG, ..., GnaG,.

Obviously G; n a,G; = G, n G;#§. The index [G;: G; n G,] is infinite, therefore the
non-empty elements of (3) form a DCS of G, with less than & members and with at
least one infinite index. This is a contradiction.

b) Denote H= G,n...Nn G,. At first we prove that |G, : H] is finite for all
s=1,..., k.Obviously H=(G, n75,)n...n (G, N G,) holds. By Lemma 1 we get

[G.: HIZ[G,: G,nG,]...[G,: GinG].

All factors on the right-hand side are finite and hence |G, : H] is finite, too.
Foreveryie{l, ..., k} the coset a,G; consists of [G, : H] cosets by H and hence

the group G consists of S‘[G H] cosets by H, i.e.

(4) IG:H1=\5[G,»:HI-

From (4) it follows that [G : H] is finite (all summands on the right are finite). Then
from

(5) [G: H|=[G: G,]|.|G,: H] (see[2])

we get a contradiction.

Theorem 2. Let (2) be a DCS of a group G; denote n,=[G: G;|. Then
o
Zz—l )

Proof. Denote H=35 ,n...nG,. By Theorem 1 and Lemma 1 the index
[G: H] is finite. Then the indices [G, : H], ..., [G.: H] are also finite and similarly
as in the proof of Theorem 1 we can obtain (4). Thus we get

4



,={~IG.:HI=i [G:Hl  _&1
—|G:Hl Z|G:G].[G:H| =n"

Remark. Theorem 2 obviously generalizes the property A of the DCS of Z.
Theorem 3. Let (2) be a DCS of G; let |G: G,)=n,. Then
(n;i,n)>1 forall i,j=1,.., k.
Proof. Denote n,=|G: Gin G]. By Lemma 1
(6) n;=nn, holds.

From [G: G,n G|=[G: G/].[G:: G, n G it follows that n, | n;. Similarly », | n,.
Suppose (n;, n;) = 1 ; then from the preceeding relations it follows that nn, | n, and
hence by (6) we get

n,=nn; .

Every coset by G, n G is an intersection of a coset by G; and a coset by G;. There

are at most nn, such intersections; however there exists at least one empty

intersection (¢,G; na,G; =0) and so n,; <nn;, which is a contradiction.
Remark. Theorem 3 generalizes the property B.

Definition. If (2) is a DCS of G and n, =[G : G;], then the sequence
(7 n, ..., n

will be called the indexing of (2).

In this part we shall show that to study completely the problem of a disjoint
covering of groups by their cosets it is sufficient to consider the finite groups only,
because if (7) is the indexing of a DCS of some group then there exists also a finite
group having a DCS with the indexing (7).

Lemma 2. Let G be a group and K its subgroup with [G: K]|=n<®. Then
there exists such normal subgroup H of G that Hc K and [G: H|=n".

Proof. By [2] there exist exactly [G : N;(K)] conjugate subgroups to K, where
Ns(K) is the normalizer of K in G. Let K|, ..., K,, be the list of all distinct
conjugate subgroups to K in G. Obviously m=n. For all i=1,...,m
[G: K]=[G: K] holds. Now, denote

(8) H=K n..nK,, .

By Lemma 1 we have [G: H|=n". It remains to prove that H is a normal
subgroup of G. But from (8) for any x e G we have



x'Hx=(x"'Kx)n..n(x"'K,x).

On the right we have m distinct conjugate subgroups to K and hence all of them.
Thus we get x~' Hx=H for every x € G.

Theorem 4. Let the finite sequence (7) be the indexing of a DCS of a group G.
Then there exists also a finite group F (of the order at most n”, wheren=n, ... n,)
having a DCS with the indexing (7).

Proof. Denote K=G,n...n G, ; by Lemma 1 [G: K]=n. By Lemma 2 there
exists such a normal subgroup H of G that Hc K and [G: H]=n". Denote
F=G/H, F,= G,//H, b, = a;H. The order of the factor-group F is equal to [G : H],
hence it is not greater than n". Obviously

b,F,, ..., b.F,

is a DCS of the group F with the indexing (7).

Theorem 5. Let the finite sequence (7) be the indexing of a DCS (2) of an
Abelian group G. Then there exists also a finite Abelian group F (of the order at
most n=n, ... n,) having a DCS with the indexing (7).

The proof is similar to that of Theorem 4 (put H = K).

Remark. Theorem 5 is an analogon of the following known fact. Denote Z,
the additive group of integers modulo m. Now, if a DCS of Z with moduli n, ..., n,
exists, then there exists a DCS with the same moduli also for Z,, where
m=|n,, ..., n.]. It can be shown that in Theorem 5 the product #, ... n, cannot be
in general replaced by [n,, ..., n.].

From Theorems 4 and 5 we get:

Theorem 6. The following problems are recursively solvable
a) whether to a given sequence (7) of naturals there exists a group G having

a DCS with the indexing (7);
b) whether to a given sequence (7) of naturals there exists an Abelian group
G having a DCS with the indexing (7).
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O TOYHO MOKPBLIBAIOWIUX CUCTEMAX T'PYIIT COCTOSIINX
N3 CMEXHbIX KIIACCOBb

HBan Kopeu, Uredan 3nam

Peswome

Mycts G rpynna, a,, ..., a4, (k Z2) anementsl G n G,, ..., G, noarpynnbl G. KoHeuHas nocnenoBa-
TEALHOCT L (2) CMEXKbIX KNAaccOB rpynnbl G HA3LIBAETCH TOYHO NMOKPbIBAlOILEH cucTeMoil rpynnst G,
€ClN BCAKHI. 1eMeHT G NPUHARNEXHT OIHOMY M TOJILKO OfHOMY Kaaccy u3 (2). MupekcupoBanneM
cucTeMbl (2) Ha3bIBAETCS KOHEYHaAs MOCAenoBaTeNbHOCTh (7), rae n, =[G : G;]| 0603HavaeT uupekc G, B
G. 1oka3biBaeTcs, YTO

rvor s S
1) Bce n; HaTypaabHbIE YUCAA U 2= 1
i=11%

2) cpean 3neMeHTOB nochenoBaTesibHOCTH (7) He CYLIECTBYIOT Ba B3aMMHO MPOCTBIX JIEMEHTA ;
3) npoGnema, AANAETCA-U laHHass KOHEYHas MOCNEN0BaTENbHOCTb HATYPAbHBIX YUCEN HHAEKCUPOBA-
HHEM JHOO0N TOYHO MOKPBIBAKOIUEH CUCTEMbI, AITOPUTMHUYECKN pa3peLInMa.
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