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MATHEMATICA SLOVACA 

VOLUME 27 1977 NUMBER 1 

ON DISJOINT COVERING OF GROUPS 
BY THEIR' COSETS 

IVAN KOREC—STEFAN ZNAM 

A system of residue classes of the additive group of integers Z 

(1) *,(mo(U) / = 1 , . . . , * ( ^ 2 ) 

is said to be disjoint covering if every integer belongs to exactly one of the 
residue classes (1). 

Among other facts the following properties of disjoint covering systems are 
known (see [1]): 

* 1 

B. (/!,-, nt)>\ for any /, / = 1 , ..., k. 

Our article is devoted to the study of the disjoint covering of any group by its 
cosets (an obvious generalization of the above mentioned problem), and properties 
analogous to A and B are shown. Further we show that for studying this problem it 
is sufficient to consider finite groups only. 

Let G be a group, Gu ..., Gk, k> 1 be its subgroups (not necessary distinct) and 
au ..., ak some elements of G. 
The sequence 

(2) axGu ...,akGk 

will be called a disjoint covering system (DCS) of G if every element of G 
belongs to exactly one coset of (2) (see [3]). 

Remark. For any subgroup H and any element x of G the equality 
Hx = x(x~lHx) holds and therefore every right coset of G is also a left coset. 
Hence it is sufficient to consider DCS consisting of left cosets only. 

Denote by [G: H] the index of the subgroup H in G. 
Lemma 1. Let G be a group, Gu ..., Gk its subgroups, H= Gxn...nGk. Then 



\G:H\^\G:GA...\G:Gk\. 

Proof . Every coset xH can be written as xGxn ...nxGk. For every 
/ e { l , ..., k) there are [G: G..[ possibilities for the choice of xG,. 

Theorem 1. If (2) is a DCS of G, then the indices [G: G,| ( /= 1 k) are 
finite. 

Proof. Let k be the smallest natural for which there exists a DCS (2) of some 
group G in which [G: Gr\ is infinite for some r. Consider two possibilities: 

a) there exist some /, ye {I, . . . ,k} such that |G,: G,nG,\ is infinite; 

b) all the indices [G,: GtnG^ are finite. 

a) Without loss of generality we can suppose a, = e. Consider the sequence 

(3) dnaiG^ ..., G^afi^ ..., GjnakGk . 

Obviously G, n tf.G, = G, n G, ̂  0. The index [G,: G, n G,| is infinite, therefore the 
non-empty elements of (3) form a DCS of G, with less than k members and with at 
least one infinite index. This is a contradiction. 

b) Denote H= Gxn...nGk. At first we prove that \GS: H\ is finite for all 
s = 1, ..., k. Obviously H = (G:, n J v )n ... n (Gk n Gv) holds. By Lemma 1 we get 

[Gv: IJ]^[GV: G,nGs\ ... [Gv: G* n G J . 

All factors on the right-hand side are finite and hence [Gv: H] is finite, too. 
For every / e {1, ..., k} the coset a,G, consists of [G,: H] cosets by H and hence 

k 

the group G consists of 2[G,•.: H] cosets by I/, i.e. 
I = I 

(4) [ C : n l = V [ G : n l . 

From (4) it follows that [G : H] is finite (all summands on the right are finite). Then 
from 

(5) [G:H] = [G:Gr].\Gr:H] (see [2]) 

we get a contradiction. 

Theorem 2. Let (2) be a DCS of a group G; denote n,, = [G: G,-]. Tften 

* 1 

^ = 1 -

Proof. Denote H = Jln...nGk. By Theorem 1 and Lemma 1 the index 
[G: H] is finite. Then the indices [G, : I/], ..., \Gk: H] are also finite and similarly 
as in the proof of Theorem 1 we can obtain (4). Thus we get 



, y[°'://Ly [Gt:H] ^ 1 
n | G : W ] , ^ [ G : G , 1 . [ G , : / / ] ^ / i , ' 

Remark . Theorem 2 obviously generalizes the property A of the DCS of Z . 

Theorem 3. Let (2) be a DCS of G; let [G: Gi] = n,. Then 

(AZ,, AZ,)> 1 for all /, y'= 1 k . 

Proof. Denote AZ„ = [ G : G.-nG;-]. By Lemma 1 

(6) AZ„̂ irz,AZ, holds. 

From \G: G,nGi] = \G: Gi].\G,: G, n Gf] it follows that n, | AZ,,. Similarly AZ, | AZ„. 
Suppose (AZ,, AZ,) = 1 ; then from the preceeding relations it follows that AZ,AZ, | AZ„ and 
hence by (6) we get 

n,j = n.ni . 

Every coset by G, n G, is an intersection of a coset by G, and a coset by G,. There 
are at most AZ,AZ, such intersections; however there exists at least one empty 
intersection (a,G, n a,G, = 0) and so AZ,7<AZ,AZ,, which is a contradiction. 

R e m a r k . Theorem 3 generalizes the property B. 

II 

Definition. If (2) is a DCS of G and nt = \G: G,], then the sequence 

(1) nx nk 

will be called the indexing of (2). 
In this part we shall show that to study completely the problem of a disjoint 

covering of groups by their cosets it is sufficient to consider the finite groups only, 
because if (7) is the indexing of a DCS of some group then there exists also a finite 
group having a DCS with the indexing (7). 

Lemma 2. Let G be a group and K its subgroup with \G: K] = AZ < oo. Then 
there exists such normal subgroup H of G that Hcz K and \G: H]^nn. 

Proof. By [2] there exist exactly [G: Na(K)] conjugate subgroups to K, where 
Na(K) is the normalizer of K in G. Let K,, ..., Km be the list of all distinct 
conjugate subgroups to K in G. Obviously mfkn. For all / = 1 , . . . , A A Z 
[G: K] = [G: K] holds. Now, denote 

(8) I/=KIn...nKm . 

By Lemma 1 we have [G: H]^nm. It remains to prove that LI is a normal 
subgroup of G. But from (8) for any JCE G we have 



x'1 Hx = (xl K,x) n ... n(xl Kmx) . 

On the right we have m distinct conjugate subgroups to K and hence all of them. 
Thus we get x~l Hx = H for every x e G. 

Theorem 4. Let the finite sequence (7) be the indexing of a DCS of a group G 
Then there exists also a finite group F(of the order at most nn, where n = nx ... nk) 
having a DCS with the indexing (7). 

Proof. Denote K= G, n . . . n Gk; by Lemma 1 [G: K]^n. By Lemma 2 there 
exists such a normal subgroup H of G that HczK and [G: H]^nn. Denote 
F= G/H, Fi = GtlH, bi = ciiH. The order of the factor-group F is equal to [G: / / ] , 
hence it is not greater than nn. Obviously 

bxFu ..., bkFk 

is a DCS of the group F with the indexing (7). 
Theorem 5. Let the finite sequence (7) be the indexing of a DCS (2) of an 

Abelian group G Then there exists also a finite Abelian group F (of the order at 
most n = nx ... nk) having a DCS with the indexing (7). 

The proof is similar to that of Theorem 4 (put H=K). 
R e m a r k . Theorem 5 is an analogon of the following known fact. Denote Zm 

the additive group of integers modulo m. Now, if a DCS of Z with moduli /i,, ..., nk 

exists, then there exists a DCS with the same moduli also for Zm , where 
m = [nx, ..., nk\. It can be shown that in Theorem 5 the product nx ... nk cannot be 
in general replaced by [«,, ..., nk\. 

From Theorems 4 and 5 we get: 
Theorem 6. The following problems are recursively solvable 

a) whether to a given sequence (7) of naturals there exists a group G having 
a DCS with the indexing (7); 

b) whether to a given sequence (7) of naturals there exists an Abelian group 
G having a DCS with the indexing (7). 
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О ТОЧНО ПОКРЫВАЮЩИХ СИСТЕМАХ ГРУПП СОСТОЯЩИХ 

ИЗ СМЕЖНЫХ КЛАССОВ 

Иван Корец, ШтефанЗнам 

Р е з ю м е 

Пусть С группа, а ар (кШ2) элементы С и Сх Ск подгруппы С. Конечная последова­

тельность (2) смежых классов группы С называется точно покрывающей системой группы Оч 

если всякий элемент С принадлежит одному и только одному классу из (2). Индексированием 

системы (2) называется конечная последовательность (7), где л, =\С: 0{] обозначает индекс (7, в 
С. Доказывается, что 

1) все п^ натуральные числа и V — = 1 ; 
, = |Л, 

2) среди элементов последовательности (7) не существуют два взаимно простых элемента; 

3) проблема, ядляется-ли данная конечная последовательность натуральных чисел индексирова­

нием любой точно покрывающей системы, алгоритмически разрешима. 
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