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DOMINATION IN n-CUBES WITH DIAGONALS 

IVAN HAVEL 

(Communicated by Martin Skoviera) 

A B S T R A C T . The paper studies domination in cubes with diagonals, the graphs 
tha t arise from ordinary hypercubes Qn by adding new edges joining opposite 
vertices. We establish basic relations between domination and domatic numbers 
of cubes with diagonals and those of hypercubes, and use them to show tha t the 
domatic number of Q 6 is 5 (so far it was only known tha t it equals either 4 
or 5 ) . 

1. Introduction and notation 

The graphs of the n-cubes with diagonals form an important subclass of the 
generalized hypercubes and therefore also of the s.c. cube like graphs ([3], [4]). 
They arise in a natural way: to a well-known hypercube graph Qn, one adds 
2 n _ 1 new edges joining pairs of opposite vertices. It is shown in [10] that for 
n even n-cubes with diagonals are isomorphic to the s.c. extended odd graphs, 
that were defined and first studied in [7]. Also for n odd, the n-cubes with 
diagonals are isomorphic to already known graphs — these are the s.c. half cubes 
defined again in [7]. The extended odd graphs have already been studied from 
the point of view of their chromatic properties. It is proved in [10] that the 
chromatic number of an extended odd graph is 4; a stronger result claiming 
that the chromatic number of an arbitrary cube-like graph is different from 3 
is in [8]. Together with halfcubes that are bipartite, extended odd graphs have 
also been studied from the point of view of their interval properties ([7], [1]). 

In the present paper, we try to find out, whether and in which way the 
known results on domination in hypercubes ([6], [12], [5]) hold also in the case of 
n-cubes with diagonals. We establish some relations between domination con
cepts for hypercubes and those for n-cubes with diagonals. For certain dimen
sions, we determine exact values of both the domination and domatic numbers 
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of the n-cubes with diagonals. Using a computer we succeeded to show that the 
domatic number of the 5-cube with diagonals equals 5; this made possible to 
solve a problem from [5]: we show that the domatic number of the 6-dimensional 
hypercube Q6 also equals 5. 

The notion of the hypercube graph Qn is used in the usual sense; we define 
it for n > 1 as follows: the vertex set V(Qn) consists of all 2n binary vectors of 
length n , and two vertices u,v G V(Qn) are adjacent if and only if they differ 
in exactly one coordinate. We recall that the usual distance dg^ in Qn is the 
known Hamming distance. We will denote it in a simplified manner by dn ; thus 
for arbitrary binary vectors it, v of the same length v > 1 and k G [ 0 , . . . , l/j, 
dn(u, v) = k if and only if u and v differ in exactly k coordinates. For the sake 
of brevity, the graph of the n-cube with diagonals will be throughout the paper 
denoted by Rn (its full denotation, e.g. according to [3], should be Qn(l,n)). 
We define it for n > 2 as follows: V(Rn) = V(Qn), and for u,v E V(Rn), u 
and v are adjacent if and only if dn(u,v) = 1 or dn(u,v) = n. 

Let us recall here two basic operations on binary vectors: if u = (Hx , . . . , u ) 
is a binary vector of length n > 1 (and therefore ui G {0,1}, i = 1 , . . . , n ) , we 
denote by u the complementary vector of u, defined as follows: 

u= (v~, . . . , i t ~ ) , 

where 0 = 1 and 1 = 0. If u and v are two binary vectors of the same length 
n > 1, u = (uv...,un), v = ( ^ , . . . , U n ) , we put 

u@v = (u1®v1,...,un®vn), 

where 0 is the addition mod 2 (0 0 0 = 1 0 1 = 0 , 0 0 1 = 1 0 0 = 1). 

An important role in our constructions will be played by the Hamming code; 
for its existence and properties cf., e.g., [9]. We summarize all we need from this 
area of coding theory in the following statement: 

Let k > 1 and n = 2k — 1. Then in Qn, there exists the Hamming code, i.e , 
the set Hn C V(Qn) such that 

7i0 : Hn contains the zero vector (v1,...yvn) for which vi = 0, i = 1 , . . . , n. 
%1: \Hn\ = 2n~k , the Hamming distance of any two different elements of Hn 

is at least 3, and for every u G V(Qn), there is exactly one h(u) G Hn 

fulfilling dn(u,h(u)) < 1. 
U2: veHn =-=?> v G Hn. 
Uz: If 1 <i < n , L~ {0,1}, and Hni = { ( « ! , . . . , v n ) G Hn; vi = u), then 

I rrO I I rjrl I n n - f c - 1 

Further, let us choose arbitrarily w G V(Qn) and put 

Hn(w) = {v®w] v£HJ. 
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Then also H'l-'H
,
Z hold, where %'• is obtained from the corresponding %. by 

substituting Hn(w) for Hn. 

From the area of domination in graphs, we shall need the following definitions 
and facts: 

A set of vertices D C V(G) is a dominating set of G if every vertex not 
in D is adjacent to at least one vertex in D. The domination number 7(G) is 
the minimum cardinality taken over all minimal dominating sets. A partition of 
V(G) into dominating sets of G is called a domatic partition. The maximum 
order of a domatic partition of G is called the domatic number of G and is 
denoted by d(G). 

d(G) can also be defined in an equivalent way, using the s.c. domatic coloring 
of G. Let c be a coloring of vertices of G, let c(V(G)) = { 1 , . . . , k}. We say 
that c is a domatic coloring of G if to every v G V(G) and every i G { 1 , . . . , k}, 
i 7-: c(f), there is u G V(G) with c(u) = i, u adjacent to v. (Observe that 
in a domatic coloring, vertices of the same color may be adjacent.) Then the 
maximum number of colors of a domatic coloring of G is d(G). 

One verifies directly the following facts: 

7 ( G ) > IY(G)I 
A(G) + 1 

where A(G) is the maximum degree of vertices in G. 

If H is a spanning subgraph of G, then 7(G) < 7(H ) . 

Further, 
\V(G)\ 

d(G)< 
l(G) 

and also d(G) < 8(G) + 1, where 5(G) is the minimum degree of vertices in G 
([2]). For a regular graph G, d(G) = 6(G) + 1 only if 8(G) + 1 divides \V(G)\ 

([ll])-
We are closing this introductory paragraph by presenting several results con

cerning the domination in hypercubes that are known from the previous work 
and are related to our subject. 

The following table yields the known values (for 1 < n < 7) of 7(Q n ) (cf. [6]): 

n i 2 3 4 5 6 7 

7(Q„) i 2 2 4 7 12 16 

l(Qn) can also be determined for the dimensions of the form n = 2k - 1; as a 
minimum dominating set in <22

fc-i ( & > ! ) > t n e Hamming code can be taken. 
Hence we get 

7(Q2fc_1) = 2 2 f c - f c - 1 , k>\. 
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As to the domatic number d(Qn), it is shown in [12] that 

d(Qn)<d(Qn+1), n > l , 

and 

d(Q2k_1)=d(Q2k) = 2k, k>l. 

L a b o r d e ([5]), using Hamming code, gave an alternative proof of the result 
of [12]. He also showed, disproving a conjecture from [12], that d(Q5) = 4 and 
further, using ^(Q6) = 12, also 

4<d(Q6)<5. (1) 

Thus for the known values of d(Qn) we have the following table: 

n 1 2 3 4 5 6 7 8 15 16 

d(Qn) 2 2 4 4 4 4-5 8 8 16 16 

We are going to solve the problem of d(Q6) below: constructing a domatic col
oring of R5 by 5 colors and using the general statement claiming that d(Rn) < 
d(Qn+i), we show that 

d(Q6) = 5. 

2- l(Rn) 

Trying to determine exact values and bounds of the domination number 
l(Rn), we start with the following obvious remark: 

Since Qn is a spanning subgraph of Rn, we have 

l(Rn)<l(Qn), n>2. (2) 

P R O P O S I T I O N l . 

7 ( < ? „ + i ) < 2 - 7 ( B J , n>2. (3) 

P r o o f . Let AC V(Rn) be a dominating set in Rn. We put 

,4/ = {(w1,....i;n.O); (v1,...,vn)eA), 
B = { ( ^ . - - - ^ > 1 ) ; (vlt...,vn)eA}, 
C =A'l)B, 

and show that C dominates Qn+1- Let u e V(Qn+1), u = (u1, • •. ,un,un+1). 
We have to show either that u G C, or that u is adjacent (in Qn+1) to a vertex 
of C. To this end, put w = (ux,..., un). 
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I. Assume first un+l = 0. If w G A, then u G A!. If w g A, then there 
is v G .4, i> = ( t ^ , . . . ,vn) such that either dH(i0,i>) = 1 or dn(w,v) = n . 
Let dn(w,v) = 1. Then also dH((u19.. . , u n , 0 ) , ( t ^ , . . . ,v n ,0 ) ) = 1; we have, 
however, (ix-^,..., un, 0) = i* and ( i ^ , . . . , vn , 0) G -4', hence we are done. Let 
dn(w,v) = n; then iv = v. Since (L>7,... ,TH, 1) G B, d K ( ( w l 5 . . . , ^ n , 0 ) , (v^ , . . . 
. . . , IT, 1)) = 1, and ( ^ , . . . , un, 0) = u, we are done again. 

II. Let now n n + 1 = 1. Consider w = ( % , . . . ,u~). li w G -A, then 
(u 1 ? . . . , u n , 1) G F?, i.e., l i G - B C C . I f t - J ^ - A , then there is v G A, 
v = (L>15... , f n ) such that either dn(v,w) = 1 or dn(v,w) = n. Let first 
dH(i;,:aJ) = 1. Then dn(v,w) = 1 and also dn((v~[,... j^H, 1), ( u l 5 . . . , ixn, 1)) 
= 1. Since (L^,. . . , i n , 1) G £ and (uly..., rxn, 1) = rx, we are done. If 
d^(i;, tiJ) = n , then in = U. Since (U^,.. . , 1 ^ , 1) E B and TX = ( t ^ , . . . , wn, 1) = 
(Uj-,...,TV-, 1), we have u e B, which accomplishes the proof. • 

Æ И 

И = Г 

Æ=Л 

\£=У 

Л=7Î 

И=K 

Æ7Î 

l̂ =T 
FIGURE 1. 

Using (2) and (3), we obtain as a corollary 7(-R3) = 2, 7(i?4) = 4 and 
7(^5) > 6. Fig. 1 shows, on the other hand, a 6-element dominating set in R5, 
hence 

7(^5) = 6-

In the figure, all the vertices of R5 but only a half of its edges are drawn. 
Three more edges (horizontal, vertical and diagonal) are incident in R5 with 
each vertex: the horizontal edge joins it with the corresponding neighbour to the 

109 



IVAN HAVEL 

right or to the left, the vertical edge joins it with the neighbour situated up- or 

downwards, and the diagonal edge leads to the opposite vertex. 

PROPOSITION 2. Let m > 2, n = 2 m - 2. Then 

7 ( i t n ) = 2 n - m . 

P r o o f . Let m > 2, n = 2 m - 2 . Rn is regular of degree n + 1 = 2 m - 1, 

hence 7(-Rn) > 2 n _ m . In order to prove i(Rn) < 2 n _ m , we will construct a 

dominating set Dn of Rn with | L ) J = 2 n - m . Our construction starts with 

the Hamming code Hn+1 in Qn+\ • From the properties of Hamming code, we 

derive the following facts: Hn+1 Q V ( Q n + 1 ) , | # n + 1 | = 2 n _ m + 1 , and for every 

u G V(Qn+1) there is exactly one h(u) G Hn+1 fulfilling dn(u, h(u)) < 1. Also, 

if (vv... ,U n + 1 ) G Hn+1, then (W^ .. .,v~^) G Hn+1. 

Consider the partition V(Qn+1) = Vn + 1 U Vn+1, where 

K+i = {u = (uv...,un,un+1) G V(Qn+1); un+1 = L) , t = 0 , 1 , 

and put 

K+i = IIn+i n v>+1, t = o, l . 

Also from the properties of Hamming code, we have | I I n + 1 | = 

Further, if u G Vn+1, u = ( w l r . . , u n , 0 ) and h(u) = (vx,... 

h(u) G V n + 1 if and only if u{ = ^^, i = 1, . . . , n . Hence, if 

( ^ , . . . , u n , 0 ) and (uv...,un,l) $ Hn+1, then /i(u) G H°+1. 

We are ready to define 

II^+1i 
2n-

Dn = {(u1,...,un)] (Ul)...,un,0)eH°n+1}. 

Let us verify that Dn dominates Rn. Given (^^1,...,^^n) G Vr(Itn) \ D n , con

sider w — ( i i j , . . . ,wn,0) and find /i(w) G Hn+1 such that dn(w,h(w)) < 1. 

Let /i(i0) = ( i ^ , . . . ,vn,vn+1). If Un+1 = 0 and therefore h(w) G IIn+1, then 

d ^ ( ( u 1 7 . . . ,un), (v^ ... ,vn)) = 1, and we are done. If, on the other hand, 

vn+1 = 1 and h(w) G Hn+1, then ui — vi, i = 1, . . . , n. But, in this case also 

(v~[)..., LF, 0) G Hn+1, hence (W[,..., v^) G Dn , and this vertex is a neighbour 

(in RJ of (uv...,un). D 

One verifies directly (or using the Proposition 2 just proved) that 7( i t 2 ) = 1; 
hence the known values of ^(Rn) may be put in the following table: 

n 2 3 4 5 6 14 

iiK) 1 2 4 6 8 2 ю 
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3 . d(Rn) 

P R O P O S I T I O N 3 . 

d(Rn) < d(Qn+1), n > 2 . (4) 

P r o o f. Let c be a domatic coloring of the graph Rn by k colors, 

c:V(Rn)^{l,...,k}. 

Define the coloring d of vertices of Qn+1 (also by k colors), 

c':V(Qn+1)->{l,..-,k}, 

putting 

č\(vx,... ,vn,vn+1)) = | 
c((«i. •••,«„)) i f v n + 1 = 0 , 

c((*h, • • • ,v-)) i f v n + 1 = l . 

We are going to verify that d is a domatic coloring of Qn+1. Let v = (vx,... 

• • • ' ^ V J ^ W n + ^ ^ ^ a - - ^ } ' i^d(V). 
I. Assume first Un+1 = 0. Then d(v) = c((^; 1 , . . . ,vn)) and there is u = 

(w-_,... , ^ n ) such that c(u) = i, î being a neighbour of ( i ^ , . . . ,vn) in i t n . If 
dn(u,(v^...,vn)) = 1, then also dn((u^ . . . , un, 0), ^ 1 ? . . . ,vn, 0)) = 1. Since 
c / ((H 1 , . . . ,un,Q)) = c(w) = i, we are done. If d ^ ( ^ , ^-_,... ,Un)) = n, then 
H. = Ur and c ' ^ , . . . ,vn, 1)) = c((v[,... ,vr)) = c((ux,... ,uj) = i. Since 
(v1,... ,vn, 1) is a neighbour (in Qn+1) of (f l 5 . . . , v n , 0 ) , we are done again. 

II. Assume now fn+1 = 1. Then c'(v) = c ( ( ^ " , . . . , v~)), and again there is 
u = (uv...,un) such that c(u) = i, u being adjacent in Rn with (u[,...,v^). 
If d K ( u , ( L Y , . . . , i r ; ) ) = 1, then d ^ ( ( w 1 , . . . , u n , 0 ) , ( ^ . . . ,*£, 0)) = 1, 
d^(( !I7, . . . ,TZ n - , l ) ,^ 1 , . . . ,U n , l ) ) = 1 and c ' ( ( ^ , . . . , ^ , l ) ) = c ( ( w 1 , . . . , u j ) 
= i. If d^(w, (U7, • • • ,^n")) = ™, then u- = U-, i = 1, . . . , n . Further, c '(^-_,.. . 
. . . ,U n ,0)) = c((v1,...,vn)) = c((u1,...,un)) = i, ^ 1 , . . . , U n , 0 ) being a 
neighbour (in Q n + 1 ) of (v^ . . . ,vn, 1). • 

Similarly to the hypercubes Qn, we have a monotony of the domatic number 
also for cubes with diagonals: 

d(Rn) < d(Rn+1), n>2. 

We prove it analogously to the case of hypercubes (cf. [12]): Given a domatic 
coloring c of the graph Rn, define the vertex coloring d of -R n + 1 as follows: 

for ( v ! , . . . , v n , u n + 1 ) eV(Rn+1) put c , ( ^ 1 , . . . , U n , U n + 1 ) ) =c((v1,...,vn)). 

One verifies directly that d is a domatic coloring of -R n + 1 • 
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P R O P O S I T I O N 4. 

d(R2k_2) = d(R2k_x) = 2k, k>2. 

P r o o f . Let k > 2, put m = 2k. 
First we construct a domatic coloring c of Rm_2 by m colors. We start with 

the known fact that d(Qm_1) = m , and that the domatic coloring c' of Qm_1 

by m colors may be constructed from the Hamming code Hm_1 C V(Qm_1) as 
follows (cf. [5]): according to /K1, for each t;' G V(Q m _ 1 ) there is exactly one 
h(v') eHm_1 fulfilling dn(v',h(v')) < l.Itdn(v',h(v')) =0 (i.e., v' = h(v')), 
we put c'(v') = 0. If dn(v',h(v')) = 1, then ?/ and h(v') differ in exactly one 
coordinate; let it be the j-th one (1 < j <m — l).ln this case, we put c'(v') = j . 
Now, we are ready to define c. For v G V(Rm_2), v = (vx,...,vm_2), we put 
v' = (v1,...,vm_2,0) and c(u) = c'(v'). Let now i G [0,m - 1], M = {u G 

^ ( ^ m - 2 ) ; c ( u ) = *}> l e t " ^ ^ 7 7 1 - 2 ) \ M > M = K > - - - > u m _ 2 ) . Consider 
_' = ( i ^ , . . . , ^ m _ 2 , 0 ) ; we have c'(w') ^ i . Also, 

{ i / e V ( Q m _ . ) ; « > ' ) = .} = # m - i ( e W ) > 

where e ^ is the unit vector of the i-th direction (all its coordinates equal 0 
with the exception of the 2-th one, which equals 1) . Hence, there exists h(u') G 
Hm-i(e{i)) such that dn(u',h(u')) = 1 . Let h(u') = (wx,..., wm_2,wm_1). If 
wm_1 = 0, then (w1,...,wm_2) G M , dn((wx,... ,wm_2),u) = 1, and we are 
done. If wm_1 = 1, then wi = u{, i = 1 , . . . , m — 2; however, according to H2 , 
we have (u~",.. . , uvm_2,0) G # m _ i ( e ( z ) ) , hence (-"",. • • ,uvm_2 ) G i l / . On the 
other hand, (u3~, • • • ,wm-2 ) *s a neighbour (in i ? m _ 2 ) of the vertex u. 

Thus, we showed so far that d(Rm_2) > m. Recall that if G is an arbitrary 
graph, then for its domatic number d(G) we have d(G) < 5(G) 4- 1, and further, 
if G is regular, then d(G) = 6(G) + 1 only if 6(G) + 1 divides \V(G)\. Since 
S(Rm_2) = m — 1, we get d(Rm_2) < m, the latter proving 

d(Rm-2) = rn. 

From S(Rm_1) = m , we get m = d(Rm_2) < d(Rm_1) < ra + 1. Since 
Rm-i is regular, d(Rm_1) = m + l would imply that ra + 1 divides |V ( i ? m _ 1 ) | . 
However, this is impossible, and therefore 

d(Rrn_1) = m. 

D 

As a corollary of Proposition 4, we get d(R2) = d(i?3) = 4; further, 

d(R3)<d(R4)<d(Q5) = 4, 

and therefore also 
d(it4) = 4 . 
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P R O P O S I T I O N 5. 

< W = 5. 

P r o o f . From the inequality d(G) < \V(G)\/^(G) that holds for any graph 
G and from *y(R5) = 6, we are getting d(R5) < 5. The proof is accomplished by 
Fig. 2, depicting a domatic coloring of R5 by five colors. We found this coloring 
easily by a simple computer backtracking procedure. (To draw R5 , in Fig. 2, we 
used the same convention as before in Fig. 1 — all the vertices but only a half 
of edges are drawn.) • 

к . 

. r л 

COROLLARY. 

FIGURE 2. 

d(Q6) = 5. 

P r o o f . Use (1) and Propositions 3 and 5. • 

Now we can summarize the known values of d(Rn) in the following table: 

n 2 3 4 5 6 7 14 15 

d(RJ 4 4 4 5 8 8 16 16 
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4. Concluding remarks 

One can formulate various interesting problems related to domination in hy-
percubes and n-cubes with diagonals. Let us mention here only those that follow 
naturally from our results above and concern therefore the domination and do-
matic numbers 7(-Rn) and d(Rn). 

1. In (3) of Proposition 1, we have the inequality 7 ( Q n + 1 ) < 2 • 7(i?n) for 
n = 4: 7(i t4) = 4 and 7(Q5) = 7. This is the only value of n known with this 
property. Of course, in addition to n = 4, we do know exact values of 7(-Rn) 
only for n = 3,5 and for n = 2k — 2, k > 2. In all these cases, the equality 
7(Q n +i) = 2 • l(Rn) holds. It would be interesting to look for other values of n 
for which in (3) the equality does not hold. 

2. We pose a similar question also for (4) of Proposition 3. However, here we 
have the equality in all the cases we know exact values. Hence, in this case, we 
can ask whether d(Rn) = d(Qn+1) for all n > 2. 
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