Mathematica Slovaca

Štefan Černák

On the maximal Dedekind completion of a half partially ordered group

Mathematica Slovaca, Vol. 46 (1996), No. 4, 379--390

Persistent URL: http://dml.cz/dmlcz/129536

Terms of use:

(C) Mathematical Institute of the Slovak Academy of Sciences, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON THE MAXIMAL DEDEKIND COMPLETION OF A HALF PARTIALLY ORDERED GROUP

Štefan Černák
(Communicated by Tibor Katriñák)

Abstract

The notion of the maximal Dedekind completion is extended for the case of a half partially ordered group. The main result is formulated in 2.16 .

For the maximal Dedekind completion $M(G)$ of a partially ordered group G, cf. L. Fuchs [3; Chapter V, §10]. C. J. Everett [2] has proved that $M(G)$ is a lattice ordered group whenever G is a commutative lattice ordered group. The same result was obtained in [1] for an arbitrary lattice ordered group.
M. Giraudet and F. Lucas [4] have defined and systematically studied the notion of a half partially ordered group as a generalization of the notion of a partially ordered group.

In this paper, the maximal Dedekind completion of a half partially ordered group is studied.

1. Preliminaries

We shall summarize the essentials of the MacNeille completion of a partially ordered set (see [6] and [3]).

Let G be a partially ordered set, and let X be a subset of G. Denote

$$
\begin{aligned}
U(X) & =\{g \in G: g \geq x \text { for each } x \in X\} \\
L(X) & =\{g \in G: g \leq x \text { for each } x \in X\}
\end{aligned}
$$

[^0]
ŠTEFAN ČERNÁK

If $U(X) \neq \emptyset(L(X) \neq \emptyset)$, then X is called an upper (lower) bounded subset of G. Let us denote by $G^{\#}$ the system of all subsets of G of the form $L(U(X))$. where X is a nonvoid upper bounded subset of G. Each element of $G^{\#}$ is said to be the Dedekind cut of G. The system $G^{\#}$ is a conditionally complete conditional lattice under set-inclusion ([3; p. 92]). By a conditional lattice, is meant a partially ordered set in which every two elements having an upper (lower) bound have the least upper bound (greatest lower bound).

Let $Z_{i} \in G^{\#}(i \in I)$, and let there exist an element $Z_{0} \in G^{\#}$ with $Z_{i} \subseteq Z_{1}$ for each $i \in I$. Then for the least upper bound of $Z_{i}(i \in I)$ we have $\bigvee_{i \in I} Z_{i}=$ $L\left(U\left(\bigcup_{i \in I} Z_{i}\right)\right)$. Analogously, if the system $Z_{i}(i \in I)$ has a lower bound in $G^{\#}$. then for the greatest lower bound of $Z_{i}(i \in I)$ we get $\bigwedge_{i \in I} Z_{i}=\bigcap_{i \in I} Z_{i}$.

Define the mapping $\varphi: G \rightarrow G^{\#}$ by the rule $\varphi(g)=L(U(\{g\}))$ for each $g \in G$. Then φ is an injection, and it preserves all greatest lower bounds and least upper bounds existing in G. In what follows, we shall identify g and $\underset{q}{ }(g)$. In this sense, G is a subset of $G^{\#}$, and the following conditions are satisfied:
(a) If X is a nonempty and upper (lower) bounded subset of G. then X has the least upper bound (greatest lower bound) in $G^{\#}$.
(b) If $z \in G^{\#}$, then there exist nonempty subsets X and Y of G such that X is upper bounded in G, Y is lower bounded in G. and $z=\sup I=$ $\inf Y$ in $G^{\#}$.

Remark 1.1. If we suppose that G is a lattice (linearly ordered set). then (i: is a conditionally complete lattice (linearly ordered set). When identifying g and $\varphi(g), G$ is a sublattice of $G^{\#}$.

Now, we recall the notion of a half partially ordered group (cf.[t]).
Let G be a group with the group operation + , and let \leq be a partial order on G. The relation \leq is called compatible from the right if $x . y . z \in$ (\dot{r} and,$x \leq$! imply $x+z \leq y+z$. An element $z \in G$ is said to be increasing (decoensing) if $x, y \in G$ and $x \leq y$ imply $z+x \leq z+y(z+x \geq z+y)$. The set of all increasine (decreasing) elements of (${ }^{\prime}$ will be denoted by $\left(i \mid\left(C_{i} \mid\right)\right.$.
(B is said to be a half partially ordered group if the following cond tions ame fultilled:
(I) \leq is a non-trivial partial order on (i.
(II) \leq is compatible from the right.
(III) $C i=G \mid \cup(i l$.

If (i) is a lattice (limeaty ordered set), then (i will be called a half lation ordered group (hall linearly ordered group).

Let G be a half partially ordered group. From the definition of G, it immediately follows:
(1) If $x \in G \downarrow$, then $-x \in G \downarrow$.
(2) If $x . y \in G \downarrow$, then $x+y \in G \uparrow$, if $x \in G \uparrow, y \in G \downarrow$, then $x+y \in G \downarrow, y+x \in G \downarrow$.
(3) If $x . y \in G \downarrow, x \leq y$, then $-x \leq-y$.

We shall apply the following result [4; Proposition I.1.3]).
Proposition 1.2. Let G be a half partially ordered group such that $G \downharpoonright \neq \emptyset$. Then
(i) $G \uparrow$ is a subgroup of G, and G is a disjoint union of $G \uparrow$ and $G \downarrow$.
(ii) $G \uparrow$ and $G \downarrow$ are isomorphic and also antiisomorphic partially ordered sets.
(iii) If $x \in G \uparrow$ and $y \in G \downarrow$, then x and y are incomparable.

2. The maximal Dedekind completion of a half partially ordered group

In the whole section, G is assumed to be a half partially ordered group. The maximal Dedekind completion of G will be constructed. The method from [3] for partially ordered groups will be applied for G.

Let us denote $H=G \uparrow, K=G \downarrow$.
From 1.2 (iii) it immediately follows:
Lemma 2.1. Let $X \subseteq G, X \neq \emptyset, U(X) \neq \emptyset$. Then:
(i) Either $X \subseteq H$ (and then $U(X) \subseteq H)$ or $X \subseteq K$ (and then $U(X) \subseteq K)$.
(ii) If there exists $g \in G, g=\sup X$ in G, then $g \in H(g \in K)$ if and only if $X \subseteq H(X \subseteq K)$.
(iii) If $X \subseteq H(X \subseteq K)$, then $\sup X$ exists in $H(K)$ if and only if $\sup X$ exists in G, and $\sup X$ in G is equal to $\sup X$ in $H(K)$.

Analogous assertions are valid for $L(X)$ and $\inf X$.
Let $X \subseteq G^{\#}$. Denote

$$
\begin{aligned}
U_{G \#}(X) & =\left\{z \in G^{\#}: z \geq x \text { for each } x \in X\right\} \\
L_{G^{\#}}(X) & =\left\{z \in G^{\#}: z \leq x \text { for each } x \in X\right\}
\end{aligned}
$$

Remark 2.2. In 2.1, G, H, K and $U(X)$ can be replaced by $G^{\neq}, H^{\#}, K^{\#}$ and ${ }^{\prime \prime}{ }_{(i \neq}(X)$, respectively.

From 2.1 (i), we infer that $L(U(X)) \subseteq H(K)$ whenever $\left.X \subseteq H^{\prime} K\right)$. Hence, in view of $1.2(\mathrm{i})$, we get the following result.

ŠTEFAN ČERNÁK

LEMMA 2.3. $G^{\#}$ is a disjoint union of $H^{\#}$ and $K^{\#}$.
Lemma 2.4. Let X and Y be nonempty subsets of G, and let $V=\{r+y$: $x \in X, y \in Y\}$.
(i) Assume that one of the following conditions is satisficd:
$\left(a_{1}\right) X$ and Y are upper bounded subsets of H.
$\left(a_{2}\right) \quad X$ is an upper bounded subset of K, and Y is a lower bounded subset of K.
Then V is a nonempty and upper bounded subset of H.
(ii) Assume that one of the following conditions is satisficd:
$\left(a_{3}\right) \quad X$ is an upper bounded subset of H, and Y is an upper bounded subset of K.
$\left(a_{4}\right) \quad X$ is an upper bounded subset of K, and Y is a lower bounded subset of H.
Then V is a nonempty and upper bounded subset of κ.
Proof. Since X and Y are nonempty, V is nonempty as well.
Suppose that $\left(a_{2}\right)$ is satisfied. Then there exist elements $x^{\prime} . y^{\prime} \in(i$ with $x \leq x^{\prime}, y^{\prime} \leq y$ for all $x \in X, y \in Y$. According to 2.1 (i), we get $x^{\prime} . y^{\prime} \in K^{\prime}$. By (II), we have $x+y \leq x^{\prime}+y$. Since x^{\prime} is decreasing, $x^{\prime}+y \leq x^{\prime}+y^{\prime}$. Hence. $x+y \leq x^{\prime}+y^{\prime}$. With respect to (2), we have $x+y \in H$ and $x^{\prime}+y^{\prime} \in H$.

Assume that $\left(a_{3}\right)$ is fulfilled. Then there exist elements $x^{\prime}, y^{\prime} \in G$ such that $x \leq x^{\prime}, y \leq y^{\prime}$. From 2.1 (i), we infer that $x^{\prime} \in H$ and $y^{\prime} \in K$. By using of (II). we obtain $x+y \leq x^{\prime}+y$. As for x^{\prime} is increasing, we get $x^{\prime}+y \leq x^{\prime}+y^{\prime}$. Hence. $x+y \leq x^{\prime}+y^{\prime}$. Applying (2), we have $x+y \in K$ and $x^{\prime}+y^{\prime} \in K$.

The remaining assertions can be verified similarly.
Remark 2.5. The dual lemma to 2.4 also holds true.
For an element $z \in H^{\#}$ we denote

$$
U_{H}(z)=\{h \in H: h \geq z\}, \quad L_{H}(z)=\{h \in H: h \leq z\} .
$$

Symbols $U_{K}(z), L_{K}(z)$ have an analogous meaning for $z \in K^{\#}$. In view of (b). the sets $U_{H}(z), L_{H}(z)$ are nonempty subsets of H. Hence, $U_{H}(z)$ is lower bounded, and $L_{H}(z)$ is upper bounded in H. We get an analogous result for subsets $U_{K}(z)$ and $L_{K}(z)$ of K.

Therefore

$$
z=\sup L_{H}(z)=\inf U_{H}(z) \quad \text { in } \quad H^{\#}
$$

$$
\text { if } z \in H^{\#}
$$

$$
z=\sup L_{K}(z)=\inf U_{K}(z) \quad \text { in } \quad K^{\#}
$$

$$
\text { if } z \in K^{\#}
$$

We intend to define a binary operation $z_{1}+z_{2}$ in $G^{\#}$. The following four possibilities can occur:

$$
\left(\mathrm{a}_{1}^{\prime}\right) z_{1}, z_{2} \in H^{\#} ;
$$

by (4), we have $z_{1}=\sup L_{H}\left(z_{1}\right), z_{2}=\sup L_{H}\left(z_{2}\right)$ in $H^{\#}$. Hence, 2.4 (i) yields that the set $Z=\left\{h_{1}+h_{2}: h_{1} \in L_{H}\left(z_{1}\right), h_{2} \in L_{H}\left(z_{2}\right)\right\}$ is a nonempty and upper bounded subset of H.

$$
\left(\mathrm{a}_{2}^{\prime}\right) z_{1}, z_{2} \in K^{\#}
$$

then (5) implies that $z_{1}=\sup L_{K}\left(z_{1}\right), z_{2}=\inf U_{K}\left(z_{2}\right)$ in $K^{\#}$. Similarly as in $\left(a_{1}^{\prime}\right)$, we get that $Z=\left\{k_{1}+k_{2}: k_{1} \in L_{K}\left(z_{1}\right), k_{2} \in U_{K}\left(z_{2}\right)\right\}$ is a nonempty and upper bounded subset of H.

$$
\left(\mathrm{a}_{3}^{\prime}\right) z_{1} \in: H^{\#}, z_{2} \in K^{\#} ;
$$

from (4) and (5), it follows that $z_{1}=\sup L_{H}\left(z_{1}\right)$ in $H^{\#,}, z_{2}=\sup L_{K}\left(z_{2}\right)$ in $K^{\#}$. By using of 2.4 (ii), we obtain that the set $Z=\left\{h_{1}+k_{2}: h_{1} \in L_{H}\left(z_{1}\right)\right.$, $\left.k_{2} \in L_{K}\left(z_{2}\right)\right\}$ is a nonempty and upper bounded subset of K.

$$
\left(\mathrm{a}_{4}^{\prime}\right) \quad z_{1} \in K^{\#}, z_{2} \in H^{\#}
$$

according to (5) and (4), we get $z_{1}=\sup L_{K}\left(z_{1}\right)$ in $K^{\#}, z_{2}=\inf U_{H}\left(z_{2}\right)$ in $H^{\#}$. Analogously as in $\left(\mathrm{a}_{3}^{\prime}\right)$, we get that $Z=\left\{k_{1}+h_{2}: k_{1} \in L_{K}\left(z_{1}\right), h_{2} \in\right.$ $\left.U_{H}\left(z_{2}\right)\right\}$ is a nonempty and upper bounded subset of K.

With respect to (a), we can conclude that, in all four cases, there exists $\sup Z$ in $G^{\#}$. In the cases $\left(\mathrm{a}_{1}^{\prime}\right)$ and $\left(\mathrm{a}_{2}^{\prime}\right)\left(\left(\mathrm{a}_{3}^{\prime}\right)\right.$ and $\left.\left(\mathrm{a}_{4}^{\prime}\right)\right)$, there exists also $\sup Z$ in $H^{\#}\left(K^{\#}\right)$. But 2.2 yields that $\sup Z$ in $G^{\#}$ coincides with $\sup Z$ in $H^{\#}\left(K^{\#}\right)$.

The operation $+\operatorname{in} G^{\#}$ is defined as follows. We put $z_{1}+z_{2}=\sup Z$ in $G^{\#}$ for each $z_{1}, z_{2} \in G^{\#}$.

From the definition, we immediately obtain:
(2') If $z_{1}, z_{2} \in H^{\#}$, then $z_{1}+z_{2} \in H^{\#}$, if $z_{1}, z_{2} \in K^{\#}$, then $z_{1}+z_{2} \in H^{\#}$, if $z_{1} \in H^{\#}, z_{2} \in K^{\#}$, then $z_{1}+z_{2} \in K^{\#}, z_{2}+z_{1} \in K^{\#}$.

Remark 2.6. The operation + in $G^{\#}$ need not be associative, in general. Thus $G^{\#}$ fails to be a semigroup, in general (see $3.5(\mathrm{~A})$). Hence, in this point, the situation essentially differs from that concerning partially ordered groups. Namely, if G is a partially ordered group, then $G^{\#}$ is a semigroup ($[3 ;$ p. 94$]$).

In the following lemma, we show that the operation $z_{1}+z_{2}$ in $G^{\#}$ does not depend on a choice of subsets of G having supremum equal to z_{1} and supremum or infimum equal to z_{2} in $G^{\#}$.

ŠTEFAN ČERNÁK

LEMMA 2.7. Let $z_{1}, z_{2} \in G^{\#}$, and let X_{1}, X_{2} be nonempty subsets of G. Assume that some of the following conditions is satisfied:

$$
\begin{aligned}
& \left(\mathrm{b}_{1}\right) \quad X_{1} \subseteq H, X_{2} \subseteq H, z_{1}=\sup X_{1}, z_{2}=\sup X_{2} \text { in } G^{\#,}, \\
& \left(\mathrm{~b}_{2}\right) X_{1} \subseteq K, X_{2} \subseteq K, z_{1}=\sup X_{1}, z_{2}=\inf X_{2} \text { in } G^{\#,} \\
& \left(\mathrm{~b}_{3}\right) X_{1} \subseteq H, X_{2} \subseteq K, z_{1}=\sup X_{1}, z_{2}=\sup X_{2} \text { in } G^{\#}, \\
& \left(\mathrm{~b}_{4}\right) X_{1} \subseteq K, X_{2} \subseteq H, z_{1}=\sup X_{1}, z_{2}=\inf X_{2} \text { in } G^{\#} .
\end{aligned}
$$

Then $z_{1}+z_{2}=\sup \left\{x_{1}+x_{2}: x_{1} \in X_{1}, x_{2} \in X_{2}\right\}$ in $G^{\#}$.
Proof. Suppose that the condition $\left(\mathrm{b}_{4}\right)$ is satisfied. Then $z_{1} \in K^{\#}$. $z_{2} \in H^{\#}$. By the definition of the operation + in $G^{\#}$, we have $z_{1}+z_{2}=$ $\sup \left\{k_{1}+h_{2}: k_{1} \in L_{K}\left(z_{1}\right), h_{2} \in U_{H}\left(z_{2}\right)\right\}$ in $K^{\#}$. According to (2'). $z_{1}+z_{2} \in K^{\#}$ holds. Let us form the set $V=\left\{x_{1}+x_{2}: x_{1} \in X_{1}, x_{2} \in X_{2}\right\}$. From (2), we infer that $V \subseteq K$. Since X_{1} is a nonempty upper bounded subset of K, and X_{2} is a nonempty lower bounded subset of $H, 2.4$ (ii) yields, that V is a nonempty upper bounded subset of K. Whence, there exists an element $v \in K^{\#,} v=\sup V$ in $K^{\#}$. We have to show that $z_{1}+z_{2}=r$. From $X_{1} \subseteq L_{K}\left(z_{1}\right), X_{2} \subseteq U_{H}\left(z_{2}\right)$, it follows that $V \subseteq Z$, and so $v \leq z_{1}+z_{2}$. Now, we prove that $z_{1}+z_{2} \leq v$, i.e., $U_{K}(v) \subseteq U_{K}\left(z_{1}+z_{2}\right)$. Let $g \in U_{K}(v)$. Then $g \geq v$, and thus $g \geq x_{1}+x_{2}$ for each $x_{1} \in X_{1}, x_{2} \in X_{2}$. Since $x_{1} \in K$, by (1). $-x_{1} \in K$, and we get $-x_{1}+g \leq x_{2},-x_{1}+g \leq z_{2} \leq h_{2}$ for each $h_{2} \in U_{H}\left(z_{2}\right)$ and $g \geq x_{1}+h_{2}$. Then (II) yields $g-h_{2} \geq x_{1}, g-h_{2} \geq z_{1} \geq k_{1}, g \geq k_{1}+h_{2}$ for each $k_{1} \in L_{K}\left(z_{1}\right), h_{2} \in U_{H}\left(z_{2}\right)$. Therefore $g \geq z_{1}+z_{2}$, and so $g \in U_{K}\left(z_{1}+z_{2}\right)$.

If $\left(b_{1}\right)-\left(b_{3}\right)$ are fulfilled, the proofs are similar.
LEMMA 2.8. Let $z_{1}, z_{2} \in G^{\#}, z_{1} \leq z_{2}$. Then
(i) $z_{1}+z \leq z_{2}+z$ for each $z \in G^{\#}$,
(ii) $z+z_{1} \leq z+z_{2}$ for each $z \in H^{\#}$,
(iii) $z+z_{1} \geq z+z_{2}$ for each, $z \in K^{\#}$.

Proof. We shall prove only (iii). Inequalities (i) and (ii) can be verified in a similar manner.

According to 2.3 and 2.2, both elements z_{1} and z_{2} belong either to $H^{\#}$ or to $K^{\# \#}$. Consider the case $z_{1}, z_{2} \in H^{\#}$. Assume that $z \in K^{\#}$. From (2'). it follows that $z+z_{1} \in K^{\#}, z+z_{2} \in K^{\#}$. We have $z+z_{1}=\sup \left\{k+h_{1}: k \in L_{K^{\prime}}(z)\right.$. $\left.h_{1} \in U_{H}\left(z_{1}\right)\right\}, z+z_{2}=\sup \left\{k+h_{2}: k \in L_{K}(z), h_{2} \in U_{H}\left(z_{2}\right)\right\}$ in $h^{* \#}$. We have to prove that $z+z_{1} \geq z+z_{2}$, i.e., that $U_{K}\left(z+z_{1}\right) \subseteq U_{H}\left(z+z_{2}\right)$. L.et $g \in U_{K}\left(z+z_{1}\right)$. Hence $g \in K, g \geq z+z_{1}, g \geq k+h_{1}$. Since $k \in \mathscr{K}$. we get $-k+g \leq h_{1}$ for each $h_{1} \in U_{H}\left(z_{1}\right)$. Whence, $-k+g \leq z_{1}$. The hypothesis $z_{1} \leq z_{2}$ implies that $-k+g \leq z_{2}$. Therefore $-k+g \leq h_{2}$. Because of $k \in K$. we get $g \geq k+h_{2_{2}}$ for each $k \in L_{K}(z), h_{2_{2}} \in U_{H}\left(z_{2}\right)$. We conclude that $g \geq z+z_{2}$. and so $g \in U_{K}\left(z+z_{2}\right)$.

Assume that there exists an inverse $z^{\prime} \in G^{\#}$ to $z \in G^{\#}$. Since $0 \in H$, it is easy to see that the following results hold true:
(1') If $z \in H^{\#}$, then $z^{\prime} \in H^{\#}$,
if $z \in K^{\#}$, then $z^{\prime} \in K^{\#}$.
Remark 2.9. If $z \in G^{\#}$, then, in general, z need not have an inverse in $G^{\#}$ (see $3.5(\mathrm{C})$).

Let $M_{h}(G)\left(I\left(K^{\#}\right)\right)$ be the set of all elements of $G^{\#}\left(K^{\#}\right)$ possessing an inverse in $G^{\#}$. The set of all elements of $H^{\#}$ having an inverse in $G^{\#}$ (that is in $H^{\#}$) is the maximal Dedekind completion $M(H)$ of a partially ordered group H (c.f. [3]).

The following lemma is an immediate consequence of 2.3 .
LEMMA 2.10. $M_{h}(G)$ is a disjoint union of $M(H)$ and $I\left(K^{\#}\right)$.
By interchanging $U_{H}\left(U_{K}\right)$ and $L_{H}\left(L_{K}\right)$ in $\left(\mathrm{a}_{1}^{\prime}\right)-\left(\mathrm{a}_{4}^{\prime}\right)$, we get a set W instead of the set Z. With respect to $2.5, W$ is a nonempty and lower bounded subset of G. Then there exists $w \in G^{\#}, w=\inf W$.

LEMMA 2.11. Let $z_{1}, z_{2} \in M_{h}(G)$. Then $z_{1}+z_{2}=w$.
Proof. Let $z_{1}, z_{2} \in M_{h}(G)$. From 2.10 , we infer that $z_{1}\left(z_{2}\right)$ belongs cither to $M(H)$ or to $I\left(K^{\#}\right)$. Assume that $z_{1} \in I\left(K^{\#}\right), z_{2} \in M(H)$. Since $I\left(K^{\#}\right) \subseteq K^{\#}$ and $M(H) \subseteq H^{\#}$, we have $z_{1}+z_{2}=\sup \left\{k_{1}+h_{2}: k_{1} \in L_{K}\left(z_{1}\right)\right.$, $\left.h_{\underline{2},} \in U_{I I}\left(z_{2}\right)\right\}, w=\inf \left\{k_{1}^{\prime}+h_{2}^{\prime}: k_{1}^{\prime} \in U_{K}\left(z_{1}\right), h_{2}^{\prime} \in L_{H}\left(z_{2}\right)\right\}$. Since $k_{1} \leq k_{1}^{\prime}$ and $h_{2}^{\prime} \leq h_{2}$, we get $k_{1}+h_{2} \leq k_{1}^{\prime}+h_{2}^{\prime}$. Hence $z_{1}+z_{2} \leq w$. We have to verify that $w \leq z_{1}+z_{2}$, i.e., $L_{K}(w) \subseteq L_{K}\left(z_{1}+z_{2}\right)$. Let $g \in L_{K}(w)$. Then $g \in K$, $g \leq u$. Hence, $g \leq k_{1}^{\prime}+h_{2}^{\prime}$ for each $k_{1}^{\prime} \in U_{K}\left(z_{1}\right), h_{2}^{\prime} \in L_{H}\left(z_{2}\right)$. From (II), we infer that $g-h_{2}^{\prime} \leq k_{1}^{\prime}$, and so $g-h_{2}^{\prime} \leq z_{1}$. According to 2.8 (i), we have $g<z_{1}+h_{2}^{\prime}$. The assumption $z_{1} \in I_{h_{h}}(G)$ implies that there exists an inverse $10 z_{1}$ ill i $^{7 \neq}$. Then according to 2.8 (iii), $-z_{1}+g \geq h_{2}^{\prime}$ for each $h_{2}^{\prime} \in L_{I I}\left(z_{2}\right)$. Therefore $-z_{1}+g \geq z_{2}$. Applying 2.8 (iii) again we obtain $g \leq z_{1}+z_{2}$, and so $!!\in L_{K}\left(z_{1}-z_{2}\right)$.

Proofs o: the remaining cases are similar.
Remark 2.12. If $z_{1}, z_{2} \in G^{\#}$, then, in general, the elements $z_{1}+z_{2}$ and w need not be equal (see 3.5 (B)).

Remark 2.13. Let $z_{1}, z_{2} \in M_{h}(G)$. Then the dual lemma to 2.7 is abso valid.
Lemima 2.14. ($\left.M_{h}\left(C_{i}\right),+\right)$ is a group).
rroof. At first. we prove that the operation + is associative, i.e., $\left(z_{1}+z_{2}\right)$ $\mid z_{3} \cdots z_{1}+\left(z_{2}+z_{3}\right)$ for each $z_{1}, z_{2}, z_{3} \in M I_{1}(G)$.

ŠTEFAN ČERNÁK

Let $z_{1}, z_{2}, z_{3} \in M_{h}(G)$. According to 2.10 , each of the elements $z_{1} . z_{2}$. z_{3} belongs either to $M(H)$ or to $I\left(K^{\#}\right)$. Only two cases will be investigated. Proofs of the remaining cases are analogous.

Let $z_{1} \in M(H), z_{2}, z_{3} \in I\left(K^{\#}\right)$. Since $M(H) \subseteq H^{\#}, I\left(K^{\#}\right) \subseteq K^{\#}$. with respect to $2.7\left(\mathrm{~b}_{2}\right)$, we obtain $\left(z_{1}+z_{2}\right)+z_{3}=\sup \left\{h_{1}+k_{2}: h_{1} \in L_{H}\left(z_{1}\right)\right.$. $k_{2} \in$ $\left.L_{K}\left(z_{2}\right)\right\}+\inf U_{K}\left(z_{3}\right)=\sup \left\{\left(h_{1}+k_{2}\right)+k_{3}: h_{1} \in L_{H}\left(z_{1}\right), k_{2} \in L_{K}\left(z_{2}\right) . k_{:_{3}} \in\right.$ $\left.U_{K}\left(z_{3}\right)\right\}=\sup \left\{h_{1}+\left(k_{2}+k_{3}\right): h_{1} \in L_{H}\left(z_{1}\right), k_{2} \in L_{K}\left(z_{2}\right), k_{3} \in U_{K^{\prime}}\left(z_{3}\right)\right\}$. On the other hand, according to $2.7\left(\mathrm{~b}_{1}\right)$, we have $z_{1}+\left(z_{2}+z_{3}\right)=\sup L_{H}\left(z_{1}\right)+$ $\sup \left\{k_{2}+k_{3}: k_{2} \in L_{K}\left(z_{2}\right), k_{3} \in U_{K}\left(z_{3}\right)\right\}=\sup \left\{h_{1}+\left(k_{2}+k_{3}\right): h_{1} \in L_{H}\left(z_{1}\right)\right.$. $\left.k_{2} \in L_{K}\left(z_{2}\right), \quad k_{3} \in U_{K}\left(z_{3}\right)\right\}$.

Now, let $z_{1}, z_{2}, z_{3} \in I\left(K^{\#}\right)$. Then $2.7\left(b_{3}\right)$ implies that $\left(z_{1}+z_{2}\right)+z_{3}=$ $\sup \left\{k_{1}+k_{2}: k_{1} \in L_{K}\left(z_{1}\right), \quad k_{2} \in U_{K}\left(z_{2}\right)\right\}+\sup L_{K}\left(z_{3}\right)=\sup \left\{\left(k_{1}+k_{2}\right)+k_{3}:\right.$ $\left.k_{1} \in L_{K}\left(z_{1}\right), k_{2} \in U_{K}\left(z_{2}\right), k_{3} \in L_{K}\left(z_{3}\right)\right\}=\sup \left\{k_{1}+\left(k_{2}+k_{3}\right): k_{1} \in L_{K^{\prime}}\left(z_{1}\right)\right.$. $\left.k_{2} \in U_{K}\left(z_{2}\right), k_{3} \in L_{K}\left(z_{3}\right)\right\}$. In view of 2.11 and $2.7\left(\mathrm{~b}_{4}\right)$, we get $z_{1}+\left(z_{2}+z_{3}\right)==$ $\sup L_{K}\left(z_{1}\right)+\inf \left\{k_{2}+k_{3}: k_{2} \in U_{K}\left(z_{2}\right), k_{3} \in L_{K}\left(z_{3}\right)\right\}=\sup \left\{k_{1}+\left(k_{2}+k_{3}\right):\right.$ $\left.k_{1} \in L_{K}\left(z_{1}\right), \quad k_{2} \in U_{K}\left(z_{2}\right), k_{3} \in L_{K}\left(z_{3}\right)\right\}$.

It remains to verify that $z_{1}+z_{2} \in M_{h}(G)$ whenever $z_{1}, z_{2} \in M_{h}(G)$. Let $z_{1}, z_{2} \in M_{h}(G)$. There are elements $z_{1}^{\prime}, z_{2}^{\prime} \in M_{h}(G)$ with $z_{1}+z_{1}^{\prime}=z_{1}^{\prime}+z_{1}=0$. $z_{2}+z_{2}^{\prime}=z_{2}^{\prime}+z_{2}=0$. By using of associativity, we get $\left(z_{1}+z_{2}\right)+\left(z_{2}^{\prime}+z_{1}^{\prime}\right)=$ $z_{1}+\left(z_{2}+z_{2}^{\prime}\right)+z_{1}^{\prime}=0,\left(z_{2}^{\prime}+z_{1}^{\prime}\right)+\left(z_{1}+z_{2}\right)=z_{2}^{\prime}+\left(z_{1}^{\prime}+z_{1}\right)+z_{2}=0$. Hence $z_{2}^{\prime}+z_{1}^{\prime}$ is an inverse to $z_{1}+z_{2}$ in $G^{\#}$, and thus $z_{1}+z_{2} \in I_{h}(G)$.

The partial order \leq is non-trivial on $M_{h}(G)$ because of \leq is a non-trivial partial order on G. From 2.8 (ij), it follows that \leq is compatible from the right. From 2.8 (ii) and 2.8 (iii), we infer that $M_{h}(G) \uparrow=M(H)$ and $M_{h}(C) \downarrow=$ $I\left(K^{\#}\right)$ 。

By using of 2.10 , we have obtained the following result.

THEOREM 2.15. Let G be a half partially ordered group. Then $M_{h}(G r)$ is n half partially ordered group, and $M_{h}(G) \uparrow=M(H), M_{h}(G) \downarrow=I\left(h^{\text {® }}\right)$.

A half partially ordered group $M_{h}(G)$ is said to be the marimal Dedekind completion of G.

In [1] (in [5; p. 162]), it was proved that the maximal Dedekind completion of a lattice ordered group (linearly ordered group) is a lattice ordered group) (linearly ordered group). From this fact and from 2.15, it follows:

THEOREM 2.16. Let G be a half lattice ordered group (half linearly ordered group). Then the maximal Dedekind completion $M_{h}(G)$ of G is a half lattice ordered group (half linearly ordered group).

3. Inverse elements in $G^{\#}$

Elements of $G^{\#}$ having an inverse in $G^{\#}$ will be characterized in this section.
We shall use the notation $X_{1}=L_{H}(z), Y_{1}=U_{H}(z)$ if $z \in H^{\#}$, and $X=$ $L_{K^{\prime}}(z), Y=U_{K}(z)$ if $z \in K^{\#}$. Further denote $-X=\{-x \in C: x \in X\}$. Symbols $-Y,-X_{1},-Y_{1}$ have an analogous meaning.

Lemma 3.1.

(i) Assume that $z \in H^{\#}$. Then there exists $z^{\prime} \in H^{\#}$ such that $z^{\prime}=$ $\sup \left(-Y_{1}\right)=\inf \left(-X_{1}\right)$.
(ii) Assume that $z \in K^{\#}$. Then there exists $z^{\prime \prime} \in K^{\#}$ such that $z^{\prime \prime}=$ $\sup (-X)=\inf (-Y)$.

Proof.
(ii) Let $z \in K^{\#}$. According to (5), we have $z=\sup X=\inf Y$. By using of (3), from $x \leq y$, we get $-x \leq-y$ for each $x \in X, y \in Y$. Hence there exist $z^{\prime \prime}, z^{*} \in K^{\not \#}, z^{\prime \prime}=\sup (-X), z^{*}=\inf (-Y)$. Since $z^{\prime \prime} \leq z^{*}$, we have to show that $z^{*} \leq z^{\prime \prime}$, i.e., $U_{K}\left(z^{\prime \prime}\right) \subseteq U_{K}\left(z^{*}\right)$. Let $g \in U_{K}\left(z^{\prime \prime}\right)$. Then $g \geq z^{\prime \prime}$. Thus $g \geq-x$ and $-g \geq x$ for each $x \in X$. Hence $-g \geq z$, and so $-g \in Y$ and $g \in-Y$. From this, we infer that $g \geq z^{*}$ and $g \in U_{K}\left(z^{*}\right)$.

The proof of (i) is analogous.
Lemma 3.2. Assume that the following conditions are fulfilled:
(i) If $z \in H^{\#}$, then $\bigwedge\left\{y_{1}-x_{1}: x_{1} \in X_{1}, y_{1} \in Y_{1}\right\}=0$ in G.
(ii) If $z \in K^{\#}$, then $\bigvee\{x-y: x \in X, y \in Y\}=0$ in G.

Then \approx has a right inverse in $G^{\#}$.
Proof. Assume that $z \in K^{\#}$, and let $z^{\prime \prime}$ be as in 3.1 (ii). We want to show that $z^{\prime \prime}$ is a right inverse to z in $G^{\#}$. With respect to (2^{\prime}), we obtain $z+z^{\prime \prime} \in$ $H^{\#}, z+z^{\prime \prime}=\sup \{x+y: x \in X, y \in-Y\}=\sup \{x-y: x \in X, y \in Y\}$ in $C^{\# \#}$. The assumption implies that $\sup \{x-y: x \in X, y \in Y\}=0$ in G. Hence, $\sup \{x-y: x \in X, y \in Y\}=0$ in $G^{\#}$ as well. Therefore $z+z^{\prime \prime}=0$, and thus $z^{\prime \prime}$ is a right inverse to z in $G^{\#}$.

Assume that (i) is satisfied. In a similar manner, can be verified (cf. [1]) that z^{\prime} is a right inverse to z in $G^{\#}$.

Remark 3.3. In an analogical way, we obtain that $z^{\prime}\left(z^{\prime \prime}\right)$ is a left inverse to z in $G^{\#}$ whenever $\bigwedge\left\{-x_{1}+y_{1}: x_{1} \in X_{1}, y_{1} \in Y_{1}\right\}=0(\bigvee\{-x+y: x \in X$, $y \in Y\}=0)$ in G.

ŠTEFAN ČERNÁK

Theorem 3.4.

(i) Assume that $z \in H^{\#}$. Then $z \in M_{h}(G)$ if and only if the following conditions are satisfied in G :
$\left(c_{1}\right) \bigwedge\left\{y_{1}-x_{1}: x_{1} \in X_{1}, y_{1} \in Y_{1}\right\}=0$,
$\left(c_{1}^{\prime}\right) \bigwedge\left\{-x_{1}+y_{1}: x_{1} \in X_{1}, y_{1} \in Y_{1}\right\}=0$.
(ii) Assume that $z \in K^{\#}$. Then $z \in M_{h}(G)$ if and only if the following conditions are satisfied in G :

$$
\begin{aligned}
& \left(c_{2}\right) \bigvee\{x-y: x \in X, y \in Y\}=0 \\
& \left(c_{2}^{\prime}\right) \bigvee\{-x+y: x \in X, y \in Y\}=0
\end{aligned}
$$

Proof.
(ii) Let $z \in K^{\#}$, and let both conditions $\left(\mathrm{c}_{2}\right)$ and $\left(\mathrm{c}_{2}^{\prime}\right)$ be satisfied. Then 3.2 and 3.3 yield that the element $z^{\prime \prime}=\inf (-Y)$ is an inverse to z in $G^{\#}$. Hence $z \in M_{h}(G)$. Conversely, let $z \in M_{h}(G)$. Since $z \in K^{\#}, X \subseteq K$ and $Y \subseteq K$. In view of (3), from $x \leq y$ we infer that $-x \leq-y$ for each $x \in X, y \in Y^{\text {. }}$. Since x is decreasing, $x-y \leq 0$ for each $x \in X, y \in Y$. Let $g \in G, x-y \leq g$ for each $x \in X, y \in Y$. By (II), we get $x \leq g+y$ for each $x \in X$, and thus $z \leq g+y$. As for $g \in H$, by using of 2.8 (ii), $-g+z \leq y$ holds for each $y \in \mathrm{~V}^{\text {. }}$. and so $-g+z \leq z$. The assumption $z \in M_{h}(G)$ implies that there is an inverse to z in $G^{\#}$. According to 2.8 (i), we get $-g \leq 0$ and $g \geq 0$. We conclude that $\bigvee\{x-y: x \in X, y \in Y\}=0$ in G, and $\left(c_{2}\right)$ is valid. The proof of $\left(c_{2}^{\prime}\right)$ is analogous.
(i) can be proved in a similar manner (cf. [1]).

The question of the independence of the conditions $\left(c_{1}\right)$ and $\left(c_{1}^{\prime}\right)\left(\left(c_{2}\right)\right.$ and $\left.\left(c_{2}^{\prime}\right)\right)$ remains open.

Exanple 3.5. Let C be the additive group of all integers with the matural linear order, and let H be the lexicographic product $H=C^{\prime} \circ\left({ }^{\prime}\right.$. If $h . h^{\prime} \in H$. $h=\left(r_{1}, c_{2}\right), h^{\prime}=\left(c_{1}^{\prime}, c_{2}^{\prime}\right), c_{i}, c_{i}^{\prime} \equiv C(i=1,2)$, then $h \leq h^{\prime}$ if and only if $r_{1}<r_{1}^{\prime}$ or $c_{1}=c_{1}^{\prime}$ and $c_{2} \leq c_{2}^{\prime}$. The operation + in H is defined componentwise. H is a linearly ordered group.

We apply the idea of the proof of Lemma III.3 from [t] to construct a hall lincarly ordered group G with $G \mid=H$ that is not a linearly wrdered gromp.

Let a be a symbol, and let $a+H$ be the set of symbols a - $H=\left\{\begin{array}{l}\text { a }\end{array}\right.$: : $h \in I I\}$. Denote be ($:$ a (disjoint) union of $(i$ and $a+H$. The operation and the order \leq on H will be extended on the whole (i in the following was for bach $h . h^{\prime} \in H$ we put $(a+h)+\left(a+h^{\prime}\right)=-h+h^{\prime} . h+\left(a+h^{\prime}\right) \ldots a+\cdots+h^{\prime} \cdot$. $(a+h)+h^{\prime}=a+\left(h+h^{\prime}\right)$. Further we put $a+h \leq a+h^{\prime}$ if and moly it $h=h^{\prime}$ $a+h$ and h^{\prime} incomparable. Then (i turns into a half linearly ordered sump)
such that $C \uparrow \uparrow=H, G \downarrow=a+H$. Since $G \uparrow \neq \emptyset, G$ fails to be a linearly ordered group.

Form the sets:

$$
\begin{aligned}
X_{1} & =\left\{\left(b_{1}, c\right) \in H: b_{1} \in C, b_{1} \leq 0, c \in C\right\}, \\
Y_{1} & =\left\{\left(c_{1}, c\right) \in H: c_{1} \in C, c_{1} \geq 1, c \in C\right\}, \\
X_{2} & =\left\{\left(b_{2}, c\right): b_{2} \in C, b_{2} \leq 1, c \in C\right\} \\
Y_{2} & =\left\{\left(c_{2}, c\right): c_{2} \in C, c_{2} \geq 2, c \in C\right\} \\
X_{3} & =\left\{\left(b_{3}, c\right) \in H: b_{3} \in C, b_{3} \leq 2, c \in C\right\}, \\
Y_{3} & =\left\{\left(c_{3}, c\right) \in H: c_{3} \in C, c_{3} \geq 3, c \in C\right\} .
\end{aligned}
$$

We have $x_{i} \leq y_{i}$ for each $x_{i} \in X_{i}, y_{i} \in Y_{i},(i=1,2,3)$. Therefore there exist elements $v_{1}, v_{2}, v_{3} \in H^{\#}$ such that $v_{i}=\sup X_{i}=\inf Y_{i}(i=1,2,3)$ in $H^{\#}$, and $X_{i}=L_{H}\left(v_{i}\right), Y_{i}=U_{H}\left(v_{i}\right)(i=1,2,3)$. From $a+x_{i}, a+y_{i} \boxminus a+H$, $a+y_{i} \leq a+x_{i}$ for each $x_{i} \in X_{i}, y_{i} \in Y_{i}(i=1,2,3)$ it follows that there are elements $z_{1}, z_{2}, z_{3} \in(a+H)^{\#}$ such that $z_{i}=\sup \left\{a+y_{i}: y_{i} \in Y_{i}\right\}=\inf \left\{a+x_{i}\right.$: $\left.\left.x_{i} \in X_{i}\right\} \quad i=1,2,3\right)$ in $(a+H)^{\#}$, and $\left\{a+y_{i}: y_{i} \in Y_{i}\right\}=L_{a+H}\left(z_{i}\right)$, $\left\{a+x_{i}: x_{i} \in X_{i}\right\}=U_{a+H}\left(z_{i}\right)(i=1,2,3)$.
(A) We get $z_{1}+z_{2}=\sup \left\{\left(a+y_{1}\right)+\left(a+x_{2}\right): y_{1} \in Y_{1}, x_{2} \in X_{2}\right\}=$ $\sup \left\{-y_{1}+x_{2}: y_{1} \in Y_{1}, x_{2} \in X_{2}\right\}=\sup X_{1}=v_{1}$ in $H^{\#} ;\left(z_{1}+z_{2}\right)+z_{3}=$ $v_{1}+z_{3}=\sup \left\{x_{1}+\left(a+y_{3}\right): x_{1} \in X_{1}, y_{3} \in Y_{3}\right\}=\sup \left\{a+\left(-x_{1}+y_{3}\right):\right.$ $\left.x_{1} \in X_{1}, y_{3} \in Y_{3}\right\}=\sup \left\{a+y_{3}: y_{3} \in Y_{3}\right\}=z_{3}$. On the other hand, $z_{2}+z_{3}=\sup \left\{\left(a+y_{2}\right)+\left(a+x_{3}\right): y_{2} \in Y_{2}, x_{3} \in X_{3}\right\}=\sup \left\{-y_{2}+x_{3}: y_{2} \in Y_{2}\right.$, $\left.x_{3} \in X_{3}\right\}:=\sup X_{1}=v_{1} ; z_{1}+\left(z_{2}+z_{3}\right)=z_{1}+v_{1}=\sup \left\{\left(a+y_{1 i}\right)+y_{1 j}:\right.$ $\left.y_{1 i}, y_{1 j} \in Y_{2}\right\}=\sup \left\{a+\left(y_{1 i}+y_{1 j}\right): y_{1 i}, y_{1 j} \in Y_{1}\right\}=\sup \left\{a+y_{2}: y_{2} \in Y_{2}\right\}=z_{2}$. Hence, $\left(z_{1}+z_{2}\right)+z_{3} \neq z_{1}+\left(z_{2}+z_{3}\right)$.
(B) We have seen in (A) that $z_{1}+z_{2}=v_{1}$. But $w=\inf W=\inf \left\{\left(a+x_{1}\right)+\right.$ $\left.\left(a+y_{2}\right): x_{1} \in X_{1}, y_{2} \in Y_{2}\right\}=\inf \left\{-x_{1}+y_{2}: x_{1} \in X_{1}, y_{2} \in Y_{2}\right\}==\inf Y_{2}=v_{2}$. Therefore $z_{1}+z_{2} \neq w$.
(C) There does not exist $\bigwedge\left\{y_{1}-x_{1}: x_{1} \in X_{1}, y_{1} \in Y_{1}\right\}$ in G. With respect to 3.4 (i) the element $v_{1} \in G^{\#}$ has no inverse in $G^{\#}$.

REFERENCES

[1] C'ERNÁK, Š.: On the maximal Dedekind completion of a lattice ordered group. Math. Slovaca 29 (1979), 305-313.
[2] EVERETT, C. J.: Sequence completion of lattice modules, Duke Math. J. 11 (1944), 109119.
[3] FUCHS, J. : Partially Ordered Algebraic Systems, Pergamon Press, Oxford-London-New York-Paris, 1963.

ŠTEFAN ČERNÁK

[4] GIRAUDET, M.--LUCAS, F.: Groupes à moitié ordonnés, Fund. Math. 139 (1991). 75-89.
[5] KOKORIN, A. J.- KOPYTOV, V. M.: Linearly Ordered Groups, Nauka, Moskva. 1972. (Russian)
[6] MacNEILLE, H. M. : Partially ordered sets, Trans. Amer. Math. Soc. 42 (1937). 416460.

Received December 20, 1994
Department of Mathematic's Faculty of Civil Engineering Technical University Vysokoškolská 4 SK 042 02 Košice SLOVAKIA

[^0]: AMS Subject Classification (1991): Primary 06F15.
 Key words: half partially ordered group, maximal Dedekind completion, inverse element.

