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REVERSALS — SPACE — PARALLELISM TRADEOFFS 
FOR LANGUAGE RECOGNITION 

JURAJ HROMKOVIC 

ABSTRACT. This paper is devoted to the development of a lower bound proof 
technique for the general model of alternating computations. The produced, com
binatorial technique enables to obtain Q(nx 3/\og2n) lower bound on the tradeoff of 
complexity measures REVERSALS SPACE- PARALLELISM for the recognition 
of a specific language on a general alternating machine with the multihead access to 
the input and an arbitrary organization of the memory. 

1. Introduction 

One of the hardest problems in the theory of computations and computation
al complexity is to prove nontrivial lower bounds on different complexity measures 
of specific problems (i.e., on the inevitable amount of computer resources for 
computing a given computing task). In spite of much effort the results so far 
have not been satisfactory. Thus, nobody has been able to prove any nonlinear 
lower bound on the combinational complexity of a specific Boolean function in 
spite of the well-known fact that almost all Boolean functions of n variables 
have exponential combinational complexity [7], and we are not able to prove 
any higher than a quadratic lower bound on the time complexity of Turing 
machines recognizing a specific language in NP [6, 14, 16]. Because of this 
unpleasant situation there is much endeavour now to develop some new lower 
bound proof techniques or to improve the old ones because several computer 
scientists believe that the way of the gradual development of proof techniques 
may lead to the solution of the fundamental open problems (like P? NP) in the 
complexity theory. 

Our paper represents also a contribution to the development of lower bound 
proof techniques. It is a continuation of our paper [9], where the first technique 
for proving lower bounds on some complexity measures of alternating devices was 
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Key words: Alternation, Tradeoffs of complexity measures, Lower bounds. 

121 



introduced. Since alternating devices represent some parallel computing models 
on the one hand, and on the other hand are a generalization of nondeterministic 
computing models, the lower bounds on the complexity measures of alternating 
machines are valid also for a wide scale of computing devices obtainable from 
alternating machines by various restrictions. 

Our lower bound proof techniques belong among the so-called combinatorial 
techniques based on the following combinatorial considerations: Let M be a 
machine recognizing a language L(M). First one has to find some "essential 
features" of each accepting computation of M that characterize the computa
tion in some sense. The choice of the essential features is usually connected with 
the structure of the input words. Then an upper bound on the amount of the 
computing resources of the computer M is assumed in order to enumerate how 
many computations on the inputs of a fixed length differing in the essential 
features may exist. The aim is to show that the number of "essentially" different 
computations on words of a fixed length is smaller than the number of distinct 
words in L(M) of the considered length. This fact is later used to construct an 
accepting computation on a word that does not belong to L(M), which creates, 
a contradiction with the above assumed restriction on the amount of computing 
resources. The crucial point of this combinatorial technique is to find the 
"essential features" of computations, because it means to comprehend the 
essence of the structure of the considered computing problem. Also the subtlety 
of the choice of the essential features plays an important role, since the quality 
of the obtained lower bounds depends crucially on it. 

One of the most used combinatorial techniques is the crossing sequence 
technique (see, for example [3, 4, 5, 6, 8 12, 17], where some steps in the 
development of this technique for various computing devices have been made). 
We have developed the crossing sequence technique for proving lower bounds 
on parallel processing in [9, 11]. The main contribution of this paper is to bring 
some new ideas in the procedures of finding the "essential features" of computa
tions and in enumerating the number of essentially different computations. The 
consequence of our new considerations is the lower bound Q(n] 3 log2t?) on the 
complexity measure REVERSALS SPACE PARALLELISM for the recog
nition of a specific language. An important point is also that we prove this lower 
bound for a very general computing model, the so-called k-head alternating 
machine in order to obtain a lower bound valid for almost all computing models 
used in the computation theory. Note that we consider alternation in the same 
way as it was introduced in [2] and the complexity measures of alternating devices 
are considered as defined in [9, 11, 13, 15]. 

Before giving the formal definition of our machine model and its complexity 
measures let us describe the k-head alternating machine, AM(k), in an informal 
way. An AM(k) consists of a separate input tape with k two-way read-only heads, 
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and a countable state control. The countable set of states of the AM(k) is 
partitioned into two disjoint sets KE (the set of existential states) and Ku (the set 
of universal states) with the same meaning as in all alternating devices [2]. A step 
of'AM(k) M is made according to the state of M and the k symbols read by the 
k heads on the input tape. Using this information M can branch the computa
tion into a finite number of computations and independently, for each branch 
of the computation, change the state and the positions of the heads by 1. We give 
only one restriction on M, namely that there must be a constant dM such that 
branching from any universal state of M is bounded by dM. 

Clearly, the multihead alternating machines (MAMs) include a large number 
of different types of computing models. For example, a MAM is the generaliza
tion of the alternating multitape Turing machine (ATM), multihead automata, 
multipushdown and multicounter machines, RAMs, Kolmogorov— Uspensky 
machine, etc. More precisely, our M^M includes all models with a constant 
number of two-way heads on the input tape and an arbitrary organization of the 
memory (in fact, MAM can see the whole contents of its memory and change 
it in every single step of the computation). 

Let N denote the set of positive integers. 

Definition 1. A k-head alternating machine AM(k) is a %-tuple M = (K, E, Kv, 
8, q0, F, d, k), where 

(1) K is the nonempty, countable set of states (internal configurations); 
(2) q0eK is the initial state; 
(3) Ku c K is the set of universal states, KE = K — Kv is the set of existential 

states; 
(4) F = K is the set of accepting states; 
(5) E is a finite, nonempty set called the input alphabet, ^ and $<££ are the 

endmarkers; 
(6) 8^ (Kx(Zu{^, $})k) x (Kx{— 1, 0, 1}A) is the next-move relation, where 

— 1, + 1 , and 0 denote the direction of the head move (left, right, stationary, 
respectively); for ((q, (a,, ..., ak)), (p, (/,, y2, ..., yk)))eS the following is 
required: ifaf= ^ for some je{\, ..., k}, then y-e{0, 1}, if af = $ for some 
ie{\, ..., k}, then / , E { - 1 ; 0}; 

(7) d is a positive integer such that, for VqeK^, V x 6 ( I u {£, /£})*, there exist at 
most d different tuples (p, a), where peK, ae{— 1, 0, 1}*, such that ((q, x), 
(p, a)) e 5. 

Definition 2. A descriptional configuration of an AM(k) machine M = 
= (K, X, Kv, S, q0, F, d, k) is any element (w, q, (/,, ..., ik)) from 

Z*xKx(Nv{0})k 

with 0 ^ ^ ^ \w\ + 1 for eachje{\, ..., k}. 
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Informally, a descriptional configuration (w, q, (/,, i2, ..., ik)) describes the 
situation in which the AM(k) is in the state q, has the word w on the input tape, 
and the jth head is on the ifth position of the input tape involving §w$. 

Definiton 3. A configuration of an AM(k) M = (K, Z, Kv, 5, q0, F, d, k) is an 
element from Kx(N u{0})\ For all xeZ*, IM(x) = (x, q0, (0, 0, ..., 0)) is the 
initial descriptional configuration. We shall say that the descriptional configura
tion (x, q, (/,, ..., ik)) is universal, existential, and accepting, respectively, if q is 
a universal, existential, and accepting state, respectively. 

In what follows we define the notions "step" and "computation" of multihead 
alternating machines. 

Definition 4. Let M = (K, I, Kv, 5, q0, F, d, k) be an AM(k). Let C and C 
be two descriptional configurations. We shall say that M can go from C to Cf in 
one step, C\- C, if C can be obtained from C by applying the next-move rela
tion 8,. A sequential computation of M on x is a sequence C0 = A/(x) r- C, h 
h ... I— Cw, m ^ 0. In what follows we shall often write C0, C,, ..., Cm only. 

A computation (computation tree if we want to draw attention to the structure 
of the computation) OfAI on a word x is a finite, nonempty, labelled tree with 
the following properties: 

(1) each node v of the tree is albelled by a descriptional configuration l(v); 
(2) if v is an internal node (a non-leaf) of the tree, l(v) is universal, and 

{C\l(v)h C) — {C,, ..., Cw}, then v has exactly m children ux, ..., um such 
that l(u) = Q ; 

(3) if v is an internal node of the tree and l(v) is existential, then v has exactly 
one child u such that l(v) \- l(u). 

An accepting computation (tree) of M on an input word x is a computation 
(tree) whose root is labelled with IM(x) and whose leaves are all labelled with 
accepting descriptional configurations. We say that M accepts x if there is an 
accepting computation (tree) of M on input x. We define L(M) = {xeX* | M 
accepts x} as the language accepted by M. 

In what follows we shall often consider the computation as a tree labelled by 
configurations instead of descriptional configurations. It will cause no confusion 
because it will be clear which input word is considered. For the recognition of 
different languages we shall define the notion "prominent configuration" accord
ing to the given language. If V is the set of prominent configurations, then we 
define, for each accepting computation, the pattern of the accepting computation 
as a tree U with the following properties: 

(1) the root of U is the root of D; 
(2) the rest nodes are the nodes of D labelled by the prominent configurations 

from V; 
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(3) the nodes u and v are connected by an edge in U iff D involves a path from 
u to v that involves no node labelled by a prominent configuration. 

The notions prominent configuration and pattern are important for our 
lower bound technique because they are the formal representations of the above 
mentioned "essential features" of computations. 

Now, let us define the complexity measures for multihead alternating machi
nes. Let A be an AM(k) accepting a language L(A). 

The space complexity of A is a function of the input word length SA (n) = 
= log2 (CA (n)), where CA(n) is the number of all different states (internal con

figurations) used in all accepting computations on words from L(A) n Zn. We note 
that the number of all configurations used in accepting computations on inputs 
with the length n can be at most (n + 2)k CA (n), where (n + 2)k is the number of 
all different positions of the heads on the input tape. 

For an accepting computation D of A we denote by TA (D) (RA (D)) the 
maximum number of steps (head reversals) performed in the sequential computa
tions from the root of D to the leaves of D. The time and reversal complexity 
measure respectively are defined in the usual way as the following function: 
XA (n) = max {XA (D) \ D is an accepting computation on an input of the length rz}, 
where Xe{T, R}. 

The parallel complexity measure is defined as introduced in [9] for alternating 
devices. The definitions of a similar complexity measure called leaf-size can be 
found in [15]. Let PA(D) denote the number of universal states in the accepting 
computation D. Clearly, PA(D) is an upper bound on branchings in D. The 
parallel complexity of A is the function PA (n) = max{P^ (D) \ D is an accepting 
computation on an input of the length n}. 

Let 01 denote the set of all positive, real numbers. For arbitrary functions / 
andg from N to 01, f(n)t Q(g(ri)) is equivalent to 3ce^2, 3 r a e N , such that, for 
Vrz ^ m,f(n) ^ cg(n), and f(n)e O(g(n)) is equivalent to 3 c E ^ , 3meN such 
that, for Vw ^ m, f(n) ^ cg(n). If f(n)eQ(g(n)) and f(n)eO(g(n)\ then we 
shall write f(n) = 0(g(n)). The fact lim f(n)/g (n) = 0 will be denoted by 

n - > or 

f(n) = o(g(n)). The cardinality of a set K will be denoted by |K | . [_d] for a 
de0l is the greatest nonnegative integer m such that d^ m. If we write, for 
example, REVERSALS• SPACE-PARALLELISMeQ(na) in what follows, 
then it means that RA (n)SA (n)PA (n)eQ(na) for each device .4 of the computing 
model considered. 

Now, giving some restrictions on MA Ms we define multihead deterministic 
and nondeterministic machines. 

Definition 5. Let A = (K, E, Kv, S, a0, P, d, k) be an AM(k). We shall say that 
A is a k-head nondeterministic machine, NM(k), if Kv = 0. We shall say that A 
is a k-head deterministic machine, DM(k), if the next-move relation is a function. 
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The structure of this paper is as follows: In Section 2 we introduce the 
language L and prove RSPeQ(n] 3/log2r2) for L. The immediate corollaries for 
a nondeterministic sequential model are formulated in Section 2 too. In Sec
tion 3 we shall prove the stronger lower bound RSPef2(n(] + 2';) 3) for the case 
SPACE ^ nf (0 < s < 1). The lower bounds for alternating and nondeterminis
tic multihead finite automata are involved in Section 4. In Section 5 it is shown 
that the simulation of AM(2) by an alternating machine with one two-way, 
read-only head and k two-way blind heads on the input tape can require more 
than the r.71og2rz times increase of the complexity RSP. Further, several results 
for multihead simple finite automata are established as consequences of this 
result. 

2. The main theorem and its consequences 

Let us consider the languages Lr, and Lr(m) introduced by Y a o and 
R i v e s t [17] for arbitrary positive integers r, and m: Lr = {\\\c\v2c... c\\\ + 
+ \vrc ... c\v2c\\\ I vr,e{0, 1}* for / = 1 , 2, ..., r}, Lr(m) = {\\\c\v2c ... c\v + 
+ \vrc... c\v2x\\\ | vv,e{0, 1}'" for / = 1, 2, ..., r] 5 Lr. We put R = [j L and 

r e N 

L = {.v, # x2# ... # xk #0MfcS*0, 7 > 0, xfeR for i= 1, ..., k}. For some 
functions / and g from N to N such that f2 (n) g (n) ^ n for all t i e N , we de
fine L(f g) = {X] # x2 # ... # xfin) # 0''|w ^ 1, for all ie{l, 2, ..., f(n)} x e 
eLf(n)(lg(n)/2- l j ) and, j = n -f(n) \_g(n)j2\} c L. In what follows, for a 
computing device A, L(A) denotes the language recognized by A. 

Now, let us formulate our main theorem. 

Theorem 1. L e t / and g be functions from N to N such that f(n) = g(n) = 
= [ V 3J , and let A be an AM(k) for a kel\l. If L(f g) c L ( A ) c L I//^r7 

P.^S.^P.^G.fi^^Vlog,^. 

P roof . First we note that we do not need two func t ions /and g in Theo
rem 1 becausef(r?) = g(n). But, we shall use b o t h / and g for two reasons. First, 
it increases the readability of this proof, and secondly, the proof of Theorem 1 
will be useful to prove some tradeoffs in Section 3, where languages L (/, g) for 
different/and g will be considered. 

To prove Theorem 1 we shall follow the idea of Yao and R i v e s t [17] 
used to fool one-way multihead finite automata. This idea was modified in 
[8, 12] to prove that some languages cannot be recognized by one-way deter
ministic multihead finite automata, and real-time two-way multihead finite 
automata. It led to the development of some stronger proof techniques used to 
fool more powerful devices as time-space restricted sequential computing 
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models in [4], one-way alternating multihead finite automata with bounded 
parallelism in [9], and reversal-bounded two-way nondeterministic sensing mul
tihead finite automata in [10]. Now, generalizing these proof techniques we fool 
parallel computing models with bounded RSP. 

The proof is done by contradiction. We assume that there exists an AM(k) 
A with L(f g)^L(A)^L and RA(n)SA (n)PA (n)£Q(n] 3/log2rz). In what 
follows, we shall show that if L (f g) .= L(A), then there is a word in L (A) — L, 
which will be a contradiction. Let A = (K, X, KU9 <5, q09 F, d, k). 

Since RA (n) SA (n)PA (n)$Q(n] 3/log2n) we can assume that there is a positive 
integer m with the property 

(1) 21k2dRA(m)PA(m)SA(m) < [m13/log2mJ • 

Let Lm(f g) = {xeL(f g) | |x| = m}. Now, we start to determine the "essential 
features" of computations of A on the words in Lm(f g) in terms of prominent 
configurations. But we do not define the prominent configurations directly 
according to the structure of inputs as it was usually done (see, for example 
[8, 12, 17]). First we make some combinatorial considerations which help us to 
choose such important configurations that the number of different patterns of 
computations on words in Lm(f g) enumerated later will be the smallest 
possible. 

Let x = x] # x 2 # ... # x A w ) # 0 \ where x} = wncwj2c... cwJfim) + wjf{m)c ... 
... cw/2cwn forye{l, ...,/(m)}, be a word in Lm(fg). We shall say that the twins 
of subwords wif of x are compared in an accepting computation D of A iff there 
exists a configuration in D such that one of the heads is positioned on the "first" 
twin wif of x, and another head is positioned on the "second" twin wfj of x in this 
configuration. 

Now, we prove an important fact for our considerations which claims that 
the machine A is not able to compare all twins of subwords of words in 
A>. (/ g) because A has not enough computing resources. 

Fact 1. Let D be an accepting computation of A on an xeLm(f g). Then there 
exist positive integers b, re{l, 2, ...,/(m)} such that the twins of subwords whr 

of x are not compared in D. 

The proof of Fact 1. Let C = C, C2... Cz be a sequential computation 
of D from the initial configuration to an accepting one, where for u = 1, 2, 
..., z, Cu is the part of the sequential computation C which involves no head 
reversal. Clearly, z ^ RA(m) + 1. 

Let us first consider the twins of subwords which can be compared by pairs 
of heads moving in the opposite direction in a Cu. Each pair of heads moving 
in the opposite direction can compare at most the twins of subwords of one 
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subword x, of x (i.e. no pair of heads moving in the opposite direction can 
compare two twins of subwords wpq and wvc for p ^ v in a Cu). Since the number 
of head pairs moving in the opposite direction in each Cu can be bounded by k2 

there are at most k2 (RA (m) + 1) subwords x, whose twins of subwords vt'/7 can 
be compared by the pairs of heads moving in the opposite direction in a 
sequential computation C. Realizing that the computation D involves at most 
dPA (m) sequential computations (from the initial configuration to an accepting 
one) we obtain that there are at most k2d(RA (m) + \)PA (m) subwords x, whose 
twins of subwords Wy can be compared by the pairs of heads moving in the 
opposite direction in the entire computation D. 

Since (1) holds for m we obtain that 

(2) k1d(RA(m)+\)PAm)< K 3 J / 2 = / ( m ) / 2 , i.e., 

there exists a natural number b such that no twins of subwords whj of xh are 
compared by a pair of heads moving in the opposite direction in D. 

Obviously, each s-tuple of heads moving in the same direction can compare 

at most I ? J < s2 twins whj of xh in a part Cu (without reversal) of a sequential 

computation C of D (if a pair of heads is reading twins whj at the same point 
during the computation part CM, then at no other time during the computation 
part Cu that pair of heads could read some other twins whj, where j # /). 
So, during the entire computation D the machine A can compare at most 
dk2 (RA (m) + \)PA (m) twins vv̂  of xh. Realizing (2) we have that there exists a 
positive integer r e { l , ...,f(m)} such that the twins whr of x are not compared 
in D. 

T h e p r o o f of T h e o r e m 1 c o n t i n u e d . In what follows we shall 
consider for any input word xeL„,(f, g) a fixed accepting computation Dx. 
Clearly, the number of words in Lm (f, g) is 

2 j 2 N ( [_g(m)2\ - 1) 

Following Fact 1 we obtain that there exist two positive integers p and q such 
that the twins wpq are not compared in the accepting computations on at least 

~>f2(m) lgim)-2)2\ lP(m) 

different words in L,„(f, g). Let L,„(f, g) denote the set of such words. 
Now, let us define the notion "prominent configuration" according to the 

fixed numbers p and q. A prominent configuration is a configuration of the 
accepting computation Dx on xeLm(f, g) from which A moves one of its heads 
on the symbol c immediately preceeding or following the subwords wpq. 

Now, for any x e Lm (f, g), Dx be the pattern of x defined as the pattern of the 
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accepting computation Dx on x according to the above defined prominent 
configurations. 

Fact 2. The number of all different patterns of the words in Lm (f g) is bounded 
bv 

, v ^.(k\og2m +SA(m))4dkR4(m)PA(m) 

e (m) = 2 . 

The p roof of Fac t 2. Each pattern can be transformed to a sequence 
containing the concatenation of all (at most dPA (m)) paths from the root of the 
pattern to the leaves of the pattern. We note that having such a sequence of 
prominent configurations we can unambiguously construct the original pattern. 

Since there are at most 4k prominent configurations in each part of computa
tions without reversals the length of every sequence corresponding to a pattern 
is bounded by 4kdRA(m)PA(m). Realizing that the number of all different, 
prominent configurations is bounded by (2 + m)k CA (m) ^ 2( ]ogl(m + 2)) ̂  5/,(m) the 
proof of Fact 2 is completed. 

The proof of Theorem 1 con t inued . Following (1) we obtain 
e(m) < \Lm(f g)\ — 1. It thus follows that, for v, # t>2, z, = xx # x2 # ... # 
#x /, ] # , and z2 = # xp + x # ... # xf{m) # 0', there are two different words 

yi =Z\Wp\C.~cwpq_lcvlc...cwpfim) + wpf{m)c...cvxcwpq xc...cwpXz2 

yi = Z\WP\C ... cwpq_ xcv2c ... cwpf{m) + ,wpf{m)c ... cv2cwpq xc...cwpXz2 

in Lm (f g) with the same pattern X of the accepting computations Dr and D 
resp. in which the twins vx of yx and the twins v2 of y2 resp. are not compared. 

Now, we shall construct an accepting computation of A on the word 

y = zxwpXc...cwpq xcvxc...cwpf{m) + wpf{m)c...cv2cwpq_xc...cwpXz2. 

Since y does not belong to L the proof of Theorem 1 will be completed. 
The construction of an accepting computation (tree) on y is based on the fact 

that during the computation on the words yx and y2 the AM(k) A did not read 
the twins of subwords vt in yt at the same time. Let us construct an accepting 
computation on y from the pattern X in the following way. For each node u in 
the pattern X, let XJ, and X2 resp. be the subtrees of the accepting computations 
of DY, and Dv resp. from u (i.e. with the root u) to the prominent configurations 
in which an edge leads from u in X. Then, for every node u in X, we replace the 
node u with the edges leading from u by one of the subtrees XJ, X2. The 
determination which of XJ, X.2 is chosen is given below. 

If some head is positioned on the word v,, then XJ is chosen. If some head 
is positioned on v2, then X2 is chosen. We have already shown that the situation 
in which one of the heads is positioned on vx and another head on v2 does not 
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occur. In the case when none of the heads is positioned on r, or v2, it is not 
important which X'u we choose. 

So, we have shown that if A accepts all words in L (f g), then it has to accept 
a word not in L which proves Theorem \. • 

Corollary 1. Let A be an AM(k), for a keN, such that L(A) = L, and 
SA (n) ^ c log2rz for a constant c. Then 

RA(n)Si(n)P4(n)en(n]'). 

Proof . The proof is the same as that of Theorem 1. The new assumption 
SA (n) $: c \og2n is used to show that 

(A log2n + SA (n)) 4kdR4 (n) PA (n) e O (SA (n) R4 (n) P4 (n)). 

All other considerations of the proof of Theorem 1 hold without any change. • 
Now, let us consider the same nondeterministic machine NM(k), for a 

keN, as D u r i s and G a l i l in [4]. Obviously, a NM(k) is an AM(k) having 
no universal state. So the following theorem is an immediate consequence of 
Theorem 1, and Corollary 1. 

Theorem 2. Let A be an NM(k),for a keN, such that L( InMJ , |_/?MJ ) c 
= L(A)_ZL. Then RA (n)SA (n)eQ(n] 3/log2n). In the case that SA (n) ^ c log2n, 

for a constant c, RA (n)S4 (n)eQ(nl 3). 
We have proved the lower bound Q(n] 3/log2rz) on the complexity measure 

RSP for the recognition of the language L. We are not able to prove any tight 
upper bound to this lower bound, and we believe that no such upper bound 
exists. We conjecture that the recognition of L requires still more computing 
resources, and so our lower bound can be improved. We make some improve
ments in the following section only by adding some additional assumptions. 
Thus, to prove a higher lower bound on RSP of the recognition of L remains 
as the main open problem left in our paper. 

3. Improved lower bound for polynomial space 

The aim of this section is to improve the lower bound obtained in Theo
rem 1 in the case when our computing model uses at least polynomial space. 

Theorem 3. Let £ be a real number such that 0 < £ < \. Let f and gt be 
functions from N to N such thatf(n) = \_n{] ° 3J , and gr(n) = \_n{] + lL) 3J . Let 
VFbe a language such that L(f, gr) ^ V£_zL. Let A be an AM(k), for a keN, 
such that L(A) = Vc, and S4 (n) ^ nc. Then 

RA(n)SA(n)PA(n) = Q(n{^2*3). 
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Proof . We prove Theorem 3 following the proof of Theorem L Let 
Ln (f„ ge) = {XGL (fi8, gc) | \x\ = n}, SA (n) > n\ and RA (n) SA (n) PA (n) $ 
<£Q(n{]+2€)}). Since, for sufficiently large n, 

k2d(RA(n)+\)PA(n)^2k2dRA(n)SA(n)PA(n)/ne< [/i0 £)3J = fi(n) 

(see the inequality (2) of Fact 1) Fact 1 of the proof of Theorem 1 holds in this 
proof too . 

Let the notions "prominent configurations" and "pattern" be defined in the 
same way as in the proof of Theorem 1. So, following Fact 2 the number of all 
different patterns of the words in Ln(fi, g£) is bounded by 

f . ^4dkSA(n)RA(n)PA(n) 

e(n) = 2 
for sufficiently large numbers n e N. Since 4dkSA (n) RA (n) PA (n) £ Q(n° + 2e) 3) = 
= Q(g(n)) we obtain that 

e(n)<\Ln(fi,ge)\-\. 

It implies that there are two different words yu y2eLn(fi£, g() differing only 
in some twins of subwords of the length \_(g(n) — 2)/2J which have the same 
pattern. So, the proof of Theorem 3 can be completed in the same way as the 
proof of Theorem 1. • 

Now, we apply the assertion of Theorem 3 to NM(k)'s in order to obtain a 
polynomial lower bound on the number of reversals for fixed space. 

Theorem 4. Let A be a NM(k), for a keN, such that L(A) = Vc, and 
SA (n) ^ ne for sufficiently large numbers ne N. Then 

RA(n)SA(n)eQ(n{]+2£)*). 

Corollary 2. Let A be a NM(k), for a keN, such that L(A) = VE, and 
SA(n) = 0(ne). Then 

RA(n)eQ(n{X £)3). 

4. Lower bounds for multihead finite automata 

Multihe ad finite automata are computation devices which have no additional 
working space, i.e. MAMs with constant space. Let, for any keN, 2AFA(k), 
2NFA (k), and 2DFA (k), resp., denote the class of two-way k-head alternat
ing, nondeterministic and deterministic, resp. multihead finite automata. Let 
\AFA (k), \NFA (k), and \DFA (k), resp., be the class of one-way versions (i.e. 
without any reversal in the computations) of2AFA (k), 2NFA (k), and 2D FA (k), 
respectively. Let, for a class of devices M, ££ (M) be the family of languages 
recognized by AeM. 
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Multihead finite automata were extensively studied for several reasons (see 
for example [4, 8, 9, 10, 11, 12, 13, 15, 17, 18]). One of the most important 
properties of them according to the complexity theory is that they characterize 
the basic complexity classes [13] in the following way: 

P - ( J Se (2AFA (k)), DLOG = J i f (2DFA (k)), 
k e N k e N 

and 
NLOG = J i f (2NFA (k)), 

keN 

where P is the family of languages recognized by deterministic Turing machines 
in polynomial time, and DLOG (NLOG) is the family of languages recognized by 
deterministic (nondeterministic) Turing machines with logarithmic space. The 
basic open problems concerning the relation between these complexity classes 
can be formulated as equivalent problems in the terms of the family of languages 
defined by multihead finite automata. So, it is interesting to study different 
complexity measures for these computing devices. In the following theorem 
(which is an immediate consequence of Theorem 1), we give the first, nontrivial 
lower bound for the complexity measure REVERSALS PARALLELISM for 
two-way alternating multihead finite automata. 

Theorem 5. Let Ae\j2AFA(k), and let L(A) = L. Then RA(n)PA(n)e 
G/3(t213/log2n). AGN 

Corollary 3. Lcl ,4 e J \AFA(k),andlet L(A) = L. Then PA(n)eQ(nx 3 log2w). 
keN 

Corollary 4. Let A e J 2NFA (k), and let L(A) = L. Then RA (n)eD(n] 3 log2 w). 
keN 

Corollary 5. L$ J ^ ( l N F A (k)). 
keN 

We note that, for the language R, a stronger lower bound PA (n)eO((n log2rz)12) 
for one-way alternating multihead finite automata is proved in [9]. A similar 
result as in Corollary 4 is established in [10] too. 

Now, let us consider the language Lc = {0, 1, c, + , # }* — L. It is no problem 
to construct an automaton Be \NFA (3) which, guessing the twins of different 
subwords (or guessing that the form of the input word is different from the form 
of words in L), recognizes the language Lc. Denoting by M — R(f) — P(g), for 
each automaton class M and functionsf g from N to N, the automaton subclass 
ofM such that Be M iffB uses in its accepting computations on words of the length 
n at most f(n) reversals and g(n) universal configurations we can formulate the 
following consequences of Theorem 5. 
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Corollary 6. Letf and g be some functions from N to N such that f(n)g(n)e 
eQ(nx 3/log2rz). Fherz, for every integer k ^ 3, l/u? families of languages 
<£(2AFA(k) - R(f) - P(g)% <£(\AFA(k) - P(g)\ 5£(\NFA(k)), and 
££(2NFA (k) — R(f)) are not closed under complementation. 

In the case that a class J5f (2DFA (k) - R ( / )) , for a function/(/7) ^ n] 3/\og2n 
is closed under complementation (for example iff(rz) = c for a constant ceN) 
one can obtain a separation result between nondeterminism and determinism 
for reversal-bounded two-way multihead finite automata . 

5. Two read-only heads versus one read-only head and k blind heads 

C o b h a m [3] proved that a sequential computing model with one read
only head on the input tape recognizing the language LR = {wcwR\ we{0, 1}*} 
has TIMESPACEtQ(n2). The fact that the same sequential model with two 
read-only heads on the input tape can recognize LR with TIME- SPACEe O (n) 
implies that one read-only head cannot be compensated for by o (n) increase of 
TIME-SPACE. In [11] it is shown that the recognition of U = {w2'w\i^ 1, 
we{0, 1}*} by an AM(\) requires TIME SPACE PARALLELISMeQ(n2). 
So, one read-only head on the input tape cannot be compensated for by o (n) 
increase of TIME-SPACE-PARALLELISM. 

Now, we shall show that one read-only head on the input tape cannot be 
compensated by o(n/\og2n) increase of REVERSALS-SPACE-PARALLEL
ISM, and k blind heads on the input tape (a blind head recognizes only the 
endmarkers on the input tape, see [15] for details). To prove this result we shall 
consider the language L, = {w + w\ we{0, 1}*} which belongs to i f (\DFA (2)). 
The parallel computing model AM(\) with k additional blind heads on the input 
will be denoted by AM(\, k). 

Theorem 6. Let k be a natural number, and let A be an AM(\, k) recognizing 
L,. Then 

RA(n)SA(n)PA(n)en(n/\og2n). 

Proof . Let us follow the proof of Theorem 1 assuming that RA(n)SA(n)-
- PA (ri) $ Q(n2/\og2ri), and L(A) = Lx. Clearly, A cannot compare the twins of 
subwords w of an input word w + w in its computation because A has only one 
reading head on the input tape. Let, for each WG{0, 1}*, Dw be a fixed accepting 
computation of A on w -f- w. The prominent configuration of DH is the initial 
configuration, and every configuration C in which the reading head is adjusted 
on + , and one of the following conditions holds. 
(i) The reading head crossed the "first" twin w in the sequential computation 

between the immediately preceding prominent configuration of C and C, 
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and in the following step the reading head will be adjusted on the first 
symbol of the "second" twin vr. 

(ii) The reading head crossed the "second" twin vr in the sequential computa
tion between the immediately preceding prominent configuration of C 
and C, and in the following step the reading head will be adjusted on the last 
symbol of the "first" twin vv. 

So, at least one reversal of the reading head has to be done between two 
prominent configurations (different from the initial configuration). 

Let, for odd, positive integers n, L, (n) = {xeL , | |Y| = r?}, and let the pattern 
of a word in L, be defined according to the above specified prominent configura
tions. Following Fact 2 we see that the number ordifferent patterns of words 
in Li(t?) is bounded by 

< k ^ ( \\dRA(n)PA(n) . ~d(k\o^n +SA(n))R4(n)PA(n) 

(nKC4(n)) ^ 2 - , 

where d is the maximal possible branching from a universal state. 
Since d(k \og2n + SA(n)) RA(n)PA(n)^Q(n), and the number of different 

words in L, (n) is 2(n ]) 2 there are, for u', / w2, two words vr, + vv, and vv2 -h us 
with the same pattern. Obviously, the proof can be completed in the same way 
as the proof of Theorem 1. • 

Corollary 7. Let A be an AM(\) recognizing L,. Then 

RA(n)SA(n)PA(n)eQ(n). 

Proof . The proof is the same as the proof of Theorem 6. It suffices to 
put k = 0, which implies that the number of patterns is bounded by 
rydS A(n) R x(n) P 4(n) 

Concluding this paper we call attention to some consequences of Theorem 6 
concerning the multihead simple finite automata. Let 2 ASF A (k) be the class of 
two-way k-head simple multihead finite automata (k-head denote one reading 
and k — 1 blind heads). Analogously, we shall consider the classes 1ASFA (k), 
2NSFA (k). 

In [9, 15] it is proved that tf(\ASFA (k)) = i f (\AFA (k)), and &(2ASFA (k)) = 
= yCAFA(k)). But H r o m k o v i c [9] stated that the simulation of a Be 
e\AFA (k) by a Ce \ASFA (k) can require nj\og2n increase of parallel complex
ity. Here, we obtain a more general result. 

Theorem 7. For functions f and g from N to N such thatf(n)g(n) = o(n log2n), 

i f (\DFA(2)) -&(\J 2ASFA (k) - R(f) - P(g)) * 0. 
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Corollary 8. For every function f from N to N such that f(n) = o (n/\og2 n): 

S£(\DFA (2)) - Se([J \ASFA (k) - P(f)) * 0. 
\AeN / 

Se (\DFA (2)) -Se(\) 2NSFA (k) - R(f)) * 0. 
\ A E N / 

King [13] formulated some open problems concerning the fact whether 
two-way alternating (simple) multihead finite automata are more powerful than 
one-way ones. We are not able to solve this problem but for parallel-bounded 
versions we can separate these classes. 

Corollary 9. Let k ^ 3 be an integer. Let f and g be functions from N to N such 
that f(n) = o(nl 3/\og2n), g(n) = o(n/\og2n). Then 

(a) Se(\AFA (k) - P(f)) ^S£(2AFA (k) - P(f)) 

(b) S£(\ASFA (k) - P(g)) 5 S£(2ASFA (k) - P(g)). 

Proof. The assertion (a) is the immediate consequence of Corollary 3 
and of the fact LeS£(2DFA (2)) c S£(2AFA (k) - P(f)). The assertion (b) 
is the consequence of Corollary 8 and of the fact L, e if (2DSFA (3)) .= 
^^(2ASFA(k)-P(g)). • 

We note that using other languages similar results as in Corollary 9 were 
obtained in [9] too. 

It is simple to see that (L,)c = {0, 1, +}* - Lx belongs to S£ (\NFA (2)). So, 
the reader can formulate for some families of languages that they are not closed 
under complementation. 
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