
Mathematica Slovaca

Juraj Hromkovič
Reversals-space-parallelism tradeoffs for language recognition

Mathematica Slovaca, Vol. 41 (1991), No. 2, 121--136

Persistent URL: http://dml.cz/dmlcz/129539

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/129539
http://project.dml.cz

Math . Slovaca 4 1 , 1991 , No. 2, 121—136

REVERSALS — SPACE — PARALLELISM TRADEOFFS
FOR LANGUAGE RECOGNITION

JURAJ HROMKOVIC

ABSTRACT. This paper is devoted to the development of a lower bound proof
technique for the general model of alternating computations. The produced, com
binatorial technique enables to obtain Q(nx 3/\og2n) lower bound on the tradeoff of
complexity measures REVERSALS SPACE- PARALLELISM for the recognition
of a specific language on a general alternating machine with the multihead access to
the input and an arbitrary organization of the memory.

1. Introduction

One of the hardest problems in the theory of computations and computation
al complexity is to prove nontrivial lower bounds on different complexity measures
of specific problems (i.e., on the inevitable amount of computer resources for
computing a given computing task). In spite of much effort the results so far
have not been satisfactory. Thus, nobody has been able to prove any nonlinear
lower bound on the combinational complexity of a specific Boolean function in
spite of the well-known fact that almost all Boolean functions of n variables
have exponential combinational complexity [7], and we are not able to prove
any higher than a quadratic lower bound on the time complexity of Turing
machines recognizing a specific language in NP [6, 14, 16]. Because of this
unpleasant situation there is much endeavour now to develop some new lower
bound proof techniques or to improve the old ones because several computer
scientists believe that the way of the gradual development of proof techniques
may lead to the solution of the fundamental open problems (like P? NP) in the
complexity theory.

Our paper represents also a contribution to the development of lower bound
proof techniques. It is a continuation of our paper [9], where the first technique
for proving lower bounds on some complexity measures of alternating devices was

AMS Subject Classi f ication (1985): Primary 03D15, 68Q05, 68Q10, 68Q45.
Key words: Alternation, Tradeoffs of complexity measures, Lower bounds.

121

introduced. Since alternating devices represent some parallel computing models
on the one hand, and on the other hand are a generalization of nondeterministic
computing models, the lower bounds on the complexity measures of alternating
machines are valid also for a wide scale of computing devices obtainable from
alternating machines by various restrictions.

Our lower bound proof techniques belong among the so-called combinatorial
techniques based on the following combinatorial considerations: Let M be a
machine recognizing a language L(M). First one has to find some "essential
features" of each accepting computation of M that characterize the computa
tion in some sense. The choice of the essential features is usually connected with
the structure of the input words. Then an upper bound on the amount of the
computing resources of the computer M is assumed in order to enumerate how
many computations on the inputs of a fixed length differing in the essential
features may exist. The aim is to show that the number of "essentially" different
computations on words of a fixed length is smaller than the number of distinct
words in L(M) of the considered length. This fact is later used to construct an
accepting computation on a word that does not belong to L(M), which creates,
a contradiction with the above assumed restriction on the amount of computing
resources. The crucial point of this combinatorial technique is to find the
"essential features" of computations, because it means to comprehend the
essence of the structure of the considered computing problem. Also the subtlety
of the choice of the essential features plays an important role, since the quality
of the obtained lower bounds depends crucially on it.

One of the most used combinatorial techniques is the crossing sequence
technique (see, for example [3, 4, 5, 6, 8 12, 17], where some steps in the
development of this technique for various computing devices have been made).
We have developed the crossing sequence technique for proving lower bounds
on parallel processing in [9, 11]. The main contribution of this paper is to bring
some new ideas in the procedures of finding the "essential features" of computa
tions and in enumerating the number of essentially different computations. The
consequence of our new considerations is the lower bound Q(n] 3 log2t?) on the
complexity measure REVERSALS SPACE PARALLELISM for the recog
nition of a specific language. An important point is also that we prove this lower
bound for a very general computing model, the so-called k-head alternating
machine in order to obtain a lower bound valid for almost all computing models
used in the computation theory. Note that we consider alternation in the same
way as it was introduced in [2] and the complexity measures of alternating devices
are considered as defined in [9, 11, 13, 15].

Before giving the formal definition of our machine model and its complexity
measures let us describe the k-head alternating machine, AM(k), in an informal
way. An AM(k) consists of a separate input tape with k two-way read-only heads,

122

and a countable state control. The countable set of states of the AM(k) is
partitioned into two disjoint sets KE (the set of existential states) and Ku (the set
of universal states) with the same meaning as in all alternating devices [2]. A step
of'AM(k) M is made according to the state of M and the k symbols read by the
k heads on the input tape. Using this information M can branch the computa
tion into a finite number of computations and independently, for each branch
of the computation, change the state and the positions of the heads by 1. We give
only one restriction on M, namely that there must be a constant dM such that
branching from any universal state of M is bounded by dM.

Clearly, the multihead alternating machines (MAMs) include a large number
of different types of computing models. For example, a MAM is the generaliza
tion of the alternating multitape Turing machine (ATM), multihead automata,
multipushdown and multicounter machines, RAMs, Kolmogorov— Uspensky
machine, etc. More precisely, our M^M includes all models with a constant
number of two-way heads on the input tape and an arbitrary organization of the
memory (in fact, MAM can see the whole contents of its memory and change
it in every single step of the computation).

Let N denote the set of positive integers.

Definition 1. A k-head alternating machine AM(k) is a %-tuple M = (K, E, Kv,
8, q0, F, d, k), where

(1) K is the nonempty, countable set of states (internal configurations);
(2) q0eK is the initial state;
(3) Ku c K is the set of universal states, KE = K — Kv is the set of existential

states;
(4) F = K is the set of accepting states;
(5) E is a finite, nonempty set called the input alphabet, ^ and $<££ are the

endmarkers;
(6) 8^ (Kx(Zu{^, $})k) x (Kx{— 1, 0, 1}A) is the next-move relation, where

— 1, + 1 , and 0 denote the direction of the head move (left, right, stationary,
respectively); for ((q, (a,, ..., ak)), (p, (/,, y2, ..., yk)))eS the following is
required: ifaf= ^ for some je{\, ..., k}, then y-e{0, 1}, if af = $ for some
ie{\, ..., k}, then / , E { - 1 ; 0};

(7) d is a positive integer such that, for VqeK^, V x 6 (I u {£, /£})*, there exist at
most d different tuples (p, a), where peK, ae{— 1, 0, 1}*, such that ((q, x),
(p, a)) e 5.

Definition 2. A descriptional configuration of an AM(k) machine M =
= (K, X, Kv, S, q0, F, d, k) is any element (w, q, (/,, ..., ik)) from

Z*xKx(Nv{0})k

with 0 ^ ^ ^ \w\ + 1 for eachje{\, ..., k}.

123

Informally, a descriptional configuration (w, q, (/,, i2, ..., ik)) describes the
situation in which the AM(k) is in the state q, has the word w on the input tape,
and the jth head is on the ifth position of the input tape involving §w$.

Definiton 3. A configuration of an AM(k) M = (K, Z, Kv, 5, q0, F, d, k) is an
element from Kx(N u{0})\ For all xeZ*, IM(x) = (x, q0, (0, 0, ..., 0)) is the
initial descriptional configuration. We shall say that the descriptional configura
tion (x, q, (/,, ..., ik)) is universal, existential, and accepting, respectively, if q is
a universal, existential, and accepting state, respectively.

In what follows we define the notions "step" and "computation" of multihead
alternating machines.

Definition 4. Let M = (K, I, Kv, 5, q0, F, d, k) be an AM(k). Let C and C
be two descriptional configurations. We shall say that M can go from C to Cf in
one step, C\- C, if C can be obtained from C by applying the next-move rela
tion 8,. A sequential computation of M on x is a sequence C0 = A/(x) r- C, h
h ... I— Cw, m ^ 0. In what follows we shall often write C0, C,, ..., Cm only.

A computation (computation tree if we want to draw attention to the structure
of the computation) OfAI on a word x is a finite, nonempty, labelled tree with
the following properties:

(1) each node v of the tree is albelled by a descriptional configuration l(v);
(2) if v is an internal node (a non-leaf) of the tree, l(v) is universal, and

{C\l(v)h C) — {C,, ..., Cw}, then v has exactly m children ux, ..., um such
that l(u) = Q ;

(3) if v is an internal node of the tree and l(v) is existential, then v has exactly
one child u such that l(v) \- l(u).

An accepting computation (tree) of M on an input word x is a computation
(tree) whose root is labelled with IM(x) and whose leaves are all labelled with
accepting descriptional configurations. We say that M accepts x if there is an
accepting computation (tree) of M on input x. We define L(M) = {xeX* | M
accepts x} as the language accepted by M.

In what follows we shall often consider the computation as a tree labelled by
configurations instead of descriptional configurations. It will cause no confusion
because it will be clear which input word is considered. For the recognition of
different languages we shall define the notion "prominent configuration" accord
ing to the given language. If V is the set of prominent configurations, then we
define, for each accepting computation, the pattern of the accepting computation
as a tree U with the following properties:

(1) the root of U is the root of D;
(2) the rest nodes are the nodes of D labelled by the prominent configurations

from V;

124

(3) the nodes u and v are connected by an edge in U iff D involves a path from
u to v that involves no node labelled by a prominent configuration.

The notions prominent configuration and pattern are important for our
lower bound technique because they are the formal representations of the above
mentioned "essential features" of computations.

Now, let us define the complexity measures for multihead alternating machi
nes. Let A be an AM(k) accepting a language L(A).

The space complexity of A is a function of the input word length SA (n) =
= log2 (CA (n)), where CA(n) is the number of all different states (internal con

figurations) used in all accepting computations on words from L(A) n Zn. We note
that the number of all configurations used in accepting computations on inputs
with the length n can be at most (n + 2)k CA (n), where (n + 2)k is the number of
all different positions of the heads on the input tape.

For an accepting computation D of A we denote by TA (D) (RA (D)) the
maximum number of steps (head reversals) performed in the sequential computa
tions from the root of D to the leaves of D. The time and reversal complexity
measure respectively are defined in the usual way as the following function:
XA (n) = max {XA (D) \ D is an accepting computation on an input of the length rz},
where Xe{T, R}.

The parallel complexity measure is defined as introduced in [9] for alternating
devices. The definitions of a similar complexity measure called leaf-size can be
found in [15]. Let PA(D) denote the number of universal states in the accepting
computation D. Clearly, PA(D) is an upper bound on branchings in D. The
parallel complexity of A is the function PA (n) = max{P^ (D) \ D is an accepting
computation on an input of the length n}.

Let 01 denote the set of all positive, real numbers. For arbitrary functions /
andg from N to 01, f(n)t Q(g(ri)) is equivalent to 3ce^2, 3 r a e N , such that, for
Vrz ^ m,f(n) ^ cg(n), and f(n)e O(g(n)) is equivalent to 3 c E ^ , 3meN such
that, for Vw ^ m, f(n) ^ cg(n). If f(n)eQ(g(n)) and f(n)eO(g(n)\ then we
shall write f(n) = 0(g(n)). The fact lim f(n)/g (n) = 0 will be denoted by

n - > or

f(n) = o(g(n)). The cardinality of a set K will be denoted by |K | . [_d] for a
de0l is the greatest nonnegative integer m such that d^ m. If we write, for
example, REVERSALS• SPACE-PARALLELISMeQ(na) in what follows,
then it means that RA (n)SA (n)PA (n)eQ(na) for each device .4 of the computing
model considered.

Now, giving some restrictions on MA Ms we define multihead deterministic
and nondeterministic machines.

Definition 5. Let A = (K, E, Kv, S, a0, P, d, k) be an AM(k). We shall say that
A is a k-head nondeterministic machine, NM(k), if Kv = 0. We shall say that A
is a k-head deterministic machine, DM(k), if the next-move relation is a function.

125

The structure of this paper is as follows: In Section 2 we introduce the
language L and prove RSPeQ(n] 3/log2r2) for L. The immediate corollaries for
a nondeterministic sequential model are formulated in Section 2 too. In Sec
tion 3 we shall prove the stronger lower bound RSPef2(n(] + 2';) 3) for the case
SPACE ^ nf (0 < s < 1). The lower bounds for alternating and nondeterminis
tic multihead finite automata are involved in Section 4. In Section 5 it is shown
that the simulation of AM(2) by an alternating machine with one two-way,
read-only head and k two-way blind heads on the input tape can require more
than the r.71og2rz times increase of the complexity RSP. Further, several results
for multihead simple finite automata are established as consequences of this
result.

2. The main theorem and its consequences

Let us consider the languages Lr, and Lr(m) introduced by Y a o and
R i v e s t [17] for arbitrary positive integers r, and m: Lr = {\\\c\v2c... c\\\ +
+ \vrc ... c\v2c\\\ I vr,e{0, 1}* for / = 1 , 2, ..., r}, Lr(m) = {\\\c\v2c ... c\v +
+ \vrc... c\v2x\\\ | vv,e{0, 1}'" for / = 1, 2, ..., r] 5 Lr. We put R = [j L and

r e N

L = {.v, # x2# ... # xk #0MfcS*0, 7 > 0, xfeR for i= 1, ..., k}. For some
functions / and g from N to N such that f2 (n) g (n) ^ n for all t i e N , we de
fine L(f g) = {X] # x2 # ... # xfin) # 0''|w ^ 1, for all ie{l, 2, ..., f(n)} x e
eLf(n)(lg(n)/2- l j) and, j = n -f(n) _g(n)j2\} c L. In what follows, for a
computing device A, L(A) denotes the language recognized by A.

Now, let us formulate our main theorem.

Theorem 1. L e t / and g be functions from N to N such that f(n) = g(n) =
= [V 3J , and let A be an AM(k) for a kel\l. If L(f g) c L (A) c L I//^r7

P.^S.^P.^G.fi^^Vlog,^.

P roof . First we note that we do not need two func t ions /and g in Theo
rem 1 becausef(r?) = g(n). But, we shall use b o t h / and g for two reasons. First,
it increases the readability of this proof, and secondly, the proof of Theorem 1
will be useful to prove some tradeoffs in Section 3, where languages L (/, g) for
different/and g will be considered.

To prove Theorem 1 we shall follow the idea of Yao and R i v e s t [17]
used to fool one-way multihead finite automata. This idea was modified in
[8, 12] to prove that some languages cannot be recognized by one-way deter
ministic multihead finite automata, and real-time two-way multihead finite
automata. It led to the development of some stronger proof techniques used to
fool more powerful devices as time-space restricted sequential computing

126

models in [4], one-way alternating multihead finite automata with bounded
parallelism in [9], and reversal-bounded two-way nondeterministic sensing mul
tihead finite automata in [10]. Now, generalizing these proof techniques we fool
parallel computing models with bounded RSP.

The proof is done by contradiction. We assume that there exists an AM(k)
A with L(f g)^L(A)^L and RA(n)SA (n)PA (n)£Q(n] 3/log2rz). In what
follows, we shall show that if L (f g) .= L(A), then there is a word in L (A) — L,
which will be a contradiction. Let A = (K, X, KU9 <5, q09 F, d, k).

Since RA (n) SA (n)PA (n)$Q(n] 3/log2n) we can assume that there is a positive
integer m with the property

(1) 21k2dRA(m)PA(m)SA(m) < [m13/log2mJ •

Let Lm(f g) = {xeL(f g) | |x| = m}. Now, we start to determine the "essential
features" of computations of A on the words in Lm(f g) in terms of prominent
configurations. But we do not define the prominent configurations directly
according to the structure of inputs as it was usually done (see, for example
[8, 12, 17]). First we make some combinatorial considerations which help us to
choose such important configurations that the number of different patterns of
computations on words in Lm(f g) enumerated later will be the smallest
possible.

Let x = x] # x 2 # ... # x A w) # 0 \ where x} = wncwj2c... cwJfim) + wjf{m)c ...
... cw/2cwn forye{l, ...,/(m)}, be a word in Lm(fg). We shall say that the twins
of subwords wif of x are compared in an accepting computation D of A iff there
exists a configuration in D such that one of the heads is positioned on the "first"
twin wif of x, and another head is positioned on the "second" twin wfj of x in this
configuration.

Now, we prove an important fact for our considerations which claims that
the machine A is not able to compare all twins of subwords of words in
A>. (/ g) because A has not enough computing resources.

Fact 1. Let D be an accepting computation of A on an xeLm(f g). Then there
exist positive integers b, re{l, 2, ...,/(m)} such that the twins of subwords whr

of x are not compared in D.

The proof of Fact 1. Let C = C, C2... Cz be a sequential computation
of D from the initial configuration to an accepting one, where for u = 1, 2,
..., z, Cu is the part of the sequential computation C which involves no head
reversal. Clearly, z ^ RA(m) + 1.

Let us first consider the twins of subwords which can be compared by pairs
of heads moving in the opposite direction in a Cu. Each pair of heads moving
in the opposite direction can compare at most the twins of subwords of one

127

subword x, of x (i.e. no pair of heads moving in the opposite direction can
compare two twins of subwords wpq and wvc for p ^ v in a Cu). Since the number
of head pairs moving in the opposite direction in each Cu can be bounded by k2

there are at most k2 (RA (m) + 1) subwords x, whose twins of subwords vt'/7 can
be compared by the pairs of heads moving in the opposite direction in a
sequential computation C. Realizing that the computation D involves at most
dPA (m) sequential computations (from the initial configuration to an accepting
one) we obtain that there are at most k2d(RA (m) + \)PA (m) subwords x, whose
twins of subwords Wy can be compared by the pairs of heads moving in the
opposite direction in the entire computation D.

Since (1) holds for m we obtain that

(2) k1d(RA(m)+\)PAm)< K 3 J / 2 = / (m) / 2 , i.e.,

there exists a natural number b such that no twins of subwords whj of xh are
compared by a pair of heads moving in the opposite direction in D.

Obviously, each s-tuple of heads moving in the same direction can compare

at most I ? J < s2 twins whj of xh in a part Cu (without reversal) of a sequential

computation C of D (if a pair of heads is reading twins whj at the same point
during the computation part CM, then at no other time during the computation
part Cu that pair of heads could read some other twins whj, where j # /).
So, during the entire computation D the machine A can compare at most
dk2 (RA (m) + \)PA (m) twins vv̂ of xh. Realizing (2) we have that there exists a
positive integer r e { l , ...,f(m)} such that the twins whr of x are not compared
in D.

T h e p r o o f of T h e o r e m 1 c o n t i n u e d . In what follows we shall
consider for any input word xeL„,(f, g) a fixed accepting computation Dx.
Clearly, the number of words in Lm (f, g) is

2 j 2 N ([_g(m)2\ - 1)

Following Fact 1 we obtain that there exist two positive integers p and q such
that the twins wpq are not compared in the accepting computations on at least

~>f2(m) lgim)-2)2\ lP(m)

different words in L,„(f, g). Let L,„(f, g) denote the set of such words.
Now, let us define the notion "prominent configuration" according to the

fixed numbers p and q. A prominent configuration is a configuration of the
accepting computation Dx on xeLm(f, g) from which A moves one of its heads
on the symbol c immediately preceeding or following the subwords wpq.

Now, for any x e Lm (f, g), Dx be the pattern of x defined as the pattern of the

128

accepting computation Dx on x according to the above defined prominent
configurations.

Fact 2. The number of all different patterns of the words in Lm (f g) is bounded
bv

, v ^.(k\og2m +SA(m))4dkR4(m)PA(m)

e (m) = 2 .

The p roof of Fac t 2. Each pattern can be transformed to a sequence
containing the concatenation of all (at most dPA (m)) paths from the root of the
pattern to the leaves of the pattern. We note that having such a sequence of
prominent configurations we can unambiguously construct the original pattern.

Since there are at most 4k prominent configurations in each part of computa
tions without reversals the length of every sequence corresponding to a pattern
is bounded by 4kdRA(m)PA(m). Realizing that the number of all different,
prominent configurations is bounded by (2 + m)k CA (m) ^ 2(]ogl(m + 2)) ̂ 5/,(m) the
proof of Fact 2 is completed.

The proof of Theorem 1 con t inued . Following (1) we obtain
e(m) < \Lm(f g)\ — 1. It thus follows that, for v, # t>2, z, = xx # x2 # ... #
#x /,] # , and z2 = # xp + x # ... # xf{m) # 0', there are two different words

yi =Z\Wp\C.~cwpq_lcvlc...cwpfim) + wpf{m)c...cvxcwpq xc...cwpXz2

yi = Z\WP\C ... cwpq_ xcv2c ... cwpf{m) + ,wpf{m)c ... cv2cwpq xc...cwpXz2

in Lm (f g) with the same pattern X of the accepting computations Dr and D
resp. in which the twins vx of yx and the twins v2 of y2 resp. are not compared.

Now, we shall construct an accepting computation of A on the word

y = zxwpXc...cwpq xcvxc...cwpf{m) + wpf{m)c...cv2cwpq_xc...cwpXz2.

Since y does not belong to L the proof of Theorem 1 will be completed.
The construction of an accepting computation (tree) on y is based on the fact

that during the computation on the words yx and y2 the AM(k) A did not read
the twins of subwords vt in yt at the same time. Let us construct an accepting
computation on y from the pattern X in the following way. For each node u in
the pattern X, let XJ, and X2 resp. be the subtrees of the accepting computations
of DY, and Dv resp. from u (i.e. with the root u) to the prominent configurations
in which an edge leads from u in X. Then, for every node u in X, we replace the
node u with the edges leading from u by one of the subtrees XJ, X2. The
determination which of XJ, X.2 is chosen is given below.

If some head is positioned on the word v,, then XJ is chosen. If some head
is positioned on v2, then X2 is chosen. We have already shown that the situation
in which one of the heads is positioned on vx and another head on v2 does not

129

occur. In the case when none of the heads is positioned on r, or v2, it is not
important which X'u we choose.

So, we have shown that if A accepts all words in L (f g), then it has to accept
a word not in L which proves Theorem \. •

Corollary 1. Let A be an AM(k), for a keN, such that L(A) = L, and
SA (n) ^ c log2rz for a constant c. Then

RA(n)Si(n)P4(n)en(n]').

Proof . The proof is the same as that of Theorem 1. The new assumption
SA (n) $: c \og2n is used to show that

(A log2n + SA (n)) 4kdR4 (n) PA (n) e O (SA (n) R4 (n) P4 (n)).

All other considerations of the proof of Theorem 1 hold without any change. •
Now, let us consider the same nondeterministic machine NM(k), for a

keN, as D u r i s and G a l i l in [4]. Obviously, a NM(k) is an AM(k) having
no universal state. So the following theorem is an immediate consequence of
Theorem 1, and Corollary 1.

Theorem 2. Let A be an NM(k),for a keN, such that L(InMJ , |_/?MJ) c
= L(A)_ZL. Then RA (n)SA (n)eQ(n] 3/log2n). In the case that SA (n) ^ c log2n,

for a constant c, RA (n)S4 (n)eQ(nl 3).
We have proved the lower bound Q(n] 3/log2rz) on the complexity measure

RSP for the recognition of the language L. We are not able to prove any tight
upper bound to this lower bound, and we believe that no such upper bound
exists. We conjecture that the recognition of L requires still more computing
resources, and so our lower bound can be improved. We make some improve
ments in the following section only by adding some additional assumptions.
Thus, to prove a higher lower bound on RSP of the recognition of L remains
as the main open problem left in our paper.

3. Improved lower bound for polynomial space

The aim of this section is to improve the lower bound obtained in Theo
rem 1 in the case when our computing model uses at least polynomial space.

Theorem 3. Let £ be a real number such that 0 < £ < \. Let f and gt be
functions from N to N such thatf(n) = _n{] ° 3J , and gr(n) = _n{] + lL) 3J . Let
VFbe a language such that L(f, gr) ^ V£_zL. Let A be an AM(k), for a keN,
such that L(A) = Vc, and S4 (n) ^ nc. Then

RA(n)SA(n)PA(n) = Q(n{^2*3).

130

Proof . We prove Theorem 3 following the proof of Theorem L Let
Ln (f„ ge) = {XGL (fi8, gc) | \x\ = n}, SA (n) > n\ and RA (n) SA (n) PA (n) $
<£Q(n{]+2€)}). Since, for sufficiently large n,

k2d(RA(n)+\)PA(n)^2k2dRA(n)SA(n)PA(n)/ne< [/i0 £)3J = fi(n)

(see the inequality (2) of Fact 1) Fact 1 of the proof of Theorem 1 holds in this
proof too .

Let the notions "prominent configurations" and "pattern" be defined in the
same way as in the proof of Theorem 1. So, following Fact 2 the number of all
different patterns of the words in Ln(fi, g£) is bounded by

f . ^4dkSA(n)RA(n)PA(n)

e(n) = 2
for sufficiently large numbers n e N. Since 4dkSA (n) RA (n) PA (n) £ Q(n° + 2e) 3) =
= Q(g(n)) we obtain that

e(n)<\Ln(fi,ge)\-\.

It implies that there are two different words yu y2eLn(fi£, g() differing only
in some twins of subwords of the length _(g(n) — 2)/2J which have the same
pattern. So, the proof of Theorem 3 can be completed in the same way as the
proof of Theorem 1. •

Now, we apply the assertion of Theorem 3 to NM(k)'s in order to obtain a
polynomial lower bound on the number of reversals for fixed space.

Theorem 4. Let A be a NM(k), for a keN, such that L(A) = Vc, and
SA (n) ^ ne for sufficiently large numbers ne N. Then

RA(n)SA(n)eQ(n{]+2£)*).

Corollary 2. Let A be a NM(k), for a keN, such that L(A) = VE, and
SA(n) = 0(ne). Then

RA(n)eQ(n{X £)3).

4. Lower bounds for multihead finite automata

Multihe ad finite automata are computation devices which have no additional
working space, i.e. MAMs with constant space. Let, for any keN, 2AFA(k),
2NFA (k), and 2DFA (k), resp., denote the class of two-way k-head alternat
ing, nondeterministic and deterministic, resp. multihead finite automata. Let
\AFA (k), \NFA (k), and \DFA (k), resp., be the class of one-way versions (i.e.
without any reversal in the computations) of2AFA (k), 2NFA (k), and 2D FA (k),
respectively. Let, for a class of devices M, ££ (M) be the family of languages
recognized by AeM.

131

Multihead finite automata were extensively studied for several reasons (see
for example [4, 8, 9, 10, 11, 12, 13, 15, 17, 18]). One of the most important
properties of them according to the complexity theory is that they characterize
the basic complexity classes [13] in the following way:

P - (J Se (2AFA (k)), DLOG = J i f (2DFA (k)),
k e N k e N

and
NLOG = J i f (2NFA (k)),

keN

where P is the family of languages recognized by deterministic Turing machines
in polynomial time, and DLOG (NLOG) is the family of languages recognized by
deterministic (nondeterministic) Turing machines with logarithmic space. The
basic open problems concerning the relation between these complexity classes
can be formulated as equivalent problems in the terms of the family of languages
defined by multihead finite automata. So, it is interesting to study different
complexity measures for these computing devices. In the following theorem
(which is an immediate consequence of Theorem 1), we give the first, nontrivial
lower bound for the complexity measure REVERSALS PARALLELISM for
two-way alternating multihead finite automata.

Theorem 5. Let Ae\j2AFA(k), and let L(A) = L. Then RA(n)PA(n)e
G/3(t213/log2n). AGN

Corollary 3. Lcl ,4 e J \AFA(k),andlet L(A) = L. Then PA(n)eQ(nx 3 log2w).
keN

Corollary 4. Let A e J 2NFA (k), and let L(A) = L. Then RA (n)eD(n] 3 log2 w).
keN

Corollary 5. L$ J ^ (l N F A (k)).
keN

We note that, for the language R, a stronger lower bound PA (n)eO((n log2rz)12)
for one-way alternating multihead finite automata is proved in [9]. A similar
result as in Corollary 4 is established in [10] too.

Now, let us consider the language Lc = {0, 1, c, + , # }* — L. It is no problem
to construct an automaton Be \NFA (3) which, guessing the twins of different
subwords (or guessing that the form of the input word is different from the form
of words in L), recognizes the language Lc. Denoting by M — R(f) — P(g), for
each automaton class M and functionsf g from N to N, the automaton subclass
ofM such that Be M iffB uses in its accepting computations on words of the length
n at most f(n) reversals and g(n) universal configurations we can formulate the
following consequences of Theorem 5.

132

Corollary 6. Letf and g be some functions from N to N such that f(n)g(n)e
eQ(nx 3/log2rz). Fherz, for every integer k ^ 3, l/u? families of languages
<£(2AFA(k) - R(f) - P(g)% <£(\AFA(k) - P(g)\ 5£(\NFA(k)), and
££(2NFA (k) — R(f)) are not closed under complementation.

In the case that a class J5f (2DFA (k) - R (/)) , for a function/(/7) ^ n] 3/\og2n
is closed under complementation (for example iff(rz) = c for a constant ceN)
one can obtain a separation result between nondeterminism and determinism
for reversal-bounded two-way multihead finite automata .

5. Two read-only heads versus one read-only head and k blind heads

C o b h a m [3] proved that a sequential computing model with one read
only head on the input tape recognizing the language LR = {wcwR\ we{0, 1}*}
has TIMESPACEtQ(n2). The fact that the same sequential model with two
read-only heads on the input tape can recognize LR with TIME- SPACEe O (n)
implies that one read-only head cannot be compensated for by o (n) increase of
TIME-SPACE. In [11] it is shown that the recognition of U = {w2'w\i^ 1,
we{0, 1}*} by an AM(\) requires TIME SPACE PARALLELISMeQ(n2).
So, one read-only head on the input tape cannot be compensated for by o (n)
increase of TIME-SPACE-PARALLELISM.

Now, we shall show that one read-only head on the input tape cannot be
compensated by o(n/\og2n) increase of REVERSALS-SPACE-PARALLEL
ISM, and k blind heads on the input tape (a blind head recognizes only the
endmarkers on the input tape, see [15] for details). To prove this result we shall
consider the language L, = {w + w\ we{0, 1}*} which belongs to i f (\DFA (2)).
The parallel computing model AM(\) with k additional blind heads on the input
will be denoted by AM(\, k).

Theorem 6. Let k be a natural number, and let A be an AM(\, k) recognizing
L,. Then

RA(n)SA(n)PA(n)en(n/\og2n).

Proof . Let us follow the proof of Theorem 1 assuming that RA(n)SA(n)-
- PA (ri) $ Q(n2/\og2ri), and L(A) = Lx. Clearly, A cannot compare the twins of
subwords w of an input word w + w in its computation because A has only one
reading head on the input tape. Let, for each WG{0, 1}*, Dw be a fixed accepting
computation of A on w -f- w. The prominent configuration of DH is the initial
configuration, and every configuration C in which the reading head is adjusted
on + , and one of the following conditions holds.
(i) The reading head crossed the "first" twin w in the sequential computation

between the immediately preceding prominent configuration of C and C,

133

and in the following step the reading head will be adjusted on the first
symbol of the "second" twin vr.

(ii) The reading head crossed the "second" twin vr in the sequential computa
tion between the immediately preceding prominent configuration of C
and C, and in the following step the reading head will be adjusted on the last
symbol of the "first" twin vv.

So, at least one reversal of the reading head has to be done between two
prominent configurations (different from the initial configuration).

Let, for odd, positive integers n, L, (n) = {xeL , | |Y| = r?}, and let the pattern
of a word in L, be defined according to the above specified prominent configura
tions. Following Fact 2 we see that the number ordifferent patterns of words
in Li(t?) is bounded by

< k ^ (\\dRA(n)PA(n) . ~d(k\o^n +SA(n))R4(n)PA(n)

(nKC4(n)) ^ 2 - ,

where d is the maximal possible branching from a universal state.
Since d(k \og2n + SA(n)) RA(n)PA(n)^Q(n), and the number of different

words in L, (n) is 2(n]) 2 there are, for u', / w2, two words vr, + vv, and vv2 -h us
with the same pattern. Obviously, the proof can be completed in the same way
as the proof of Theorem 1. •

Corollary 7. Let A be an AM(\) recognizing L,. Then

RA(n)SA(n)PA(n)eQ(n).

Proof . The proof is the same as the proof of Theorem 6. It suffices to
put k = 0, which implies that the number of patterns is bounded by
rydS A(n) R x(n) P 4(n)

Concluding this paper we call attention to some consequences of Theorem 6
concerning the multihead simple finite automata. Let 2 ASF A (k) be the class of
two-way k-head simple multihead finite automata (k-head denote one reading
and k — 1 blind heads). Analogously, we shall consider the classes 1ASFA (k),
2NSFA (k).

In [9, 15] it is proved that tf(\ASFA (k)) = i f (\AFA (k)), and &(2ASFA (k)) =
= yCAFA(k)). But H r o m k o v i c [9] stated that the simulation of a Be
e\AFA (k) by a Ce \ASFA (k) can require nj\og2n increase of parallel complex
ity. Here, we obtain a more general result.

Theorem 7. For functions f and g from N to N such thatf(n)g(n) = o(n log2n),

i f (\DFA(2)) -&(\J 2ASFA (k) - R(f) - P(g)) * 0.

134

Corollary 8. For every function f from N to N such that f(n) = o (n/\og2 n):

S£(\DFA (2)) - Se([J \ASFA (k) - P(f)) * 0.
\AeN /

Se (\DFA (2)) -Se(\) 2NSFA (k) - R(f)) * 0.
\ A E N /

King [13] formulated some open problems concerning the fact whether
two-way alternating (simple) multihead finite automata are more powerful than
one-way ones. We are not able to solve this problem but for parallel-bounded
versions we can separate these classes.

Corollary 9. Let k ^ 3 be an integer. Let f and g be functions from N to N such
that f(n) = o(nl 3/\og2n), g(n) = o(n/\og2n). Then

(a) Se(\AFA (k) - P(f)) ^S£(2AFA (k) - P(f))

(b) S£(\ASFA (k) - P(g)) 5 S£(2ASFA (k) - P(g)).

Proof. The assertion (a) is the immediate consequence of Corollary 3
and of the fact LeS£(2DFA (2)) c S£(2AFA (k) - P(f)). The assertion (b)
is the consequence of Corollary 8 and of the fact L, e if (2DSFA (3)) .=
^^(2ASFA(k)-P(g)). •

We note that using other languages similar results as in Corollary 9 were
obtained in [9] too.

It is simple to see that (L,)c = {0, 1, +}* - Lx belongs to S£ (\NFA (2)). So,
the reader can formulate for some families of languages that they are not closed
under complementation.

REFERENCES

[1] BORODIN, A. B. COOK, S. A.: A time-space tradeoff for sorting on a general model of
computation. In: Proc. I2th Annual ACM STOC, Los Angeles, ACM 1980, pp. 294 301.

[2] CHANDRA, A. K. KOZEN, D. C STOCKMEYER, L. J.: Alternation. J. ACM, 28,
1981, 114—133.

[3] COBHAM, A.: The recognition for perfect squares. In: Proc. 7th Annual IEEE Symp. on
SWAT, Berkeley 1966, pp. 78 87.

[4] DURIS, P. GALIL, Z.: A time-space tradeoff for language recognition. Math. Systems
Theory, 17, 1984, 3 12.

[5] DURIS, P. GALIL, Z. PAUL, W. REISCHUK, R.: Two nonlinear lower bounds.
In: Proc. 15th Annual ACM STOC, ACM 1983, pp. 127 132.

[6] FREIVALDS, R.: Quadratic lower bound for nondeterministic Turing machines. Unpublished
communication at the 11th MFCS '84, Prague 1984.

[7] LUPANOV, O. B.: Ob odnom metode sinteza schem. (Russian.) Izv. Vuzov Radiofiz., 1, 1958,
120 140.

135

[8] HROMKOVIC, J.: One-way multihead deterministic finite automata. Acta Inform., 19, 1983,
377 384.

[9] HROMKOVIC, J.: On the power of alternation in automata theory. J. Comput. Syst. Sci., 31.
1985,28 39.

[10] HROMKOVIC, J.: Pooling a two-way multihead automaton with reversal number restriction
Acta Inform., 22, 1985, 589 594.

[11] HROMKOVIC, J.: Tradeoffs for language recognition on alternating machines. Theor. Com
put. Sci., 63, 1989,203 221.

[12] JANIGA, L.: Real-time computations of two-way multihead finite automata. In : Proc. FCT
'79, ed. L. Budach. Academic Verlag, Berlin 1979, pp. 214 219.

[13] KING, K. N.: Alternating multihead finite automata. In: Proc. 8th ICALP '81 . Lecture Notes
in Computer Science 115. Springer-Verlag, Berlin 1981, pp 506 520.

[14] MAASS, W.: Quadratic lower bounds for deterministic and nondeterministic one-tape Turing
machines. In: Proc. 16th Annual ACM STOC, ACM 1984, pp. 4 0 1 ^ 0 8 .

[15] MATSUNO, H. INOUE, K. TANIGUCHI, H. TAKANAMI, I.: Alternating simple
multihead finite automata Theor. Comput. Sci., 36, 1985, 299 308.

[16] LI, M.: On one tape versus two stacks. Technical Report, 84 591, January 1984, Dept. of
Computer Science, Cornell University, Ithaca, New York.

[17] RIVEST, R. L. YAO, A. C : k + 1 heads are better than k. J. ACM, 25, 1978, 337 340.
[18] SUDBOROUGH, I. H : Bounded-revers'il multihead finite automata languages. Informat.

Control, 25, 1974, 317 328

Received July 3, 1987 Katcdra teoretkkej kybernetiky
Matematic k o-fyzikdlna fak ulta
Uniterzita Komensktho
842 15 Bratislava

136

		webmaster@dml.cz
	2012-08-01T06:46:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

