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ON JOINT DISTRIBUTIONS OF OBSERVABLES

ANATOLI DVURECENSKIJ—SYLVIA PULMANNOVA

In the paper the joint distributions of an infinite set of observables on a'logic are
studied. In the special case of the Hilbert — space logic, the conditions of the
existence of joint distributions for finite and infinite sets of observables are
formulated.

Throughout the paper, the word logic means a o-orthomodular lattice and the
word state means a g-additive probability measure on a logic. Both definitions of
the latter notions together with some basic facts and physical interpretation can be
found in [2]. The reader may also consult reference [2] for the basics on real
observables. We shall deal with generalized observables, Z-observables, defined as
follows. Let & be a complete separable metric space and B(Z)) the ¢-algebra of
Borel sets of Z. An Z-observable is a map x from B(Z) to a logic L such that

() x(2)=1,

(ii) x(E) Lx(F) if EnF=@, E, Fe B(Z),

(i) x(UE)=Vx(E) if EnE =0, i+j, i,j=1,2,....

We shall frequently use the following simple observation. If f: £— & is a Borel
measurable mapping between two complete separable metric spaces, then
fox: Emx(f '(E)), Ee B(%)) is an Z:-observable.

Obviously, we obtain the “traditional” observable if we set £ = R" and L is the
logic L(H) of all closed subspaces of a separable Hilbert space (real or complex).
As known, there is a one-to-one correspondence between R'-observables and
self-adjoint operators on H [3].

Since we assume the space Z to be fixed throughout the paper, we shall write
simply an observable instead of an Z-observable.

Suppose we are given observables xi, xz, ..., X,: B(Z)— L and a state m on L.
We say that the collection x,, ..., x, has a joint distribution in the state m if there is
a probability measure p on B(Z™) such that

p(EIX...XE,.)=m(i/:\1x,~(E.~)) i1,

for any E;€ B(Z), i=1, 2, ..., n. Evidently, such a measure p is then unique and
we may (and shall) denote by p7, ..., x. the measure corresponding to the
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collection x, ..., x. and the state m. This type of joint distributions was introduced
by S. Gudder [4]. It is called the type-1 joint distribution.

We denote by Com(x, ..., x.) for a collection xi, ..., x. of observables the set of
all states on L in which the joint distribution exists. Let us recall a useful criterion
for a state to belong to Com(xy, ..., x.) (c.f.[1]). In order to simplify the
expressions, let us state first a few conventions. Put. D = {0, 1} and denote by d, the
i-th coordinate of a point de D", ne N. Write E*=E if di=1, and E*=E‘=
Z—E if d; =0, for any E € B(¥). The criterion reads as follows. The observables
X1, ..., X, have a joint distribution in a state m iff

> m(AxEH=1 @)
deD" i=1
for any E,, E,, ..., E, e B(Z).
Let us set ., .
a(Ey By, E)= V. A x(EY), ©)

eD” i=1
E, e B(%). One sees easily that criterion (2) can be reformulated as follows:
me Com(x, ..., x.) if m(a(E,, ..., E,))=1 @)
for any E,, ..., E. € B(%Z).

Proposition 1. (i) Let fi, ..., f» be Borel measurable functions from % to Z,. If
D, ... s, €Xists, then pf..,. .. y.x, €xXists as well and there holds

p;’:, ey x,.(fl_l(El) X...X f;l(En)) =p;':lox1, v f,.ex,,(El X...X En) (5)
for any E,, ..., E, € B(Z)).
(if) px. ... exists iff for any choice of real valued Borel measurable functions

fis - fo the observables fioxi, ..., faoX. from B(R') into L have the joint

distribution in the state m.

Proof. Part (i) and the necessary condition of (i) are evident. Now let for all
fiy -y fa: Z— R' the observables fioxi, ..., faoX, have the joint distribution in m.
Let us put fi=xg, i=1, 2, ..., n, and let p be the joint distribution of fiox, ...,
faox.. Then

1=p({0, 1} X {0, 1} X ... X {0, 1}>=d§)"p({d1} X ... % {ds}) =

- dg)" m (:=/"\1 x,(xf_v.l({d.}))) - dg)" m(‘/:\l xi(Ef‘)) ’

which implies, by criterion (2), the the validity of (if).

Corollary 2. If x,, ..., x. are mutually compatible observables, then they have
a joint distribution in any state.
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Proof. Suppose that fi, ..., f. are Borel functions. If x, ..., x,» are mutually
compatible observables, then fioxy, ..., froX, are mutually compatible real obser-
vables. By a result of Varadarajan [2], they have a joint distribution in any state

and the rest follows from Proposition 1 (if).
 Let us recall another standard notion. A sequence m, of states converges weakly
to a state m if m,(a)— m(a) for any ae L.

The carrier of a state m (if it exists) is an element a € L such that m(b) =0 iff
alb.

A state my is a superposition of a collection M of states iff m(a)=0 for every
m e M implies mo(a) =0.

The following lemma is an easy consequence of criterion (4).

Lemma 3. Let a be the carrier of the state m. Then me Com(xy, ..., x.) iff
a<a(E,, ..., E,) for any E,, ..., E, € B(%).

Proposition 4. Let m, be a state with 1 for the carrier. Then x,, ..., X, are
mutually compatible observables iff mi€ Com(x, ..., X,).

Proof. If xy, ..., x. are mutually compatible, then clearly m; € Com(x,, ..., x,).
Conversely, let m; e Com(x,, ..., x,). Then m, e Com(x;, x;) for any 1<i, j<n,
and, according to Lemma 3, we have

1=x(E)Ax(F)vx(E)" Ax)(F)v x(E) Ax;(F)*" v x:(E)* Ax,(F)*
for any E, Fe B(Z), and this identity yelds that x; < x; for any i, j=1,2, ..., n
(c. £. [2]).

Proposition 5. Let @ # M < Com(x,, ..., x.). If mo is a superposition of the states
of M, then moe Com(x,, ..., X»).

Proof. Let meM. Then the equality m(a(E,, ..., E.)*)=0 implies
mo(a(E,, ..., E,)*)=0 and therefore moe Com(x,, ..., xa).

The next two propositions result from Proposition 5 with regard to the following
observations: (1) a state m, with the carrier a is a superposmon of a state m, with
the carrier b iff a<b, (ii) the state m= E cm;, where E =1, 0s¢g=l,is

im=1 i=1
a superposition of the states {/}i-1, and every m; is a superposition of the state m.

Proposition 6. Let m,,, i=1, 2, ..., m. be states with the carriers a;,; i=1, 2, ...,
and c, respectively, and let c<\/ a;. If m, € Com(x,, ..., x,) fori=1,2, ..., then
i

m. € Com(xi, ..., X»).

Proposition 7. Let m =z cmi, ¢.>0, 2 ca=1. Then me Com(x, ..., X.) iff

=1 i=1
m; € Com(x, ..., x.) for any i.
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Theorem 8. Com(Xy, ..., X,) IS a g-convex sequentially weakly complete sub-
space in the space of all states of L.

Proof. By Proposition 7, Com(x, ..., x.) is o-convex. If {m;}; is a Cauchy
sequence in the weak topology, then due to [S], Th. 2.2, the formula m(a)
= lim m;(a) defines a state on L. Therefore there. is lim pi(E\X...X E,)

= p(EiX..XE,) =m (/n\ x,(E)) and, consequently, there is lim p,(A)=p(A)
j=1

for any A of the algebra generated by all the rectangle sets. As m(a(E,, ..., E.))
= lim m(a(E,, ..., E.))=1, we obtain m e Com(x,, ..., x,) by criterion (4).

Now let L(H) be the logic of all closed subspaces of a Hilbert space H (real or
complex) with an inner product (.,.) and let x4, ..., x.: B(¥)— L(H) be observab-
les. For M e L(H), let us put P for the projector onto M. There is a one-to-one
correspondence between the elements of L(H) and their projections. If ¢ € H is
a unit vector, then m,: M (PYp, @), Me L(H), is a state on L(H). Moreover,
the Gleason theorem asserts that any state on L(H), 3<dim H<HR,, is of the form
m(M) = r(TP"), Me L(H), where T is the density operator. In the sequel we
suppose that 3<dim H<R,.

Theorem 9. The observables x,, ..., x, on the logic L(H) have a joint distribu-
tion in a state m = m,, iff

PHEIPRED | prEp = pUCY | prhhg (6)

for every E,, ..., E.e B(¥) end every permutation (i, ...,I,) of the set
(1,2,...,n). .
The proof of the latter theorem follows from the next lemmas.

Lemma 10. Let @ be an arbitrary element of H. If (6) holds for x, ..., x, and for
@, then

le(El)sz(Ez)A...Axn(En)w — le(E,)sz(Ez) P""(E")(P (7)

for every E,, ..., E, € B(Z).
Proof. It is known that the equality PYPYp=P PMp implies P"*Ngp
= PMP . The rest is an elementary induction.

Lemma 11. If (6) holds for xi, ..., X» and l@ll =1, then x, ..., x» have a joint
distribution in the state m=m,.
Proof. By the property (7) we have

5

deD"

x,(E,‘I)

A x(En) = 2,,(1’ v.0)=

i=1

S @*E  pm 0, @)=(g, @)=1.

deD"

158



The criterion (1) implies that xi, ..., X» have a joint distribution in the state
m=m.

Lemma 12. ([4], Lemma 3.5). Let {®:}: be an orthonormal set of vectors in H.
If a vector @ satisfies ||@||*> = Z |(@, @)|*, then ¢p=2(q), ) @i

Lemma 13. Let M, ..., M,e L(H) andlet de D", 0+ @€ /"\M;", where M* =
i=1
M if di=1 and M*=M" if d;=0. Then

P% .. Php=P" ... P"gp (8)
for every permutation (i, ..., i,) of (1, 2, ..., n). .
Proof. We have P™ ...P"p=¢ iff di=1, i=1, .., n; otherwise

P™ ... P*@=0. The proof follows immediately.
Proof of Theorem 9. The sufficient condition was proved in Lemma 11.
The necessary condition. Let E,, ..., E, € B(Z) be given. By criterion (1) we
have

2 (/"\ PED g, qv) =1. ©

deD"” \i=1

Let us set M(d) = /..\ x(E%), d e D". The vectors {P*®@: d e D"} are orthogonal
i=1
and the equality (9) yields

2

lelP=1=

(d e D": M(d)@+0)

(o gy 9)
i e
We see by Lemma 12 that the vector ¢ is a linear combination of vectors P”“"(p €

/\x.(E“) and by Lemma 13 that the condition (6) is satisfied.

We recall that any density operator can be written in the form T=2, c.P*®! for

i=1
some partition of unity {c,:ie N} and an orthonormal system {@.: i€ N}, where
P®: @ (@,@) @ is the projector on the subspace generated by the vector @.

Theorem 14. Let x, ..., x, be observables on the logic L(H). Let T: p—>
; (@, @)@: be a density operator. Let m = mr: M+ tr(P™T) be the state induced

by T. Then
(1) xi, ..., x. have a joint distribution in the state m = my iff the condition (6)
holds for any ¢,
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(ii) if xy, ..., x» are bounded real observables and X, ..., X. are corresponding
self-adjoint operators on H, then the following conditions are equivalent

(a) xi, ..., x, have a joint distribution in the sate m=mr,

(b) P& | PEop =P | pPuElg,

(C) X1 ves X,.(p,-=X, e Xi,,(p.',

(d) X,..X.T=X,..X,T

foranyi=1,2, ..., E,, ..., E, € B(R") and any permutation (i1, i, ..., i.) of (1,2,
cees M),

Proof. The statement (i) follows from Theorem 9 and Proposition 7. Using the
properties of spectral measures of Xj, ..., X, and Theorem 9 we obtain (ii).

Theorem 15. Let xi, ..., x. be observables on the logic L(H). The set H, of all
vectors @ € H for which (6) holds is a closed subspace of H which is compatible
with any x.(E), that is, P*®P%=p%pP“® for any Ee B(%¥), i=1, 2, ..., n.
Moreover, ‘

Ho= A aE, ... E). (10)

(Ep, ..y

The state m = mr: M tr(TP") belongs to Com(x, ..., x.) Iff the eigenvectors of
T belong to H,.

Proof. Itis easy to see that Hj is a closed subspace of H. Now we show that
P(E) pto — pHo p¥(E) ,
or, equivalently,

P ®@eHo, whenever @eH, j=1,2,...,n.

Let (i, ..., i») be a permutation of (1, 2, ..., n) and x; be an observable. Let the
p i
integer j be at the s-th place, 1<s<n. We have
PED) | PuE) LB g =
= P=B) P’I(E/)[P"l.n(Er.ﬂ) P‘:,.(E:)})‘/(E)q;] =
= P5E) | pyE) pyB p, By | P‘ln(E’n)(p =
=paE  pyED | pwElg,
Similarly,
P'I(El) . P"n(Eu)P‘[(E;)¢=Px1(E|) . P‘/(EIP‘E) e Pxn(Eu)‘p’

and therefore P*® @ e Ho.
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Now if ¢ € H,, then by Theorem 9 the joint distribution of xi, ..., x, in the
state m, exists, hence me(a(E, ..., E))=1, E,, ..., E,e B(Z¥). From this it
follows that @ € a(E,, ..., E») for any E,, ..., E,€ B(Z). On the other hand, if

pe A a(E, ..., E), then the joint distribution in the state m, exists by the
Ei, ..., En

criterion (4), therefore @ € Ho. The last statement of the theorem follows from
Theorem 14.

In the following theorem we shall derive a connection between the considered
type of joint distribution and another type of joint distributions- the so-called
type 2 joint distribution on the logic L(H) (see [4]). For the sake of simplicity we
shall consider only two observables. Before stating the theorem we have to recall
some definitions and results. For details see [4] and [7].

If x is a real obsservable on L(H), we write X for the corresponding self-adjoint
operator on H.

If X and Y are linear operators on H with the domains D(X), D(Y),
respectively, then their sum X+ Y is an operator defined on D(X)nD(Y) such
that (X+ Y)¢ = Xe+ Yo for any ¢ e D(X)nD(Y).

We say that the real observables x and y on the logic L(H) have type 2 joint
distribution in a state m if the observables ax+ By exist (i.e. aX+BY are
self-adjoint operators) for any a, B € R* and if there is a measure u on B(R?) such
that

pu{(w1, @2): aw,+ Pw, € E} = m((ax + By) (E)) (11)

for any Ee B(R") (see [4]).
A subspace H' of H is invariant under an operator X (or H’ reduces X) if
(1) X(H'nD(X))=H', '
(2) P"D(X)<=D(X). (12)
The condition (1) is equivalent to
P¥ XP" = XP" (13)

A subspace H’ orthogonally reduces the operator X if both H' and H'* are
invariant under X (see [7], p. 349).

Proposition 16. A subspace H' of H orthogonally reduces X iff XP" > P¥X
(i.e., iff X commutes with P*") ([7], p. 352).

Proposition 17. Any invariant subspace of a self-adjoint operator X orthogon-
ally reduces X ([7], p. 355).

Proposition 18. The operator X' induced by a self-adjoint operator X in his
invariant subspace H' is self-adjoint ([7], p. 365).
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Proposition 19. A bounded operator Y commutes with a self-adjoint operator
X (i.e. XY > YX) iff it commutes with the spectral measure of the operator X

(7], p- 521).

Theorem 20. Let x and y be real observables on the logic L(H) and let X and
Y be the corresponding self-adjoint operators on H. Let the domains D(X) and
D(Y) be such that D(X)nD(Y) is dense in H. Then for any m € Com(x, y) there
exists the type 2 joint distribution of x, y in the state m and this type2 joint
distribution is identical with the type 1 joint distribution.

Proof. As D(X)nD(Y) is dense in H, the linear combinations aX + BY exist
for any a, BeR'. According to Proposition 7, it satisfies to consider a state
m =m,, where @ is a unit vector in H. Let Hye L(H) be defined by (10). Then
@€ H, and the subspace H, is invariant under the operators X and Y (see
Theorem 15 and Propositions 16, 17 and 19). The restrictions of X and Y to Ho,
denoted by X, and Yo, are self-adjoint operators on H, which may be treated as
a Hilbert space in its own right (see Proposition 18). We show that the subspace H,
is invariant under the operator aX + fY(a, B € R"). Indeed, we have

P%(aX + BY)P* = P aXP™ + P gYP™ =
= aXP® + BYP" = (aX + BY)P™
and so the condition (1) in (12) is fulfilled. From the inclusions
P*D(X)=D(X), P*D(Y)=D(Y) (14)
we obtain

P*D(X)nD(Y) = D(X)nD(Y)

and this means that (2) in (12) is fulfilled. Then restriction (aX) + BY), of aX + Y
to H, is a self-adjoint operator and, clearly, (aX+ 8Y)o = aXo+ BYo. As X; and
Y, commute, there is the type 2 joint distribution (indentical with the type 1 joint
distribution (see [4])) for the observables x, and y, in the state m, in other words,
there is a measure u on B(R?) such that

p{(w1, w2): aw, + Pw, € E} = mo((axo + Byo)(E)),
for any a, e R' and any E e B(R"). Hovewer,
my((axo+ Byo)(E)) = (PP, g) =

(PPB g, @)= (PP D@, @)= my((ax + By)(E)).

From this we see that the type 2 joint distribution in the state m, exists. On the
other hand,

#(E X F) = me(xo(E) Ay F)) = (PP P, @)=
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=(P®POp, g)=(P*P®PHP" O P, g)=
=(P*®PPPOg, p)=(P®" P, @) =my(x(E)Ay(F)).

Hence, the two types of joint distributions, being identical for the observables xo
and y, on L(H,), are identical also for x and y.

The notion of the joint distribution of observables can be generalized to an
arbitrary system of observables {x,:s € S}. We say that a system of observables
{x.: s € S} has the joint distribution in a state /7 if any its finite subsystem has one.

Now let a system of observables {x,: s € S} on a separable logic L be given. We
recall that a logic L is separable if any subsystem of mutually orthogonal elements
of L is at most countable. For any finite set @ F={si, ..., s,} €S we put

a(F; By, ... B)= V, /\1 x,(E®), (15)
where D={0, 1}, d=(d,, ..., d.)e D", E*=E if d,=1 and E%=E" if d;=0,
ao(F)=E AEn a(F; E,, s E") (16)
Qo= /\ ao(F). (17)
FcS8, F finite

Lemma 21. Let L be a separable logic and let {x,: s € S} be a given system of
observables. Then for finite sets F,, F,< S,8 # F,c F, we have

ao(Fz) < ao(F,) . (18)

Proof. Let Fi={s1, ..., S}, Fo= {81, ..., Sny Sn+1, «oey Sm)}. Then
a(F:; Ey, ..., E,, 0, ..., 0) = a(F; E,, ..., E,) and therefore

ao(F2)=E AB”' a(Fz; E1, coey E'n)ss AE,, a(E; El, ceey En, 0, coey 0)=

1y -ees S PR

= A a(F, ’ El, coey E,.) = ao(Fl).
Ep, ..oy En ’
By Zierler [6] there is in a separable logic to any system of elements {a.}. a
countable subsystem {a:}; such that

\a/aa=\7a.(/a\a.,=’/:.\1a,).

=1

Theorem 22. A system of observables {x,:s €S} on a separable logic has the
joint distribution in a state m iff m(ao)=1.

Proof. If the given system of observables has the joint distribution in the state
m, then for any finite subset F={s1, ..., s»} =S we have me Com(x,,, ..., %.,).
Therefore Theorem 2.7 in [1] implies that m(ac(F)) = 1. Due to the separability of
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L there is a sequence of finite subsets {F,}. of S such that a,= A as(F.). Now we
show that

m(/"\ ao(Fi)) =1

i=1
for any n. Indeed, if we put F,‘:=L"JF1, then ao(F%) < ao(F), i=1,..., n;
i=1

n=1,2,.... As m(a,(F%))=1, we obtain m(a;) = lim m(/n\ ao(F,-)) =1. Since
n i=1

i=

ao<ao(F), F< S, the converse implication follows from Theorem 2.7 in [1].
The following theorem is a generalization of Theorem 2.11 in [1] fot the case of
an infinite set of observables.

Theorem 23. Let L be a separable logic and let there be, for any a+ 0, a state m,
with the carrier a. If the system of observables {x,: s € S} has the joint distribution
in the state m, then a,+ 0 and x,(E) <> a, for any E € B(%) and s € S. Moreover, all
the observables x,0 = x,Aa, are compatible on the logic L, ., ={be€L:b<ay}.
For the element a, we have

ao=\/{a € L: there is the joint distribution
of {x,:s€ S} inm,}. (19)
Proof. Since m(ao)=1, it is clear that a,#0. There is a sequence of finite
subsets {F.}, of S such that ao=/\ a,(F,). Suppose s€S. We shall show that
x;(E) & a, for any E € B(Z). For thne indexed set F,= F,u{s} we have a,(F,) <

a(F,) (Lemma 16). Therefore ao=/\ a)(F,), but on the other hand ao=
A ao(F)< A\ ao(F,). Hence, ao= /\ ao( F,). Theorem 2.11 in [1] implies that x,(E)
FcS n n

< ao(F}) for any E € B(Z) and any n. Therefore x.(E) « A ao(F,)=ao (see [2],

Lemma 6.10).

Now it is easy to show that x,c: E — x,(E)/\ a0, E € B(%) is an observable on
the logic Lo, .). We claim that {x,:s€ S} are compatible observables on Lo, a)-
Since ma(ao) =1, we have (Theorem 22) that {x,:s e S} has the joint distribution
in the state m,,. Therefore, for any s, te S

Mu((%:(E) Ax(F)v %, E)* Ax(F)v x(E) Ax(F)* v x,(E) " Ax(F)")) =1
(20)
for any E, Fe B(%Z).
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As x.(E)Ax.(F) e ao for E, Fe B(%Z), we have

Ma(%.(E) Ax(F)) = ma(x,(E) Ax,(F) A ao) + ma(x,(E) AX(F) Aago) =
= Ma(X(E)Ax(F)Aao).

The latter fact and (20) imply that
1ita(X0( E) AXio( F) V X0( E)* AX(F)V X:0( E) Axoo(F)* v x:0( E)* Axio(F)*) =1

for any E, Fe B(Z), where 1., = m,,/ Lo, 2. By the criterion (4) and Proposition 4,
X:0 > Xio.

The equality (19) follows from the observation that the system {x,: s € S} has the
joint distribution in the state m, iff m.(a0)=1 or, equivalently, iff a =< ao.

For the case of the logic L(H) the following theorem holds.

Theorem 24. Let L(H) be the logic of all closed subspaces of a separable
Hilbert space H and let {x,: s € S} be a system of observables. Then it has the joint

distribution in a state m= 2, ¢ Mg, ¢;=0, > ¢ =1, {®,;}; an orthogonal system of
] i

vectors, iff _
P | PR = P P o, | (21)

for any permutation (i, ..., i») of (1,2, ..., n); E,, ..., E, € B(%) and any finite
subsystem of observables and any vector ®@;. If we put Hy={®: & e H, P fulfils
(21)}, then Hy € L(H). Moreover, H, is the element defined by (17) and it reduces
the observables {x,: s € S}.

Finally, let us note that an analogical division into three categories of com-
patibilities as in [1] may be done for the system of observables {x,: s € S}: Let for
the system {x.: s € S} the element a, be defined by (17) (L is a separable logic). We
may say that the system {x.: s € S} of observables is (i) compatible if a,=1, (ii)
partially compatible if 0# ao#1, (iif) totally incompatible if a,=0. Further
investigation may then proceede similarly to that of [1].
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3AMEYAHHE O COBMECTHOM PACIIPENEIIEHMH BEPOATHOCTH
HABIIIOTAEMBIX

Anaronuit [IBypedeHcKHii—IIruBna IlynMaHHOBaA

Pe3ome

B 370l cCTaThe HCCERYIOTCS KPHTEPHH NS CYIMIECTBOBAHHA COBMECTHOTO PacnpeNieNIeHHs! BEPOST-
HOCTH HaGITIioflaeMBIX Ha JIOTHKE H HX cliefcTBEA. TlonydeHHbIe pe3ynbTaThl 0606mMA0TCS AN Cirydast
GECKOHEYHOM CHCTEMBI HaGIIOaeMBIX.
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