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Math. Slovaca 32, 1982, No. 2,155-166 

ON JOINT DISTRIBUTIONS OF OBSERVABLES 

ANATOLLJ DVURECENSKU—SYLVIA PULMANNOVA 

In the paper the joint distributions of an infinite set of observables on a logic are 
studied. In the special case of the Hilbert — space logic, the conditions of the 
existence of joint distributions for finite and infinite sets of observables are 
formulated. 

Throughout the paper, the word logic means a a-orthomodular lattice and the 
word state means a a-additive probability measure on a logic. Both definitions of 
the latter notions together with some basic facts and physical interpretation can be 
found in [2]. The reader may also consult reference [2] for the basics on real 
observables. We shall deal with generalized observables, #f-observables, defined as 
follows. Let Sf be a complete separable metric space and B(%) the cr-algebra of 
Borel sets of #f. An #f-observable is a map x from B(X) to a logic L such that 

(i) x(%) = \, 
(ii) x(E)±x(F) if EnF=0,E,FeB(X), 

(Hi) x([jEi) = \fx(Ei) if EinEi = 0, i±j, i,j = l,2, .... 
We shall frequently use the following simple observation. If /: 3f—> Sfi is a Borel 

measurable mapping between two complete separable metric spaces, then 
fox:E^x(f\E)), EeB(%x) is an Sfi-observable. 

Obviously, we obtain the "traditional" observable if we set 3£=Rl and L is the 
logic L(H) of all closed subspaces of a separable Hilbert space (real or complex). 
As known, there is a one-to-one correspondence between R ̂ observables and 
self-adjoint operators on H [3]. 

Since we assume the space X to be fixed throughout the paper, we shall write 
simply an observable instead of an ^f-observable. 

Suppose we are given observables xu x2, ..., xn: B(<%)—>L and a state m on L. 
We say that the collection Xi,..., xn has a joint distribution in the state m if there is 
a probability measure p on B(2F) such that 

p ( £ 1 x . . . x £ ) = m(Лi,(Д) tï 

for any fi e B(X), i == 1, 2, ..., n. Evidently, such a measure p is then unique and 
we may (and shall) denote by p?x, ..., xn the measure corresponding to the 
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collection xu ..., xn and the state m. This type of joint distributions was introduced 
by S. Gudder [4]. It is called the type-1 joint distribution. 

We denote by Com(xu ..., xn) for a collection xu ..., xn of observables the set of 
all states on L in which the joint distribution exists. Let us recall a useful criterion 
for a state to belong to Com(xu ..., xn) (c. f. [1]). In order to simplify the 
expressions, let us state first a few conventions. Put D = {0, 1} and denote by d, the 
i-th coordinate of a point deDn, neN. Write Ed' = E if d, = l, and Ed' = Ec^ 
%?—E if d, = 0 , for any EeB(%). The criterion reads as follows. The observables 
Xi, ..., xn have a joint distribution in a state m iff 

2 m(j\xi(E}) = l (2) 
deDn \ = 1 

for any Eu E2, ..., EneB(%). 
Let us set 

a(Eu E2, ..., £ , ) = V A Xi(Ef), (3) 

deDn i = l 

Et 6 B(?J6). One sees easily that criterion (2) can be reformulated as follows: 

meCom(xu ..., xn) if m(a(Eu ..., C ) ) = l (4) 
for any Eu ...,EneB(%). 

Proposition 1. (i) Let fu ...,/« be Borel measurable functions from o£ to dCv. If 
p?u.,xn exists, then pTx°xx,...,fn<>xn exists as well and there holds 

P".-.4P\K) x ... xrn \En)) = p".xx,.... fmmXm(El x ... x K.) (5) 

for any Eu ..., EneB(Sel). 
(ii) p?u ,x„ exists iff for any choice of real valued Borel measurable functions 

/ i , ...,/„ the observables f\oXU ..., fnoXn from B(Rl) into L have the joint 
distribution in the state m. 

Proof. Part (i) and the necessary condition of (ii) are evident. Now let for all 
/i, ..., /„: #f-* jR1 the observables f\oXU ..., fnoXn have the joint distribution in m. 
Let us put f — XEiy i = l, 2, ..., n, and let p be the joint distribution of fioXu ..., 
fnoXn. Then 

1 =p({0 , 1} x {0,1} x ... x {0, 1}) = 2 P({di} x ... x {dn}) = 
deDn 

= 2 m(A*(Xi'(W)))= 2 m(A*.(£f<)), 
d e D " M - l / deDn x i = l 7 

which implies, by criterion (2), the the validity of (ii). 

Corollary 2. If xu ..., xn are mutually compatible observables, then they have 
a joint distribution in any state. 
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Proof. Suppose that fu ...,/„ are Borel functions. If JCI, ..., JC„ are mutually 
compatible observables, then /ioJCi, ..., fnoXn are mutually compatible real obser-
vables. By a result ofVaradarajan [2], they have a joint distribution in any state 
and the rest follows from Proposition 1 (//). 

Let us recall another standard notion. A sequence nv, of states converges weakly 
to a state m if mn(a)-^m(a) for any aeL. 

The carrier of a state m (if it exists) is an element aeL such that m(fe) = 0 iff 
a±b. 

A state mo is a superposition of a collection M of states iff m(a) = 0 for every 
meM implies mo(a) = 0. 

The following lemma is an easy consequence of criterion (4). 

Lemma 3. Let a be the carrier of the state m. Then m e Com(xu ..., xn) iff 
a^a(Eu . . . , & ) for any Eu . . . , £ , eB($C). 

Proposition 4. Let mx be a state with 1 for the carrier. Then xu ..., JC„ are 
mutually compatible observables iff mi 6 Cbm(jci, ..., JC„). 

Proof. If JCI, ..., JC„ are mutually compatible, then clearly mi 6 Cbm(jCi,..., JC„). 
Conversely, let mieGpm(;ct, ..., xn). Then miGC9m(jc,, xf) for any l ^ i , j^n, 
and, according to Lemma 3, we have 

for any E, FeB(X), and this identity yelds that JC, «-* JC; for any i, / = 1, 2, ..., n 
(c. f. [2]). 

Proposition 5. Let 0 ± M cz Com(xu ..., xn). If mo is a superposition of the states 
of M, then rrioeCom(xu ..., xn). 

Proof. Let meM. Then the equality m(a(Eu ..., fi,)"L) = 0 implies 
nto(a(Eu ..., JE„)X) = 0 and therefore rrioeCom(xu ..., xn). 

The next two propositions result from Proposition 5 with regard to the following 
observations: (i) a state mfl with the carrier a is a superposition of a state mb with 

the carrier b iff a^b, (ii) the state m = Ztdmi, where 2 c = l , O ^ c . ^ 1 , is 
/ - I i - i 

a superposition of the states {m,}r«i, and every m, is a superposition of the state m. 

Proposition 6. Let mat, i = 1, 2, ..., rric be states with the carriers aui = 1,2,. . . , 

and c, respectively, and let c ̂  V *• # m* € Cbm(jCi,..., JC„) for i = 1, 2, ..., then 

i 

mceCom(xu ...,xn). 
OP_ oo 

Proposition7. Let m = Xc,w„ Q>0, 2)c< = l . Then meCom(xu ..., xn) iff 
*-i / - i 

mi e Com(xu ..., xn) for any /. 
157 



Theorem 8. Com(xu ..., xn) is a o-convex sequentially weakly complete sub-
space in the space of all states of L. 

Proof. By Proposition 7, Com(xu ...,xn) is a-convex. If {mj, is a Cauchy 
sequence in the weak topology, then due to [5], Th. 2.2, the formula m(d) 
= lim m,(a) defines a state on L. Therefore there is limp,(£iX ...X.E.) 

= p(Ex x ... x En) = m ( j \ Xj(E) J and, consequently, there is lim pt(A) =p(A) 
V-i ' 

for any A of the algebra generated by all the rectangle sets. As m(a(Eu ..., £,)) 
= lim mt(a(Eu ..., Z5.)) = l, we obtain me Com(xu ..., xn) by criterion (4). 

Now let L(H) be the logic of all closed subspaces of a Hilbert space H (real or 
complex) with an inner product (.,.) and let xu ..., xn: B(9C)-+L(H) be observab-
les. For Me L(H), let us put P*4 for the projector onto M. There is a one-to-one 
correspondence between the elements of L(H) and their projections. If q> e H is 
a unit vector, then m<p. M>-*(PM(p, <p), MeL(H), is a state on L(H). Moreover, 
the Gleason theorem asserts that any state on L(H), 3 ̂  dim H^ K0, is of the form 
m(M) = tr(TP*1), MeL(H), where T is the density operator. In the sequel we 
suppose that 3 ^ dim H^K0 . 

Theorem 9. The observables xu ..., xn on the logic L(H) have a joint distribu­
tion in a state m — m^ iff 

P*x(Ex)pX2{E2) ^ P'niEJq, — p''l(E'l) ^ pXi^Ein*q) ( 6 ) 

for every Eu ..., EneB(<%) end every permutation (iu...,in) of the set 
(1,2, . . . ,*) . 

The proof of the latter theorem follows from the next lemmas. 

Lemma 10. Let q? be an arbitrary element ofH. If (6) holds forxu ..., xn and for 
<p, then 

px.(B1)Ax2(E2)A...^n(En) _ px1(-51)p*2(E2) ^ ^ pxn(EJq) rj\ 

for evety Eu...,Ene B(%). 
Proof. It is known that the equality PMPNq? = PNPM(p implies PM*N<p 

= PMPNcp. The rest is an elementary induction. 

Lemma 11. If (6) holds for xu ..., Xn and \\<p\\ = 1, then xu ..., xn have a joint 
distribution in the state m = m^. 

Proof. By the property (7) we have 

/ n N / \ *<-#) \ 
2m(A*(^))=S.(p-" V><P) = 

deD" v i= l ' deD ' 

2 ( P " ( B f l ) ... Px"{Bin) <P> <P) = (q>, q>) = 1 • 
deD" 
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The criterion (1) implies that Xi, ...,xn have a joint distribution in the state 
m = trig,. 

Lemma 12. ([4], Lemma 3.5). Let {<p,}, be an orthonormal set of vectors in H. 

If a vector q satisfies \\q\\2 = S|(<p, <P.)|2, then <p = 2(<p, <p,)<p,. 

Lemma 13. Let Mu ..., MneL(H) and let deDn,0*qe j\Md', where Md* = 
,=i 

Mifdt = \ andMd' = M± if dt=0. Then 

i^ 1 . . . J^<p = PMl...PM»<p (8) 

for every permutation (h, ..., /„) of (1, 2, ..., n). 
Proof. We have PM'...PM*q = q iff d, = l, i = l, ..., n; otherwise 

PMl ... PMnq = 0. The proof follows immediately. 
Proof of Theorem 9. The sufficient condition was proved in Lemma 11. 
The necessary condition. Let Eu ..., EneB(%?) be given. By criterion (1) we 

have 

2(AP*E<'V,<P) = I. (9) 
deDn^i=l ' 

Let us set M(d) = A Xi(El'), deDn. The vectors {PM{d)q: deDn} are orthogonal 
, « i 

and the equality (9) yields 

I M I 2 = i = „ 2 (y>|ipM(*) ..<p) • 
{deDn.M{d)q>*0}\ \ ||-r q\\ /I 

We see by Lemma 12 that the vector <p is a linear combination of vectors' PM{d)q e 
n 

/\xt(El') and by Lemma 13 that the condition (6) is satisfied. 
i - l 

We recall that any density operator can be written in the form T=j[,ctP
iq,,] for 

,=-i 

some partition of unity {ct:ieN} and an orthonormal system {qr.ieN}, where 
P**'*: q*-+(q,qi)qi is the projector on the subspace generated by the vector qt. 

Theorem 14. Let xu ..., x„ be observables on the logic L(H). Let T:<p>-> 

2Jct(q, qi)q)t be a density operator. Let m = mT: Mi-» tr(PMT) be the state induced 

by T Then 
(i) X\,..., xn have a joint distribution in the state m = mT iff the condition (6) 

holds for any q>t, 
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(ii) if xu .-., xn are bounded real observables and Xi, ..., Xn are corresponding 
self-adjoint operators on H, then the following conditions are equivalent 

(a) *i, ..., xn have a joint distribution in the sate m^mr, 
(b) P* l ( f i l ) . . . Px"<B*>q>i = P*H<BJ ... Px^E^q)i, 
(c) Xi ... Xnq)i = Xix ... Xinq>i, 
(d) Xx...XnT=Xix...XinT 

for any / = 1, 2, ..., Eu ..., EneB(R1) and any permutation (ii, fc, ..., in) o / ( l , 2, 

Proof. The statement (i) follows from Theorem 9 and Proposition 7. Using the 
properties of spectral measures of Xu ..., Xn and Theorem 9 we obtain (ii). 

Theorem 15. Let xu ..., x„ be observables on the logic L(H). The set H0 of all 
vectors q>eH for which (6) holds is a closed subspace of H which is compatible 
with any Xi(E), that is, pxWpHo = p"op*<w for any EeB(%), / = 1, 2, ..., n. 
Moreover, 

H0 = A *(Bi, . . . , -&). (10) 
(S i . .... £,,) 

The state m = mT: M^t^TP*4) belongs to Com(xi, ..., xn) iff the eigenvectors of 
T belong to H0. 

Proof. It is easy to see that H0 is a closed subspace of H. Now we show that 

p*/(-3)p-^, _ pHop*,(E) 

or, equivalently, 

P*>(B)<p e H0, whenever q> e H0, j = 1, 2, ..., n. 

Let (ii, ..., /„) be a permutation of (1, 2, ..., n) and x} be an observable. Let the 
integer / be at the s-th place, l^s^n. We have 

P W ... px<n<E0pxtE?q) = 

= PX'liE'l) ... P»/(B/)[P*-.->.^. + l> ... Px'n^px^y] = 

=zP*<SEJ ... pc/(E/)p*/(B)px',.i(Hwi> ... p*'SB0q) = 

= pc^EJ pxfiEpE) ^ pXn^En)(p m 

Similarly, 

P»l(-?i) m^ pJrn(-5«)p*/(-3y)(p==p*l(-31) _ pXjiE^E) ^ pXn(Bn)q)^ 

and therefore Px'iEi)q) e H0. 
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Now if q>eH0, then by Theorem 9 the joint distribution of xu ...,x„ in the 
state mp exists, hence rruP(a(Eu..., JE.)) = 1, Eu ..., EneB(%). From this it 
follows that q>ea(Eu ..., fi.) for any Eu ...,E„eB(%). On the other hand, if 

(pG /\ a(Eu ..., JS,), then the joint distribution in the state rrUp exists by the 
El En 

criterion (4), therefore q>eH0. The last statement of the theorem follows from 
Theorem 14. 

In the following theorem we shall derive a connection between the considered 
type of joint distribution and another type of joint distributions- the so-called 
type 2 joint distribution on the logic L(H) (see [4]). For the sake of simplicity we 
shall consider only two observables. Before stating the theorem we have to recall 
some definitions and results. For details see [4] and [7]. 

If x is a real obsservable on L(H), we write X for the corresponding self-adjoint 
operator on H. 

If X and Y are linear operators on H with the domains D(X), D(Y), 
respectively, then their sum X+ Y is an operator defined on D(X)nD(Y) such 
that (X+ Y)q> = Xq>+ Yq> for any q>eD(X)nD(Y). 

We say that the real observables x and y on the logic L(H) have type 2 joint 
distribution in a state m if the observables ax + fiy exist (i.e. aX+pY are 
self-adjoint operators) for any a, fieR1 and if there is a measure \i on B(R2) such 
that 

[*{(cou OH): am + Pa)2eE} = m((ax + Py) (E)) (11) 

for any EeB(Rx) (see [4]). 
A subspace H' of H is invariant under an operator X (or H' reduces X) if 
(1) X(H'nD(X))cH', 
(2) PlrD(X)czD(X). (12) 

The condition (1) is equivalent to 

PH'XPfr = XPH' (13) 

A subspace H' orthogonally reduces the operator X if both H' and H,J~ are 
invariant under X (see [7], p. 349). 

Proposition 16. A subspace H' of H orthogonally reduces X iff XP" => P^X 
(i.e., iff X commutes with Prr) ([7], p . 352). 

Proposition 17. Any invariant subspace of a self-adjoint operator X orthogon­
ally reduces X ([7], p. 355). 

Proposition 18. The operator X1 induced by a self-adjoint operator X in his 
invariant subspace H' is self-adjoint ([7], p . 365). 
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Proposition 19. A bounded operator Y commutes with a self-adjoint operator 
X (i.e. XY3 YX) iff it commutes with the spectral measure of the operator X 
([7], p. 521). 

Theorem 20. Let x and y be real observables on the logic L(H) and let X and 
Y be the corresponding self-adjoint operators on H. Let the domains D(X) and 
D( Y) be such that D(X)nD( Y) is dense in H. Then for any m e Com(x, y) there 
exists the type 2 joint distribution ofx, y in the state m and this type! joint 
distribution is identical with the type 1 joint distribution. 

Proof. As D(X)r\D(Y) is dense in H, the linear combinations aX+ PY exist 
for any a,peRx. According to Proposition 7, it satisfies to consider a state 
m = in?, where <p is a unit vector in H. Let H0eL(H) be defined by (10). Then 
q)eH0 and the subspace H0 is invariant under the operators X and Y (see 
Theorem 15 and Propositions 16,17 and 19). The restrictions of X and Y to H0, 
denoted by X0 and Y0, are self-adjoint operators on H0 which may be treated as 
a Hilbert space in its own right (see Proposition 18). We show that the subspace H0 

is invariant under the operator aX+ fiY(a, fieR1). Indeed, we have 

P^(aX+ pY)PH° = P^aXP"* + P^fiYP"" = 

= aXP"0 + pYP"° = (aX+ pY)P"» 

and so the condition (1) in (12) is fulfilled. From the inclusions 

P^D(X)czD(X), PH°D(Y)c:D(Y) (14) 

we obtain 

P"°D(X)nD( Y) c D(X)nD( Y) 

and this means that (2) in (12) is fulfilled. Then restriction (aX) + pY)0 of aX+ pY 
to Ho is a self-adjoint operator and, clearly, (aX+pY)0 = aX0 + pY0. As X0 and 
Yo commute, there is the type 2 joint distribution (indentical with the type 1 joint 
distribution (see [4])) for the observables x0 and y0 in the state rrup, in other words, 
there is a measure [i on B(R2) such that 

JU{(G>I, co2): acoi + Pco2 eE} = m^^axo + Py0)(E)), 

for any a, PeR1 and any EeB(Rx). Hovewer, 

nh((ax0 + Py0)(E)) = (P(^fiy<>*E><p, <p) = 

(p(«+*w--y v)=(p<«+»xBy V) = m,((ax +A0(£))-

From this we see that the type 2 joint distribution in the state m^ exists. On the 
other hand, 

fi(ExF)^mv(x0(E)Ayo(I^)^(PXoiE)^o(F)(p, <p) = 
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= ( P ^ P N W V , (p)=:(PHopx^PHoP^F>PH0(p9 (p) = 

= ( j * * O F * * v > (p) = ( p * ^ ^ ^ ( p , <p) = m<p(x(E)Ay(F)). 

Hence, the two types of joint distributions, being identical for the observables JC0 

and y0 on L(H0), are identical also for x and y. 
The notion of the joint distribution of observables can be generalized to an 

arbitrary system of observables {xs:seS}. We say that a system of observables 
{xs: s e S} has the joint distribution in a state m if any its finite subsystem has one. 

Now let a system of observables {xs:se S} on a separable logic L be given. We 
recall that a logic L is separable if any subsystem of mutually orthogonal elements 
of L is at most countable. For any finite set 0=£F= {$i, ..., sn} eS we put 

a(F; El9 . . . , £ , )= V A *»(*». (15) 
deDn / - l 

where £>={0,1}, d = (du ..., 4,)eD", E*' = .E if 4 = 1 and £*< = £< if 4 = 0, 

a0(F)= A a(F; J*!, . . . ,£ , ) (16) 
El E. 

a0= A «o(*D- (17) 
FtzS, F finite 

Lemma 21. Let L be a separable logic and let {xs:seS} be a given system of 
observables. Then for finite sets Fu F2cS,0 =£ Fi c F2 we have 

a0(F2)^a0(F1). (18) 

Proof. Let Fi = {.si,..., sn}9 F2 = {ji,..., sn> sn+i,..., sm)}. Then 
a(F2; Ei,..., JB,, 0, ..., 0) = a(Fx;Eu ..., -E.) and therefore 

a0(F2)= A a(F2;Eu...9Em)^ A a(F2; JBi, . . . ,£ , , 0, ..., 0) = 
Hi Em Ei,...,-S-. 

= A a(Fi;Eu ...,En) = ao(F1). 
El En 

By Zierler [6] there is in a separable logic to any system of elements {oa}a a 
countable subsystem {«/}* such that 

V Û . - V « ( Л « - = Л 4 
a ť - 1 ч a í - 1 ' 

Theorem 22. A system of observables {xs:se S} on a separable logic has the 
joint distribution in a state m iff m(oo) = 1. 

Proof. If the given system of observables has the joint distribution in the state 
m, then for any finite subset F= {si,..., s„} c S w e have me Com(xsl9..., xs„). 
Therefore Theorem 2.7 in [1] implies that m(oo(F)) == 1. Due to the separability of 
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L there is a sequence of finite subsets {F„}„ of S such that ao = A <*o(Fn). Now we 
n 

show that 

m(Aflo(F()) = l 

n 

for any n. Indeed, if we put FJ = ( j F , then ao(FJ) ^ a0(F{), i = l,...,n; 
1 = 1 

AZ = 1, 2, .... As m(a0(Ft))~l, we obtain m(a0) = lim m\/\a0(Fi)j = 1. Since 
n \ I = 1 / 

a0^fl0(F)> f c S , the converse implication follows from Theorem 2.7 in [1]. 
The following theorem is a generalization of Theorem 2.11 in [1] fot the case of 

an infinite set of observables. 

Theorem 23. Let Lbea separable logic and let there be, for any a =£ 0, a state ma 

with the carrier a. If the system of observables {xs:se S} has the joint distribution 
in the state m, then a0 =£ 0 and xs(E) <-* a0 for anyEe B(3?) and seS. Moreover, all 
the observables xs0 = xsAa0 are compatible on the logic L[0, ao] = {b e L: b ^ a0}. 
For the element a0 we have 

a0 = \/ {aeL: there is the joint distribution 

of{xs:seS}inma}. (19) 

Proof. Since m(a0) = l, it is clear that a0=£0. There is a sequence of finite 

subsets {F„}„ of S such that a0 = /\a0(Fn). Suppose seS. We shall show that 
n 

xs(E) «-» a0 for any EeB(%). For the indexed set Fn = F„u{s} we have a0(F'n) ^ 

a0(Fn) (Lemma 16). Therefore a02*/\a0(Fn), but on the other hand a0 = 
n 

A a0(F) ^ A <*o(Fn). Hence, a0 = /\ a0(Fn). Theorem 2.11 in [1] implies that xs(E) 
F<=S n n 

<r+ a0(F'n) for any EeB(<%) and any n. Therefore xs(E) <-* A «o(-R) = a0 (see [2], 
n 

Lemma 6.10). 
Now it is easy to show that xs0:E »-> xs(E) Aa<>, EeB(%) is an observable on 

the logic L[0yaoV We claim that { x , 0 : s e S } are compatible observables on L{0taoV 

Since m^tfo) = 1, we have (Theorem 22) that {xs:se S} has the joint distribution 
in the state m^. Therefore, for any s, teS 

m4(jt,(JE)AJt,(i0vjt^ 
(20) 

for any E, FeB(^). 
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As xs(E)Axt(F)+*a0 for E, FeB(%), we have 

mao(xs(E) Axt(F)) = mao(xs(E)Axt(F) A a0) + mao(xs(E) Axt(F) A a0) = 

= mao(Xs(E)Axt(F) A a0). 

The latter fact and (20) imply that 

mao(xs0(E)Axt0(F)vxs0(E)±Axt0(F)vXs0(E)Axt0(^ 

for any JB, Fe B(<£), where rhao = mJL{0l««,]. By the criterion (4) and Proposition 4, 
A^-o ^ ~ * .^ifO» 

The equality (19) follows from the observation that the system {xs: se S} has the 
joint distribution in the state ma iff ma(a0) = l or, equivalently, iff a^a0. 

For the case of the logic L(H) the following theorem holds. 

Theorem 24. Let L(H) be the logic of all closed subspaces of a separable 
Hilbert space Hand let {xs: s e S} be a system of observables. Then it has the joint 

distribution in a state m = 2 q m*n q ^ 0 , 2 q, = 1, { # ; } ; an orthogonal system of 
j 

vectors, iff 

F V V ... p*W 0,. = i*-(Hl)... p'l»>0, (21) 

for any permutation (iu ..., /„) of (1, 2, ..., n); Eu ..., En eB(l%) and any finite 
subsystem of observables and any vector <P/. If we put H0 = {&: <PeH, 0 fulfils 
(21)}, then H0e L(H). Moreover, H0 is the element defined by (17) anditreduces 
the observables {xs: seS}. 

Finally, let us note that an analogical division into three categories of com­
patibilities as in [1] may be done for the system of observables {xs: seS}: Let for 
the system {xs: s e S} the element a0 be defined by (17) (L is a separable logic). We 
may say that the system {xs: seS} of observables is (i) compatible if a0 = l, (ii) 
partially compatible if O^ao^l, (iii) totally incompatible if a0 = 0. Further 
investigation may then proceede similarly to that of [1]. 
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Резюме 

В этой статье исследуются критерии для существования совместного распределения вероят­
ности наблюдаемых на логике и их следствия. Полученные результаты обобщаются для случая 
бесконечной системы наблюдаемых. 
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