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ASYMPTOTIC PROPERTIES OF SOLUTIONS
OF THE »TH ORDER DIFFERENTIAL EQUATION
WITH DELAYED ARGUMENT

MARIAN RUSNAK—VINCENT SOLTES

In the paper an investigation of the nth order nonlinear differential equation
with delayed argument of a form ’

Ly()+ H(, yg@®) =b() O]

is made, where L,y is a differential operator of a form

L,y(®) = a,() (@, (D) (... (@ () (@ @) y())) ...)),

the functions a,(?), a,(?), ..., a,(t), b(1), g(¢) are continuous on [#,, oo) and H(t, y)
is continuous on [f,, o) x R. Further assume that g(¢) < ¢, g(¢) = oo for ¢t —» o©
and that q;(f) >0 on [t),©) fori=0, 1, ..., n.

We shall use the following notation:

Lyy()) = ag() y(0), Liy(t) = a()(L;_,y (1)), 2
I(t, 1) =1, I(t, ty,q,...,a;) =

t

= 1 I_ (s, ty, a,, ..., a;)ds, 3)
1o a,(s) .
Tt ) = —— It tyy @y ..y @), @
ay(?)
Ki(t’ tO) = ] Il(t’ tO’ an_la ey an—i), (5)
a,(1)

fori=1,2, ..., n
In paper [1] some asymptotic properties of solutions of the equation (1) were
studied whereby the function H(t, y) satisfied the assumption:

[H(t, )| < f(t.19), (6)
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where f(¢, r) is a continuous function on [¢,, ©0) X R, nondecreasing in r and

t . . . .
such thatjl—’—rl is nonincreasing in r, r > 0.
r
We shall consider the solutions of the equation (1) that exist on [¢,, «0) and

satisfy condition sup{|y(s)|, s > ¢} > 0 for every ¢ > ¢,. Let further

M = {y(1); y(¢) is an oscillatory solution of (1) such that lim y(r) = 0}.

Theorem 1. Let (6) be valid and furthermore let

f PO, < o (7)

fo an(t)

and J‘ﬂf({’ Jn—l(g(t)’ tO)) dt < 0. (8)
‘o an(t)

Then every solution of (1) has a property
y@)=0,_\(t, t))  fort— .

Proof. See the proof of theorem 1.1 in paper [1].
Theorem 2. Let the conditions of theorem 1 be satisfied and let there exist

f " b(s) ds
lim —— () - . ©)
S e
' a,(s)

The every solution of (1) is nonoscillatory.

Proof. Let y(¢) be an oscillatory solution of (1). Then the functions
L.y(t) are also oscillatory for i =0, 1, ..., n and then there exists a sequence
{t,}7_,t,— oo for n - oo of zero points of the function L, _, y(#). From (1) we
have

L,,_ly(z)=f j%ds— ﬁ(il—y((f)“—)”as (10)

for every t > t,. Since the conditions of theorem 1 are satisfied there exists ¢ > 1
such that

ly@E@) < cJ,_ (g (D), t).

From the properties of (6) we have

Sy < f(t,¢d, - 1(8(0), ) < f (1,J,_1(g(1), 1)) (11
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From the relation (10) by means of (6) and (11) we obtain
J b(S) ds\ + CJ f(s9-]n—l(g(s)a tO) dS,

n Qy (S) n a, (S)

IL, 1y (O =

wherefrom with regard to (7), (8) and the fact that ¢, —» oo it follows that there
exists lim L, _,y(¢) = 0. From the relation (10) we have that

J IO J‘” H(s,yEO) 4

12
w @,(S) " a,(s) (12
wherefrom
J b(S) dS SCJ‘ f(s"]n—l(g(s)’to)) ds,
tn @y(5) ty a,(s)
where ¢ is a constant 1 < ¢ < 0.
f_ﬂﬂd4
Hence —— n_(s) < ¢, which contradicts assumption (9). This
J‘ ./(S’Jn— l(g(s), tO)) dS
tn a,(s)

completes the proof of the theorem.
Example 1. We shall consider

1
YO + —2 )= 612, 10, (13)

(t2 + 1)3,3
The conditions of theorem 2 are satisfied and thus every solution of (13) is

nonoscillatory. The solution of the equation is, e.g. y(¢) = t7> + =%
Theorem 3. Let (7) be satisfied and let H(t, y)= a(t)h(y), whereby

lim A( y) = 0. : (14)
and J la(@l dt < o0 (15)
fo an(t)
) & ds‘
I liminf =% _1_pg- o, (16)
t— o0 J‘ ﬂds
o a,(s)

then the set M is empty.
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Proof. Let there exist the oscillatory solution y(f) of (1) such that
lim y(¢) = 0. From the condition (14) it follows that to any arbitrary positive
t— X

number y there exists T such that |i()(g(?)))| < y for every t > T. Let v < P.
From the relation (10) we have that

Jﬁ 56) ds‘ + YJN la(s) ds,
tw @,(5) tn @,(S)

from what with respect to (7), (15) and the fact that ¢, - oo for n — oo it follows
that limL,_,y(1)=0. Then from the relation (12) we have that

j Mds'=“Y‘[ Mds fort,>T.

IL, 1y (0l =

n a,,(s) n an(s)
But from the last relation it results that
[ 224
lim inf% <y<B,
" f la@) 4,
o @,(5)

which contradicts assumption (16), hence the set M is empty. This completes the
proof of the theorem.
Theorem 4. Let the conditions of theorem 1 be satisfied and if furthermore

l]m \[ Jn—l(g(t)’s)b(s) dS < o0 (]7)
=% 1Jdr an(s)
and ,
lim J T2 (g0, T 1@ t) 4o _ (18)
L= 7L oy an(s)

then every oscillatory solution is bounded.

Proof. Let y(f) be an oscillatory solution of (1). Then there exist T;

i=1,..,nsuchthat L,_y(T)=0,T<T <...<T,. Weintegrate (1) n-times
successively from T;to ¢ > T,, multiplying the result of the ith integration by the
function ; We obtain

a, _ i+ I(t)

.Yl

a)y() = J ! J ! J b6 — Hsy(g () dsds,_,...ds,,

T, ay(sy) In- 1 ay(s,) a,(s)
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wherefrom

) < ! j 1 J ! .._f‘""Ib(s)|+|H(s,y(g(s)))|dsds s
T ay() In ay(s) I ay(s) U a,(s) "
(19)

From the last relation we have by using (6) and notation (3), (4)
|y(t)| < J Jn— I(t’ S)lb(S)l dS + J\ Jn— I(t, S)f(s, |y(g(S))|) dS
5 a,(s) i a,(s)
Since g(¢) < t, g(¢) = oo for t - oo from the last relation is

()| < J P ACIO LIG PN

a,(s)

g(1)
te j oo (80, 9)/ (5T, 1 (89D, 1)) 4
n a,(s)

forevery t > T* such that g(¢) > T;. With regard to (17) and (18) we shall obtain
the assertion of the theorem.

Theorem S. Let the conditions of theorem 4 be fulfilled and if furthermore
lim J, _,(g(), %) < o, ' ey

(20)

then for every oscillatory solution y(t) of (1) lim y(¢) = 0.

Proof. Since J,_,t, 5) is a nonincreasing function in s from relation (20)
we have

g(1
ly(EI < J,_ (g, T) q ﬂ(sﬂ ds +

a,(s)

1 n

g(n)
+c f(s"]n—](g(s)’ to)) ds)’

i a,(s)

which, with respect to (21), (7), (8) and the fact that 7; may be arbitrary large,
leads to the assertion of the theorem.

Theorem 6. Let the conditions of theorem 1, (14), (16) and (21) be fulfilled.
Then every solution of equation (1) is nonoscillatory.

Proof. Let there exist an oscillatory solution y(#) of (1). From Theorem
5 it results that then there exists 'lim y(® = 0i.e. y(t)e M. Since the assumptions .

of theorem 3 be fulfilled we have a contradiction.
This completes the proof of the theorem.
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Theorem 7. Let the conditions of theorem 1 be satisfied and let furthermore

J K,_ (6. t)lb(r)] dt < o0, (22)
J\ Kr—l(t’ tO)f(t’Jn—l(g(t), tO)) dt < 0 k) (23)
lim infa,(f) > 0. (24)

Then for every oscillatory solution y(t) of (1) lim y(¢) = 0.

Proof. See the proof of theorem 1.2 in paper [1].

Theorem 8. Let the assumptions of theorem 7 and (14), (16) be satisfied.

Then every solution of (1) is nonoscillatory.

Proof. It follows from theorems 7 and 3.

Note. Sufficient conditions for the nonoscillation of equation (1)
presented in theorems 2, 6 and 8 are not equivalent, which results from the next
examples.

Example 2. Consider an equation

_3
2

(tSy"(t))’+%yf(t)=t . 1>0. (25)

The conditions of theorems 2 and 6 are not satisfied, but the conditions of
theorem 8 are satisfied and thus every solution of (25) is nonoscillatory. The
equation has a nonoscillatory solution, e.g. y(¢) = t.

Example 3. Consider an equation

NI

@y’ ()" + ————6———y5(t) =3/ , t>0. (26)

t2(t3/2 + 1)1/3 8 t

In the equation the conditions of theorem 8 are not satisfied but the conditions
of theorem 6, resp. 2 are fulfilled and thus every solution of (26) is nonoscillat-
ory. The equation has nonoscillatory solutions, e.g.

_3
2

y)=t3+1t
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ACUMITITOTUYECKHUE CBOWCTBA PEIIEHUH
JNOPEPEHIIMAJIBHOIO YPABHEHHUA n-OI'O IIOPSAKA
C OTKJIOHAIOIIMMCA APT'YMEHTOM

Marian Rusnak, Vincent Soltés
Pe3ome

B pabote uccienyroTcs aCHMNTOTHYECKHE CBOHCTBA pellieHuit nuddepeHIanbHOro ypaBHEHHS
n-oro mnopsaka B popme
Ly®+H@yg®)=5b(, mmnx2,

rae L,y(t) = a,(t) (@, _ (D) (... (@ (D (a (D) y (D)) ...)).
JIyis kaXkaoro ypaBHEHUsI MPUBOAATCS AOCTATOYHBIC YCJIOBHS, TIPH KOTOPBIX KaXI0€ pElLIeHHE
SABJIAETCS HEKOJICOTFOLIMMCS.
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