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THE STRONG LAW OF LARGE NUMBERS FOR 
O-CONVERGENT RANDOM VARIABLES 

RASTISLAV POTOCKY 

This paper is concerned with random variables which take values in a Dedekind 
a-complete vector lattice. A function is termed a random variable if it is the o-limit 
(i.e. the limit with respect to the order) both of an increasing sequence of 
elementary random variables and a decreasing sequence of elementary random 
variables. An elementary random variable is defined in the usual manner, i.e. as 
a function which takes on only a countable number of values, each on a measurable 
set. The purpose of the paper is to find sufficient conditions for a sequence of 
random variables to obey the strong law of large numbers with respect to the 
o-convergence, i.e. to ensure the o-convergence of the partial sums to 0 on a set of 
probability 1. 

Unlike the majority of papers dealing with the validity of the strong law of large 
numbers for random variables with respect to a topology (cf. [1], [2], [3], [4]), we 
do not assume very much about random variables. They need not be independent 
and in many cases we are not even interested whether their expectations (i.e. an 
integral) exist or not. On the other hand, however, we pay much attention to the 
type of the image space of random variables. Briefly speaking we consider two 
cases: the case, when in addition to the order a topology of the image space is given 
and the case without topology. 

There are two possible approaches to the problem we are dealing with. The first 
of them is to compare the o-convergence and the topological convergence in the 
image space, the other is to give sufficient conditions purely in the terms of the 
o-convergence. 

The first approach makes it necessary to explore relations between random 
variables as defined above (i.e. with respect to the o-convergence) and random 
variables with respect to a topology. (In what follows the latter are termed random 
elements to avoid a possible misunderstanding). Some results in this direction are 
given in [5] and will be mentioned below. 

As to the integral (i.e. the expectation) of a random variable with respect to the 
order, [5] gives two wide types of spaces in which such an integral is well defined. It 
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follows that discu sing the validity of the strong law of large numbers in such spaces 
we may distinguish between the case when random variables are integrable and the 
case when the integral does not exist. 

In order to make this paper more self-contained, the first part contains the basic 
notions, definitions and results which are required throughout the paper. The 
second part discusses the case when the image space is a vector lattice with 
order-units. In particular, the strong law of large numbers for random variables 
with values in the space of continuous functions on an extremally disconnected 
compact topological space is given. The cases of normed linear spaces, metrizable 
linear spaces and locally convex linear topological spaces are then discussed. The 
third part deals with spaces which are, in a sense, dual to those discussed in the 
previous chapter. It is shown that both Toeplitz' and Kronecker's Lemmas hold in 
such spaces. As a consequence we may prove the strong law of large numbers by 
using methods which are known in the real case. Finally, the case when no topology 
is given is considered. In particular, we obtain the strong law of large numbers for 
random variable with value m regular spaces. 

I 

We mention the basic definitions and notions which will be used throughout the 
paper. We also present a brief survey of results on which our theory is based. 

A vector lattice X is called Dedekind o-complete if every non-empty at most 
countable subset of X which is bounded from above has a supremum. 

An element e of a vector lattice X is said to be an order-unit if, given x in X, there 
exists a positive integer n such that — ne ^x^ne. 

Let (Q, S, P) be a probability space, X be any Dedekind o-complete vector 
lattice. A function f: Q-^Xis said to be an elementary random variable if there are 
a sequence of pairwise disjoint sets E(, E,eS, uE , = Q and a sequence {x,} of 
elements of X such that f((o) = x{ for every a) eE(. A function f: Q-+Xissaid to be 
a random variable if there exist an increasing sequence fn of elementary random 
variables and a decreasing sequence gn of elementary random variables such that 
fn((o)-+f((i)) and gn((o)-+f(o)) for every co eQ. 

If a topology on X is given, we may consider random variables with respect to 
this topology. (From now on they will be called random elements.) For our 
purposes it is enough to consider the case of a linear metric space. 

Let X be a linear metric space. A function f: Q-*Xis called a random element if 
f \B)eS for every Borel set B of X 

Since only strong laws of large numbers for random elements can be found in 
literature, the investigation of the relationship between random variables and 
random elements may be of certain value. In this direction we are able to prove the 
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following propositions. We recall to the first of them that a subset H of a cone K in 
a vector lattice exhausts K if for every x eK there exists h e H and a natural number 
n such that x^nh. 

Proposition 1. Let X be a complete separable linear metric space ordered by 
a closed cone K such that a countable set exhausts K and the mapping x—> \x \ is 
continuous at 0. Then every random element is a random variable. 

For the proof see [5]. 

Proposition 2. Let X be a complete separable linear metric space ordered by 
a closed cone with non-empty interior. Then every random element is a random 
variable. 

The proof is based on the fact that in such spaces the topological boundedness 
implies o-boundedness. 

A linear functional T on X is called 
a) monotone if Tx^O for all x ^ 0; 
b) order continuous if for each sequence xn in X with order limit x, Txn 

converges to Tx; 
c) o-bounded if it maps o-bounded sets into bounded sets; 
d) a lattice homomorphism if inf (Tx, Ty) = 0 for every pair of elements x, 

y e X satisfying inf (x, y) = 0; 
e) a lattice o-homomorphism if it follows from x = sup xn,n = \,2, ..., x,xn eX 

that Tx = sup TJC„. 
In what follows the set of all o-bounded linear functional and the set of all linear 

functional continuous with respect to a topology on X will be denoted X+ and X*, 
respectively. 

Proposition 3. Let X be a separable locally convex metrizable linear space with 
a closed ordering. Let a countable set exhaust the cone. Let xn—>x imply 
T(xn)—>T(x) for every TeX*. Then the uniform o-limit of every sequence of 
random elements is a random element. 

Proposition 4. Let X be a separable locally convex metrizable linear space with 
a cone K such that X* has a countable basis. Let xn-*x imply T(xn)—>T(x) for 
every TeX*. If Vn(co)-* V(o)) for every co e Q, Vn random elements, then V is 
a random element. 

Proposition 5. Let X be a separable locally bounded locally convex metrizable 
linear space, X* be separable in the strong topology. Letxn-+x imply T(xn)—> T(x) 
for every TeX*. If Vn((o)^> V(CD) for every co eQ, Vn a sequence of random 
elements, then V is a random element. 

For random variables this paper is dealing with we can define an integral of the 
Daniel type. For elementary random variables it can be done as follows: 
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An elementary random variable is said to be integrable if the series yLxlP(El) is 
absolutely o-convergent. (See the above definition of an elementary random 
variable.) The integral of f is then defined as follows J / dP = Hx,P(El). 

A straightforward adaptation of the Daniel extension method is possible 
provided the integral as defined above is continuous under monotone limits, i.e. 
fn [0 implies J/n dPjO. In [5] two types of spaces in which this condition is satisfied 
are given. We refer to the corresponding properties of these spaces as (A) and (B), 
respectively. 

(A) X is a locally convex space with an ordering given by a closed cone such that 

jcn-->x implies Txn^>Tx for every TeX*. 

(B) X is a vector lattice regularly ordered by a cone such that every o-bounded 
linear functional is o-continuous. 

Let (Q, S, P) be a probability space, X be a Dedekind o-complete vector lattice 
ordered by a cone such that either (A) or (B) holds. A random variable f: Q-^Xis 
called integrable if there exist an increasing sequence {/„} of elementary integrable 
random variables, such that fn[f and a decreasing sequence {gn} of elementary 
integrable random variables such that gn [f, both with uniformly bounded integrals 

The integral of f is defined by J7 dP = lim J7„ dP = lim J gn dP. 
n n 

Proofs of the above stated results and more facts on the inte ration of random 
variables can be found in [5]. 

II 

Definition 2.1. Let (Q, S, P) be a probability space, X be any Dedekind 
o-complete vector lattice. We say that a sequence fn of random variables obeys the 

strong law of large numbers (SLLN) if Sn(a)) = —^fk(co)^>0 on a set of 

probability 1. 
In the following lemma sufficient conditions for a sequence /„ of random 

variables to obey SLLN are given. 

Lemma 2.1. Each of the following conditions is sufficient for a sequence fn of 
random variables to obey SLLN. 

a) P{c/j;limsup \Sn(o))\ =0} = 1 
b) Vz>0Vn^\3o(n,z)->lVm^n 

P D {(o;\Sk((o)\^z}»o(n,z). 

Proof. Obvious. 
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We begin discussing SLLN with the case when the image space X contains an 
order-unit. An example of such a space is B(S) — the space of all bounded 
real-valued functions on a set S with the usual ordering. We recall that a norm is 
induced by an order unit e if \\x || = inf {a > 0 ; -ae^x^ae} for all x e X. 

Theorem 2.1. Let X be an ordered normed linear space with a norm induced by 
an order-unit. If a sequence fn of random variables obeys SLLN with respect to the 
norm, then fn obeys SLLN with respect to the ordering. 

Proof. It is sufficient to show that, given any natural k, there exists for each 

natural n a nonnegative number o (n, — e\ with the property that lim o (n, — e\ = 

1 for each k and such that for each m^nP f\\co; |S,(eo)| ^— eY^o In, —e\ .If 

an element co does not belong to lo; |S,(c0)| ^-r el for an index t, n ^t^m, there 

exists a continuous lattice homomorphism T, \\T\\ = 1, separating St((v) and — e, 
Kr 

i.e. |TS,(c0)|> — Te, since X contains an order-unit e. For such a functional we 
AC 

have T(e) = | |T| | , because the norm is induced by e. Hence ||S,(c0)||>—, by 

definition of the norm. Hence we have the following set inclusion 

n {«; |s.(o>)l *\«} = n {«>; l|s.(a>)||<\). 

Since fn obeys SLLN with respect to the norm, there exists an o (n, —J such that 

Pr){^;||S,(a>)||<i}^0(„,i)^l. 

The rest of the proof follows easily. 

Corollary 2.1. Let the assumptions be as above. If b\\f\\ denotes essential 

supremum of a random variable | |/ | | and if- JT b \\f11| —> 0, then {/„} obeys SLLN. 

Proof. Since P l J { w ; ||/,|| > 6||/r||} = 0 , we have lim sup P l ^ l i m s u p - ^ ^ 
\ n \\ n 

on a set of probability 1. 
This corollary can be compared with [2], th. III. 13. 
As mentioned above an example of the space from theorem 2.1. is B(S). In this 

case o-norm is equivalent to the usual supremum norm. Once the ordering is 
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changed, they may cease to be equivalent. (/" with Ps-ordering provides a required 
counterexample.) 

Corollary 2.2. Let X be an ordered linear space in which o-units exist with 
o-bound topology (i.e. with the largest locally convex topology making all 
o-intervals bounded). If fn obeys SLLN with respect to the norm, then fn obeys 
SLLN with respect to the ordering. 

Proof. The o-bound topology is the topology induced by each of its o-units. 
A natural example is l°°. 

Corollary 2.3. Let X be an M-normed Banach lattice (i.e. such that | | *vy | | 
= ||JC|| v \\y\\, x, y eP). If fn obeys SLLN with respect to the norm, then fn obeys 
SLLN with respect to the ordering. 

Examples of such spaces are L°°, D<P(X). (See [6].) 
Having in mind a key role which the spaces C(S) play in the theory of above 

spaces we present the following. 

Corollary 2.4. / / /„ is a sequence of random variables with values in C(S), S an 
extremally disconnected compact Hausdorff space, then fn obeys SLLN with 
respect to the ordering whenever it satisfies SLLN with respect to the norm. 

Sometimes it is more suitable to find sufficient conditions in terms of linear 
functionals which belong to a fundamental set. For this purpose we slightly adapt 
definition 2.1. 

Definition 2.2. A sequence fn obeys SLLN uniformly with respect to :T (a set of 
linear functionals) if for each a>0 

limWn{w;|75-(û>)|<-}) = 
n \k=n / 

uniformly for T e3~. 

Theorem 2.2. Let X be a normed linear space with an o-unit norm and with 
a separable dual space with respect to the weak topology. Let fnHobey SLLN 
uniformly for 3~= {T; T-continuous linear functional, | | F | | ^ 1 } . Then fn obeys 
SLLN with respect to the ordering. 

It is well known that if a space X has an o-unit, then lattice homomorphisms 
separate points of X. We also know that so-called locally directed spaces (i.e. 
spaces in which the upward-directed neighbourhoods of 0 form a local base) have 
the latter property. (A set A is directed upwards if, given two elements a, b of A, 
there is an element c of A that a^c and b^c.) In order to prove SLLN for such 
spaces (they need not to have o-units, e.g. s, c0) we require the existence of a set of 
linear functionals with a special property. 
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Theorem 2.3. Let X be a locally directed normed linear space with a set of 
o-homomorphisms dense in the set of all lattice homomorphisms. If a sequence fn 

obeys SLLN with respect to the norm, then fn obeys SLLN with respect to the 
ordering. 

Proof. Since fn obeys SLLN with respect to the norm, there is a set C of 
probability 1 such that for each a) e C||Sn(c0)||—>0. Let (o denote an element of this 
set such that inf sup \Sn((o)\=z>0.By hypothesis, there is a a-homomorphism T 
separating z and 0, i.e. 7z = c > 0 . We have then 

||T|| inf sup ||Sn(c0)|| ^inf sup \TSn((o)\ =c > 0 - » 

infsup | |S n (aj) | |^Tr^>0, 

a contradiction. 
A natural example of the space to which the previous theorem is applicable is c(). 

Definitions 2.3. Random variables f and g are said to be weakly orthogonal if 
E (TfTg) = 0 for each TeX*. 

Corollary 2.5. Let X be a locally directed normed linear space with a countable 
set of o-homomorphisms dense in the set of all lattice homomorphisms. Let fn be 

E(Tf Y 
a sequence of weakly orthogonal random variables such that 2 [n converges 

for each TeX*. Then fn satisfies SLLN. 
Proof. Since random variables are weakly orthogonal, SLLN holds for each 

a-homomorphism. If there were an element (o£u{(o; TSn((o)-&0} such that 
inf sup |Sn(c0)| =z > 0 , a a-homomorphism T would exist for which inf T(z, °o)> 
0, a contradiction. 

Theorem 2.4. Let Xbea locally directed space with a metric given by a system of 
M-seminorms {/?} (i.e. p(xvy) = p(x)vp(y), x, yeP). If a set of 
o-homomorphisms dense in the set of all lattice homomorphisms exists, then any 
sequence fn of random variables which obeys SLLN with respect to the metric 
satisfies SLLN with respect to the ordering. 

Proof. If for an element (o inf sup \Sn(co)\=z>0, there is a a-homomorphism 
T separating z and 0. There are a seminorm p and a real number c such that 

\Tx\^cp(x) for each xeX. If Tz = d>0, then inf sup p(Sn((o))^->0, a con­

tradiction. 
A known example is s. 
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III 

In this chapter we consider spaces of the type A and B, respectively. The most 
interesting example of such spaces are Lp -spaces (1 <p < oo). First we prove that 
Toeplitz' and Kronecker's Lemmas hold in such spaces. 

Toeplitz's Lemma. Let X be a space of the type A(B). Then xn-+x implies 

1 -A o 

Proof. There are an increasing sequence yn and a decreasing sequence zn such 

that yn *^xn<zn and yn \x [zn. Since yn ]x implies Tyn |Tx , we have — ^ Ty, —> Tx. 

Hence we have — ^y,-*x, because X is of the type A(B). Since — ^ y , is an 

increasing sequence and since — Yy , ^ — Yx , ^ — Yz . , the result follows. 

Kronecker's Lemma. Let X be of the type A(B) Then the o-convergence of 
x x 1 n 

2) -T implies that — ^x,—>0. 
i i n x 

Proof. See [7], page 203. 

Theorem 3.1. Let X be a normed vector lattice of the type A with X* separable 

in the weak topology. Let fn be a sequence of random variables for which ]T l"n ' 

converges. Then fn obeys SLLN with respect to the ordering. 
Proof. Owing to Kronecker's Lemma it is sufficient to show that 

P (o>;infsup I j ^ = o l = l . 
I k p U+i i J 

In fact, it is enough to prove that for a fixed sequence zn,zn eX, zn JO we have 

P (co; inf sup l^f T ^ Z „ } = 1 

for each n. 
Let z > 0 be given. The set 

{ \k+p f 1 
a); inf sup 2 • <Cz\ k p U+i i J 

is measurable because it may be written in the form 

{ a); inf sup j sup h, \ ^ z \ , ht= ^ T 
I * P l l - S K p J J * + l • 
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and the measurability of the latter set follows from the relation 

| a); inf sup j sup ht\ ^ z | = f l | <u ; inf sup T {sup ht} ^ Tz \ 

and because T {sup rz,} are random variables with values in R. We have 

PL; inf sup 2 ^ ^ z ) ^ P \a>; inf sup Y! • ^z]& 
I k p k + l l ) y . k + l I ) ' 

Pnn fc0;infsup 2 ^V^^aA^P I<o ; inf sup 2 ^ ! £ U < i } 
TUnlO I k + l I J I k + l I J 

— d = 1 — d for every d > 0, because the sum of continuous linear functional is 
a continuous linear functional and because of the validity of the theorem on the 
diagonal sequence in R. ((an) means a sequence of real numbers.) 

Theorem 3.2. Let X be an AL-space (i.e. a normed Banach lattice in which 
||JC + y || = ||x || + ||y||, x, y eP) with X* separable in the weak topology. If for 

hf 
a sequence fn of random variables the series 2 • o-converges, then fn obeys 

SLLN 
Proof. 

PL; inf sup 2*f ^z\^P \co ; inf sup 2 ^ U a } -

-rfspH",su4'¥sii#iíH= 
= p{<w; inf sup 

imi. 

-^mH-1-
since in spaces ordered by a normal cone the o-convergence of 2 • implies its 

convergence for each T e X * , which consequently implies the convergence of 2 • 

with respect to the norm. (See [6], page 113.) 

Theorem 3.3. Ler X be a locally convex space of the type A which is a vector 
lattice with X* separable in the weak topology. Let fn be a sequence of integrable 

random variables such that 2 — ^ W(X, X*)-converges. Then fn obeys SLLN. 

Proof. We have 

P fa>;inf sup 1*2 T I ^ Z U P fo>; inf sup 2 ^f^^a\-d 
I k P \k+l i\ ) y k P k+l i ) 

109 



for each d > 0 . Since ^ — r ^ - — X — ^ " a r-d since, by Beppo—Levi heorem, 
TI -f I IT"—f I ̂  I 

^ —T-^ converges a.e. provided that ^ —r-1-- converges, the result follows. 

In the second part of this chapter the case of a space without topology will be 
discussed. Our final aim is to prove SLLN for regular spaces, l. . for vector lattices 
with the diagonal property for o-convergence. 

Theorem 3.4. Lef X be a Dedekind o-complete vector lattice of th type B, X+ 

being separable with respect to w(X+, X)-topology. Iffn is a sequen e of I able 

random variables such that the series ^ —r11 w(X, X+)-convergesy then fn obeys 

SLLN. 
Proof. Analogous to that of theorem 3.3 

Corollary 3.1. Let X be a Dedekind o-complete regular space such that X+ 

separates points of X and is separable in w(X+,X). Let fn be a sequence of 
E\f\ 

integrable random variables such that ^ —r11 w(X, X+)-conver es. Then SLLN 

holds. 
Proof. If a vector lattice has the diagonal property, then every o-bounded linear 

functional is o-continuous. 
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УСИЛЕННЫЙ ЗАКОН БОЛЬШИХ ЧИСЕЛ 
ДЛЯ ПОРЯДКОВО с х о д я щ и х с я СЛУЧАЙНЫХ ВЕЛИЧИН 

Растислав Потоцкий 

Резюме 

В работе изучаются случайные величины с значениями в некоторой векторной решетке. 
Первая часть содержит необходимые для дальнейшего исследования понятия" и результаты. Во 
второй части доказывается усиленный закон больших чисел для случая векторной решетки 
с порядковой единицей. В последней части приводится усиленный закон больших чисел для 
пространств, в которых справедлива лемма Кронекера. 
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