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ON THE LATTICE GROUP VALUED SUBMEASURES 

PETER VOLAUF 

ABSTRACT. Let G be a complete, weakly a-distributive lattice group and X be a set 
of the power of the continuum. Under the continuum hypothesis it is proved that 
there does not exist a non-trivial G-valued (sub)measure on the algebra of all subsets 
of X that assigns the measure 9 to each singleton of X. 

Introduction 

Does there exist on the class of all subsets of a given set X a finite non trivial 
measure that assigns measure 0 to each singleton of XI It is evident that no such 
measure can exist if X is countable. It is shown in [1] that under the assumption 
of the continuum hypothesis no such measure can exist if X has the power of 
the continuum. 

In 1986 R iecanova [4] raised the above question for Stone algebra val
ued measures. The aim of this note is to strengthen and generalize the results of 
[4] for vector lattice and lattice group valued measures and submeasures. The 
theory of vector lattice valued measures was developed in the series of papers 
of Wr igh t in the 1970s (e.g. [9], [10], [11]). Some of his results were exten
ded for ordered group valued measures (e.g. [3], [7]). 

Our terminology, notions and notations are used in the sense of [2] and [10]. 

1. Preliminary results 

The range of our measures and submeasures are vector lattices and lattice 
groups. It is known [1] that a complete lattice group is a commutative group. We 
recall that a a-complete lattice group G is said to be weakly a-distributive if, 
whenever a = a^l 0 (j-> oo), / = 1, 2, ..., n, ..., then 

A{\/«/«(/)I ^: -v--vj = ft 
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Let C(S) be a space of all continuous real valued functions on a compact 
Hausdorff space S with the usual linear structure and pointwise order. It is 
known ([6], [2]) that C(S) is a complete vector lattice iff S is extremally discon
nected. Wright ([9], Lemma L) gave a beautiful characteriztion of weak a-distri-
butivity of C(S); a a-complete Stone algebra C(S) is weakly a-distributive iff 
each a-meagre subset of S is nowhere dense (a set is a-meagre if it is a subset 
of the union of a countable family of closed nowhere dense Baire sets). 

There is another form of distributivity: (a, oo)-distributivity which turns out 
to be a strictly stronger condition than weak a-distributivity ([10]). A a-com
plete vector lattice W is weakly (a, oo)-distributive if, whenever {An} 
(n = 1,2,...) is a sequence of downward directed non-empty subsets of W ŝuch 

oo 

that [J An is ordered bounded and /\An= 0 for each n, then 

л|\/ф(")1феПА} = 0-

A a-complete Stone algebra C(S) is weakly (a, oo)-distributive iff every meagre 
subset of S is nowhere dense (see [10], lemma 2.3). 

We define a notion of a lattice group valued submeasure as an analogy of the 
C(Syvalued submeasure from [4]. Let (Q, 9) be a measurable space and G a 
lattice group. A map m: 9 -> G is said to be a (finite) G-valued submeasure if 

(i) m(A) = 9 for each A e9, 
(ii) m(A) = m(B) whenever A a B, A,Be9, 

(hi) m(A u B) = m(A) + m(B) for all A, Be9, 
00 

(iv) /\ m(An) = 6 whenever (An)n is a monotone decreasing sequence in 9 
n= 1 

oo 

with Q An = O. 
n= 1 

It is easy to see that a (/-valued submeasure is continuous from below, i.e. 
m(A) = \J m(An) whenever An S A. If we suppose instead of (iii) additivity of 
m, we call m a (7-valued measure. It is clear that in that case 

m ( Ů - ^ = VÍ !>(-?*)} 
\/7=l / /7=1 U = l J 

whenever (£„) is a sequence of pairwise disjoint elements of 9. 
In the end of this part let us point out why the assumptions used in [4] can 

be formulated in a somewhat more general form. The main result of [4], 
Theorem 2.1, works with Stone algebra C(S), where S is such that each meagre 
subset is nowhere dense. When we inspect the proof of that theorem we can find 
that the set of those seS where supf(s) < (\/fn)(s),fneC(S), (fn) is bounded 
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from above, plays the key role and that the set {seS: sup/„(s) < (\Jfn)(s)} is not 
only meagre but even or-meagre (lemma K in [9]). The countable union of such 
sets is a-meagre again, thus it is sufficient to assume that a-meagre sets are 
nowhere dense. According to Wright's results (lemma 2.3 in [10], lemma L in [9]) 
it means that it is sufficient to assume weak a-distributivity of C(S) instead of 
its (a, oo)-distributivity, as the author states in [4]. 

2. Results 

In this part the range of m will be a complete, weakly a-distributive lattice 
group. We completely abandon the topological methods of [4] and substitute 
them by the following computational lemma. 

Lemma. Let G be a a-complete lattice group and (atj) be a double sequence of 
elements of G such that atJl 6 (j-> oo) for each ieN. Then to every beG, b > 6 
there exists a bounded sequence (by) such that btjl 6 (j-» oo) and such that for 
every 0: N-+ N 

( 00 \ 00 

P r o o f The following assertion (see lemma 3.3 in [5]) plays an essential 
role in the proof: Ifd, cu c2, . . . ,c„eG+ andd A (2kck) ^ c(k = 1,2, ...,n), then 

d A (c, + c2 + ... + cn) = c. 

Put bSJ. = b A (la;/) for all ij = 1 , 2 , . . . . Evidently btjl 9 (j-> oo) for i = 1, 
2, .... Let 0: N -> N be arbitrary. Plainly b A (2'a/0(O) = bim ^ b for / = 1, 
2, . . . . Applying the above assertion 

oo 

b A (2'a/<w) ^ V b/0(O for i = l - 2 , . . . , / ! 
/ = i 

implies 
00 

b A (a^D + a20{2) + ... + an0{n)) = V b i m for 
/ = I 

n = 2, 3, Finally 
/ C O \ 00 

b A ( X 0/<D(/) ) ^ V * / W 
\ / = l / /=1 

Theorem 1. Let ws assume the continuum hypothesis. Let (Q, if) be a measur
able space and E a set of the power of the continuum. Let G be a complete, weakly 
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^-distributive lattice group. Let m be a G-valued submeasure on Sf. When 
{Ax: xeE} is a family of pairwise disjoint sets in Sf such that vj {Ax: xeF}eSf 
for all F c £ , then 

m{Kj{Ax: x€E})= v {m{<j{Ax: xeI})\I<=E, I is finite}. 

P r o o f Plainly m{\j{Ax; xeE}) is an upper bound for the upward direc
ted system {m (u {Ax: x e I}) | / c E, I is finite}. For the reverse inequality we use 
the Banach—Kuratowski theorem which states that if the continuum hypoth
esis holds and E is a set of the power of the continuum, then there exists a double 
sequence {Ey) of subsets of E such that 

(i) EgSE O ' -oo ) 
oo 

(ii) for all &: N -»N (~) Emi) is a countable set. Let 0: N -> N be arbitrary 
/ = 1 

GO 

and denote the points of f] Ei<Hi) by JC,, x2, ..., xn, .... By the continuity of m 

m(AXxv AX2v ...v AXnv ...) = v {m(AX{ u ... u Ax): n=\,2, ...} 

and evidently 

v {m(AX{v ... vAx): n = 1, 2, ...} ^ v {m(u{Ax: xel}): I c E, I is finite} 

Set b = m(u{Ax: xeE}) and 

a = v {m(u{Ax: xel})\la E, lis finite}. Then 

b - a = m(u {Ax: xeE}) - m(AX[ u AX2 u ... AXn u ...) = 

m íu|Av: xe£ - nE^iWmíujA^: xe Q {E - E^nW 

co 

/ = 1 

Define a{j = m(u {^: xeE — Efj}). It is easy to verify that a/y| 0 (j-> oo) for 
CO 

/ = 1, 2 ..., since p) (u {Ax: xeE — £,,}) = 0 (Ax are pairwise disjoint and m is 
7 = 1 

oo 

continuous at 0). So we have b — a ^ £ <*/<*>(/) an(* applying the lemma there 
/ = i 

exists a bounded double sequence (bt) in G such that b/yi 0 (j-> oo) and 

Ь-a-źb л £ a/Ф(í) ̂  V -'мrø 
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for all 0: N-+N. Thus b - a = inf i \J bmf) \ &: IV -> IV i = 9 according to the 

weak G-distributivity of G. This establishes the theorem. 
Theorem 2. Let us assume the continuum hypothesis. Let (X, Sf) be a measur

able space and X a set of the power of the continuum. Let G be a complete, weakly 
^-distributive lattice group. Let m be a G-valued submeasure on Sf such that 
m({x}) = 9for all xeX. If there exists a set EeSf such that m(E) > 9, then there 
exists F a X such that F£ Sf. 

Proof. Let us assume that EeSf for every E a X. Then E = u{{x}: xeE} 
and by Theorem 1 

m(E) = v {ra(u {{x}: xel}): I cz E, I is finite} = 9 

as m(u {{x}: xel}) = £ m({x}) = 9. 
XЄÍ 

It is possible to extend this result for a-finite lattice group valued sub-
measures but it was done in [4]. Actually, part 3 of [4] does not use the fact that 
the values of m are elements of C{S). 
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