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ABSTRACT . In the paper a connection between sums of integral parts and the 
class number is given. 

Let / p be odd primes. Let H0 be a subgroup of the group (Z/pnZ)* of 
index /. The cosets of (Z/p"Z)* with respect to the subgroup H0 will be denoted 
b\ H?, i e { 0 , 1 , 2 , . . . , / - 1 } = / . 

The following definitions are taken from [1]. 

DEFINITION 1. ([1]) A subset T{ of a coset H7 will be called a semisystem 
(in H?) if for each x G Hi exactly one of the residue classes x , — x belongs 
to F?.. Clearly 

#H0 p(pn) Pn~l{p-l) m = 21 21 

for every semisystem Tx. 

DEFINITION 2. ([1]) Given a positive integer a coprime to p and a semisystem 
T{ for some i G / , let 

g(a,ï) = ]Г 
Z£TІ 

g(a,i) = Y^ 
z£Ti 

az 
pn 

2az 

+ 

+ 
2z 

for a odd, 

for a even. 

(i) 

(2) 

Note that in [1; Proposition 2] it is proved that the value g(a,i) mod 2 is 
independent from the choice of the representant of a modulo pn. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 11R29. 
K e y w o r d s : class number. 

59 



STANISLAV JAKUBEC 

D E F I N I T I O N 3. ([1]) Denote by G the set of all a e (Z/pnZ)* such that 
g(a,i) = g(a,j) (mod 2) for all i,j £ I. 

In [1] it is proved that G is a group and it holds that either G = H0 or 
G = (Z/pnZ)*. 

The aim of this paper is to give a necessary and sufficient condition for 
G = (Z/pZ)* (hence n = 1) in case that 2 is primitive root modulo / (hence 
/ = 3 ,5 ,11 ,13 ,19 . . . ) and 2 is not an / th power modulo p. If / = 3, then 
p = 163 is the first prime such that G = (Z/pZ)*. 

THEOREM 1. Let K be a real number field with prime conductor p, where 
[K : Q] = I is prime. Let 2 be a primitive root modulo I. Suppose that 2 is not 
an lth power modulo p. Then G = (Z/pZ)* if and only if hK is even. 

P r o o f . 
1. We shall prove that if G = (Z/pZ)*, then 2 | hK. Let UK, [/+ and U2

K be 
the group of units, the group of total positive units and the group of quadrates 
of K. respectively. Suppose that UK ^ UK: hence d\m2UK/UK = d > 0 . 
0 r i a t [3] has proved that if —1 is a power of 2 modulo /, then 2d \hK. Since 
2 is a primitive root modulo /, —1 is a power of 2 modulo /, and from d > 0 
we have 2 | hK. 

Let UK = UK. Since G = (Z/pZ)*, according to [1; Proposition 6] all 
positive units of the group C(K) (the group of cyclotomic units of K) are 
totally positive, and from UK = UK it follows that they are quadrates. It eas­
ily implies that the index [UK : C(K)] is of divisibility 2 / _ 1 . By [4] and [5], 
hK = mdex[UK:C(K)}. 

2. We shall prove that 2 | hK, then G = (Z/pZ)*. Here, the following 
theorem proved by M e t s a n k y l a [2] will be used. 

THEOREM (METSANKYLA). Let K be a real abelian field with conductor p. 
an odd prime. If the class number of K is even, then 

n i > i X ( 0 = 0 (mod 2), 
X ? - l » = 1 

where the product extends over all nonprincipal characters x °f K and where 

0 for i = 0 or p (mod 4) , 

1 otherwise. 

If this Theorem is applied on the case that the degree [A" : Q] = / is prime 
and 2 is a primitive root modulo /, we have: If 2 | hK. then 

p - i 
2 

Y^aiX(i)=0 (mod2) 
í = i 
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The above congruence can be rewritten to the form 

A0 + A& + A2tf + ••• + A,_xCj-1 = 0 (mod 2) ; 

hence 
A0 = Aг = A2 = • • • = A^ (mod 2), 

where 

__. = #{z : z = 1 or 2 (mod 4), z G H-, z < §} for p = 3 (mod 4), 

and 

A. = #{z : z = 2 or 3 (mod 4), z G H{, z < §} for p = 1 (mod 4). 

It is enough to prove that if 

_40 = Ax = A2 = • • • = Al__1 (mod 2), 

then G = (Z/pZ)*. 

Let p = 3 (mod 4). Since 2 ^ H0, we have ^- £ H0. The number E=-- is 
odd. Substituting a = %=- into (1) we have 

£ 
zeHi 

It is easy to see that there holds 

V -Ľ 
zЄ#. 

Z Z 

2 ~~ 2p_ 

z<\ 

'_ _ ±] _ í § -
.2 2PJ 1 5=1 

§ - 1 if 2 = 0 (mod 2), 

2 if * = 1 (mod 2). 

From the above we get that 

zíHi 
z<\ 

2 •* 

P 
#{2 : 2 = 2 (mod 4), zЄH^, z < f} 

+ # { 2 : 2 = 0 ( m o d 2 ) , г Є Я ; , 2 < f } 

+ #{2 : 2 = 3 (mod 4), zЄH^, 2 < f} 

#{2 : 2 = 2 (mod 4), 2 Є # г , z < f } 

+ 
P - I 

2/ 
#{2 : 2 = 1 (mod 4), z e Я ^ , 2 < f} 

- #{2 : 2 == 3 (mod 4), zЄH{, 2 < f } 

+ #{2 : 2 = 3 (mod 4), 2 Є Я ť , 2 < f } 

P - l 
2/ 

+ #{2 : 2 = 1 (mod 4), z€Hit z < f } 

+ #{2 : 2 = 2 (mod 4), zЄЯ,., 2 < f} (mod 2). 
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It follows that 2 I 1 G G , hence G = (Z/pZ)*. 

If P = 1 (mod 4), then ^ ^ F 0 . The number £+i i s o d d . Substituting 
o = 1L~- into (1) we have 

Clearly 

Hence 

ZЄHІ 

+1 , 

P 

E 
p+1 , 

гЄ#; L 
A ^ 2 

2 + Џ 

z z 

2 + 2р. 

_ f § if z = 0 (mod 2), 

1 ~ if z = 1 (mod 2). 

= # { 2 : z = 2 (mod4), ZЄHІ, z<\) 

4- #{2 : z = 3 (mod 4), * € / / , . , z < § } (mod 2). 

Hence 2±i e Q, therefore G = (Z/pZ)*. Theorem 1 is proved. D 
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