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INTEGRATION WITH RESPECT TO 
ORTHOGONALLY SCATTERED MEASURES 

M A R I A C R I S T I N A ISIDORI — 

A N N A M A R T E L L O T T I — A N N A R I T A SAMBUCINI 

(Communicated by Miloslav Duchoň) 

A B S T R A C T . We compare the Bochner and the monotone integrals for scalar 
measurable functions with respect to vector measures ranging on a Hilbert space. 

1. Introduction 

In Stochastic Integration, when it is necessary to integrate with respect to 
two-summable stochastic processes with independent increments, orthogonally 
scattered measures arise in a natural way ([9]). 

In 1981 C h a t t e r j i [2] showed that every finitely additive measure m : 
E -» H which ranges on a Hilbert space can be looked as a projection of a finitely 
additive orthogonally scattered measure m : E —>> iif, called an orthogonally 
scattered dilation of m . 

A lot of authors have studied the problem of integration when the set function 
is a vector measure, but only in the last fifteen years it was possible to obtain 
meaningful developments in the integration on locally convex topological vector 
spaces. 

The aim of this paper is to compare two classical definitions of integral with 
respect to a vector measure in a Hilbert space H. The two kinds of integrals 
considered are the Bochner integral, which is defined as a limit of integrals of 
a defining sequence of simple functions, and the De Giorgi-Letta integral which 
was defined for scalar integrands in [12] and [3], and further investigated in [4] 
and [6]. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 28A70. 
K e y w o r d s : orthogonally scattered measure, orthogonally scattered dilation, monotone inte
gral, Stone transform. 

Lavoro svolto nell' ambito dello G.N.A.F.A. del C N . R . 
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The problem was already studied in [1] by B r o o k s - M a r t e l l o t t i for 
finitely additive measures ranging in Banach spaces and afterwards by M a r t e 1 -
l o t t i [8] for finitely additive measures on locally convex topological vector 
spaces. 

Now, when H is a Hilbert space, the existence of an orthogonally scattered 
dilation allows to obtain a better comparison between the two integrals, when 
the functions are integrated either with respect to m or with respect to any 
orthogonally scattered dilation m, and it yields sufficient conditions for the 
equivalence between them. 

2. Preliminary remarks 

2 .1 . N o t a t i o n . 

Let Ft be an arbitrary set, S a cr-algebra of subsets of Q. 17, B be separable 
Hilbert spaces, X a Banach space, X' its dual and Bx, the unit ball of X'. 
Let m: S -> X be a bounded finitely additive measure (f.a.m.). We denote by 
||m|| the semivariation of m and, if m is b.v., \m\ is its variation. We say that 
A: S -> IRQ" is a control measure for m if A is equivalent to | |m||. A is a Rybakov 
control for m if there exists xf G X' such that A(-) = \(x' | m)|(-). 

2.2. Some defini t ions. 

A measure m is s-bounded if and only if for every (An)n in S with An flj4m 

= 0 from n y - m it follows that lim m(A ) = 0. 
n—• oo 

If m is s-bounded we can define the *-semivariation of m as follows: for 
every A G S 

||m|r(A) = sup{|<x'|m>|(A): x'€ Bx,} . (1) 

We can observe that ||m||* is equivalent to ||m|| since for every A G S it is 

| | m | | ( . 4 ) < | H r ( A ) < 2 | | m | | ( A ) . (2) 

Let m: S —> H be a finitely additive measure such that 

(m(A),m(B)) = 0 if _4 n £ = 0 . 

m is said to be a f.a.o.s. measure (orthogonally scattered finitely additive). 

Observe that if m is a f.a.o.s. measure then | |m||2: S —•> R "̂ is a finitely 
additive measure. The f.a.m. thus obtained will be called the finitely additive 
measure associated to m, and will be denoted by / i m . 
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2.3. T h e S tone space . 

Let (5, G) be the Stone space associated with (f2, S ) , where G is the algebra 
of clopen sets of S, h: £ -> G the Stone isomorphism and Ga the a -algebra on 
S generated by G • 

If m is a finitely additive s-bounded measure then we can define a measure 
m: G -> X as follows: m(G) = m(h~l(G)) for every G G G• Since m is 
s-bounded m can be extended to GG in a countably additive way; the measure 
m will be called the extended measure of m. 

For the reader's convenience we shall report some definitions and results that 
we shall largely use in the sequel. We refer to [11], [10], and [1] for the proofs. 

DEFINITION 2 . 1 . For every m-measurable function / : fi —> R we define the 
function / : S —r R as follows: 

J(s) = sup{a G R : 5 g / i ^ " 1 ( ] -oo , a [ ) )} . 

/ satisfies the following properties: 

• / is a continuous function; 
• if /-_, / 2 are m-measurable and c G R then: 

(2.1.1) 3/7 = 0 / , ; 
(2.1.2) I f / , < / 2 then / . , < / - ; 
(2.1.3) f1 + f2 = fl+f2; 
(2.1.4) For every A G S , / x • 1^ = / x • lh^\ • Hence, if / is a simple 

n n 

function: / = E x
i
1

Ai
 t h e n / = E M h ( A 0 5 

(2.1.5) |7xl =17x1. 

PROPOSITION 2.2. Le£ «v: £ —> R̂ j" be af.a.m. and f: ft -> R be a v-measur-
able function. Then for every t G R one /ias 

17(7 > t) < i/(/ > t) < 17(7 > t) . (3) 

P r o o f . Let t G R be fixed. We set Ht = (h(f~l ( ] - o o , * [ ) ) V . If s G Ht 

then 5 g / ^ ( / - ^ J - o o , ^ ) ) , and so 7(a) = sup{a G R : 5 $ / i ( / _ 1 ( ] - o o , a [ ) )} 
> *; hence HtC {J>t}. 

If 5 G Hc = ^ ( / - ^ Q - o o , ^ ) ) then 5 G / ^ / " ^ Q - o o , a[)) for every a > t 
and so J(s) < t. Then Hc C {J <t} i.e. # t D {J > t}. Since 

v(f >t) = i /((-oo < / < t)c) = ^ ( / - ' ( l - o o , * ! ) ) 0 ) - I7(frt) 

we have the assertion by the monotonicity of V. • 
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COROLLARY 2.3. If m: £ -> II is an s-bounded f.a.m. and m is the extended 
measure of m, then 

iimir(7>*)<iHr(/_>*), (4) 
\M\*(f>t)<\\m\\*(7>t). (5) 

2.4. Integrals w i th respect to a vector finitely add i t ive measure. 

In [1] J. B r o o k s and A. M a r t e l l o t t i have introduced the following 
definition: 

DEFINITION 2.4. A measurable function / : ft -> R is m-integrable if there 
exist a control measure A: E -» RQ~ and a sequence of simple functions (fn)n 

such that 

(2.4.1) fn A-converges to / ; 

(2.4.2) (ffn dm)7 converges on II for every F G S . 
F 

Then we set 

/ / dm = lim / / dm 
/ n->oo / 

and Ll(m) denotes the set of m-integrable functions. The sequence (fn)n will 
be said a defining sequence for / . 

Let m : E —)> II be an s-bounded f.a.m.. Given an m-measurable function 
/ : ft —> [0, oo[, we introduce the following functions: (p: [0, oo[ —r II and 
(p,Tp: [0, oo[ —> [0, oof defined as follows: 

(p(t) = m(u) e ft : f(u) > t) , 

<p{t) = \\m\\(uen:f{u)>t), 

Tp(t) = ||m||2(u; G fi : f(u) > t) . 

In order to compare the m-integral with an extension of the De Giorgi-Letta 
integral we introduce the following definitions: 

DEFINITION 2.5. Let / : ft —> [0, oo[ be an m-measurable function. / is 
(~) -integrable with respect to m if and only if (p is Lebesgue integrable; in this 
case in fact (p is Bochner integrable and we can set 

oo 

ff dm = f <p(t) dt; 
o 

if / takes values in R we say that / is (*) -integrable if and only if / + , / " are 

("") -integrable. We denote by Lx(m) the set of (")-integrable functions. 
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D E F I N I T I O N 2.6. Let m be a f.a.o.s. measure and / : fi -» [0,oo[ be an 
ra-measurable function. / is (~)-integrable with respect to ra if Tp is Lebesgue 
integrable. If / takes values in R we say that / is (~)-integrable if and only 
if / + , /~ are (~) -integrable. We denote by Z1(ra) the set of (~)-integrable 
functions. 

3. Comparison between Ll(m) and Ll(m) 

We shall prove that under suitable conditions L1 (ra) and L1 (ra) are equiv
alent. In order to do this we begin with some propositions. 

PROPOSITION 3.1. Let ra: £ -> H be an s-boundedf.a.m. and A =-- |(x0 | ra)|, 
with \\xQ\\ = 1, be a Rybakov control for m. If f: fi —> R is m-integrable then 
ftLHX). 

P r o o f . Since / G L1 (ra), there exists a sequence of simple functions (fn)n 

A-converging to / . Moreover it is easy to check that 

| /(/ f c-/JdA|</|/ J b-/Jd|(x0 |m>| 
F F 

= varl(x0 | J (fk-fn)dm\ 

< 2 sup (x 0 I / ( / f c - L J d m 
GeFns | \ < J 

G 

< -|| fifk ~ L) dm ||= 2 sup \x* hfk ~ fn) dm 
\\ J \\ X* J 

(F) 

< 4 sup / (fk - fn) dra 

G 

and, as by [1; Remark 2.4], the convergence in (2.4.2) is uniform with respect to 
F G S , and since (f fn dra)n is Cauchy in H, it follows that (f fn d^)n is 

F F 

also Cauchy. • 

Remark 3.2. Note that if ra: S -> H is a bounded count ably additive measure 
(shortly a measure) and A is a control for ra by [5] there exists a function g 

Pettis integrable such that g = -?y. If g is bounded, ra is of bounded variation 

and |m|(-) < kX(-) where k is such that ||g(^)|| < k for every LJ G fi. 
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We first prove the equivalence in the countably additive case. In the sequel 
without loss of^generality we shall always assume, when considering real / G 
Ll(m) or / G Ll(m), that / is non-negative. 

PROPOSITION 3.3. Let m: £ —•» H be a bounded measure, X a Rybakov con
trol for m. If g — -r?- is bounded then f G L1 (m) if and only iffeL1 (m). 

Q A 

P r o o f . By [1; Theorem 3.9] the inclusion Ll(m) C Ll(m) holds. Con
versely if / G Ll(m) then, by Proposition 3.1 we have that / G Ll(X) which 
is equal to L1(X) because A is a scalar measure ([1; Theorem 3.6]). Then, by 
Remark 3.2, if k is such that | |g(^)| | < k for every uo G -1, 

OO CO oo 

I \\m\\(f > t) dt < / \m\(f >t)dt< / kX(f > t) dt < -f-oo 

0 0 0 

and so / G Ll(m). D 

Now we want to extend Proposition 3.3 to the finitely additive case. In or
der to do this we need some propositions and we will introduce an "extended" 
function when / ranges on H. 

We suppose now that m is an s-bounded f.a.m. and we introduce some pre
liminary propositions concerning the extended function / already introduced 
for real-valued function / . 

PROPOSITION 3.4. Let m : £ —r H be an s-bounded f.a.m. and m is the 
extended measure of m . If f G Ll(m) then f G Ll(m) and for every E G S 

/ / dm = / / d m . 

E h(E) 

P r o o f . I f / G F 1 (m) there exists a sequence (fn)n of simple functions such 
that fn ||m||-converges to / and (f fn dm) is Cauchy. fn ||m||*-converges to 
J. In fact, by (2.L3), (2.1.5), (4) and (2), applied to | / n - / | , for every a > 0 
we have | |m| |*( | / n - / | > a) < 2 | |m| |( | /n - / | > a) 

Moreover, by (2.1.4), for every G G Q if F = h 1(G) we have 

J Jndfn = J fndm. 
G F 

Thus ( / fn dm) is Cauchy in H for every G G Q. This implies that / G L1 (fn) 
G 

and that 

/
/ d m = lim / f dm = lim lfn dm = / / d m . 

n-юcj J n n->oo J n J 
Һ(F) Һ(F) 

D 
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PROPOSITION 3.5. If m: E -» H is an s-bounded f.a.m. and rfl is the ex
tended measure of m then f £ Ll(m) if and only if f £ L1(fn). 

P r o o f . By (2) and (4) we have 

oo oo oo 

f \\m\\(7 > t) dt< f\\m\\*(J>t)dt< [\\m\\*(f>t)dt 
0 

oo 

<2 [\\m\\(f>t) dí<+oo. 
o 

Conversely, by (2) and (5) 

oo oo oo 

[ \\m\\(f > t) dt < [\\m\\*(f>t)dt< [\\m\\*(7>t) dt 
0 0 0 

oo 

<2 j | |Ťň | | (7 >*)<-*• 

D 

We remember that a function ij): ft —> H is totally A -measurable if and only 
if there exists a sequence of simple functions ( / 0 n ) n which A-converges to ip. 

We are now going to define a Stone extended function / for vector-valued 
n 

functions. If / : fi —> H is simple, say / = ^2 xi^Ai > w e s e t 

i = i 

/ - 2^Xilh(Ai) 
ż = l 

Let / : Vt —> H be a totally A-measurable function; then there exists a sequence 
of simple functions (fn)n such that fn A-converges to / . Since (fn)n is Cauchy 
in A measure, by (3) ( / n ) is also Cauchy in A measure and so there exists a 
£a-measurable function t/j such that fn A-converges to -0. It is obvious that if 

is bounded then | |^ | | is bounded. 

PROPOSITION 3.6. If f: Q -> H is totally X-measurable then 
X-a.e.. 
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P r o o f . The equality is obvious if / is simple. We then suppose that / is 
totally A-measurable. By definition there exists a sequence ( /n)n such that fn 

A-converges to / ; then it follows that fn A-converges to T/J, | | / n | | A-converges 
to H l̂l and ||/n | | A-converges to | |/ | | . On the other hand 

A{|1J7J-liTiil > «} = A{| | | / n | | - | | / | | | >a}< \{\\\fj - II/HI > a} 

and so | | / n | | = ||/n | | A-converges to \\ip\\ and ||/ | | . This implies that ||^|| = 
A-a.e.. D 

PROPOSITION 3.7. If / : fi -> H is totally X-measurable then for every x G 
BH one has (x | tp) — (x \ f) A-a.e.. 

P r o o f . If/ is a simple function then it is easy to prove the equality. Then 
we suppose that / is a totally A-measurable function. Let fn be a sequence of 
simple functions A-converging to / . For every x G BH (x \ fn) A-converges to 
(x | / ) and so applying (2.1.3), (2.1.5) and (3), we have 

\{\VW -T^YT)\> o] = \{\(x\ fn) - (x\ f)\> a} 

<H\(x\fn)-(x\f)\>a}. 

This proves that (x \ fn) = (x \ fn) A-converges to (x | / ) . On the other hand 
by the Schwartz's inequality and Proposition 3.6 

A{|<x | /„) - (x | ij>)\ >a}< \{\\fn - V|| >a} = \{ \\fn - / | | > a} 

<A{ | | /„ - / | |>«} . 

We set / = ip. Observe that, via Proposition 3.7, / is well-defined. Indeed, 
if ( /n)n and (gn)n both A-converge to / , then A-a.e. 

(x I lim / ) = (x | lim g ) 
\ ' n->oo nl \ ' n->oo nl 

for every x G BH , namely A-a.e. lim / = lim g scalarly. D 
7i->oo n—>oo 

PROPOSITION 3.8. If / : f] -> H is bounded, totally X-measurable and 
X-integrable then f is X-integrable and for every F G E 

Jfd\= J /dA. 
F h(F) 
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P r o o f . By [1; Theorem 3.6] | |/ | | is (^)-integrable with respect to A. Since 
MWJW > a} = A{ jl/jl > a} < A{||/| | >_a} , | |7 | | is D-integrable with respect 
to A and, by [1; Theorem 3.9], | | / | | is A-integrable. By [7; Theorem III.2.22] it 
follows that / is A-integrable. 

Moreover, if (fn)n is any defining sequence for / , for every F G S 

F F h(F) h(F) 

THEOREM 3.9. Let ra: S —> H be an s-bounded finitely additive measure. If 
there exists y G H such that 

1) \(y | ra)| is a Rybakov control for ra, 

2) Tn—i—rr is bounded, d|(y|ra)| 

then f G Ll (ra) if and only if f G L1 (ra). 

P r o o f . The implication / G Lx(m) => f G Ll(m) is proven in [1; 
Theorem 3.9]. We now prove the converse implication. We first observe that if 

A = \(y | ra)|, then A = \(y | ra)|. We denote by g = -3j-y- and we want to prove 

that g = —-S-. Since g is bounded and A-integrable, by Proposition 3.8, g is 
dA _ 

bounded also and A-integrable. Moreover for every G G Q 

fgdX= f gdX = m(h~1(G))=m(G). 

G h-!(G) 

We now prove that the last equality holds for every G G Qa, too. Let G G Qa, 
e > 0 be fixed and let S > 0 be that of the absolute continuity of / ||g|| dA with 

• 
respect to A. Let a(S) > 0 be such that if X(E) < S then ||ra||(-B) < a. There 
exists AeQ such that X(GAA) < S. 

m(G)- fgdX 
G 

<\\m(G)-m(A)\\ + Wm(A)- f g dX + I fgdX- fg dX 
II v || || J J 

A 

<2||m||(GA,4)+ f | |5 | |dA<2a 

A A G 

' + £. 
AAG 
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By the arbitrariness of e we obtain that g = —?5- A-a.e.. By Proposition 3.3 
dA 

it follows that Ll(m) = L1(m). Hence if / G Ll(m), by Proposition 3.4, / G 
Ll(m) = Ll(m), and, by Proposition 3.5, / G Ll(m). • 

4. Comparison between L1(m) and Ll(m) 

Let m: E -> II, m: E -r II be f.a. measures. According to [2], we shall 
say that m is a dilation of m if for every A G E, m(A) = VPm(A) where P 
is a projection of II onto a linear manifold M and V: M -> II is a unitary 
isomorphism. In [2] C h a 11 e r j i has obtained the following result: 

THEOREM 4 . 1 ._ I /m : E —> II zs a bounded f a.m., then there exists a dilation 
of m, fh: E —> H, which is orthogonally scattered. Moreover if m is countably 
additive fh can be chosen countably additive also. 

PROPOSITION 4 .2. Let m : E -> II be an s-bounded finitely additive measure. 
If fh is any dilation of m and f G L1(fh), then f G L1(m) and J f dm is an 

orthogonally scattered dilation of J f dm. 

P r o o f . If / is simple, the implication is trivial. Let now / G L1(fh). Then 
if A is a control for m there exists a defining sequence (fn)n for / . Let v be a 
control for m . Since A is equivalent to ||m|| and 

||m||(.) = | W P m | | ( . ) < | | P | | | N | ( - ) < | | m | | ( . ) , 

fn ^-converges to / . It only remains to prove that for every £ G S the sequence 

(Jfn dm) is Cauchy in II. By [2; Lemma 2] there exists a finitely additive 
E 

measure / i : E —> W^ such that for every E G E and n G N 

ii ii 2 

| / / n d m | < | | / J 2 d M 
E E 

and, by [2; Lemma 3] and [9; Definition 1.4], we can choose fi = ||m||2. So the 
assertion follows by 

/ / П d m - / Д d m | < / ( / n - / f c ) 2 d м = | | / n d m - | / f c 

|2 

dml 
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Moreover, by the continuity of V and P , for every E G E 

VP [ f dm = VP lim [ f dm = VP lim [ f dm 
J n->oo J n n-»oo J n 

E E E 

= lim VP / /„ dm = lim / /„ dm = / / d m . 

E E E 

D 

The converse inclusion L1(m) D Ll(m) is not true in general. In order to 
exhibit a suitable counter-example, we shall need a preliminary result: 

PROPOSITION 4.3. 1/ m : E -> H is a c.a.o.s. measure then f e Ll(m) 
implies that f G L2 (/i^). 

P r o o f . Let / G L1 (m) be fixed. Then if A is a control for m there exists 
a defining sequence ( / n ) n for / (with respect to A). Then fn /i^-converges to 
/ , and for every E G E, e > 0 fixed there exists ki^y/e) G N such that for every 
n,p > k 

|2 

<e. 
'p 

E 

y L dm - I fv d™ 
E 

Since fn, fp are simple 

/ ( / n - / P ) 2 d ^ = | / / n c i m - | / 1 p d m 
2 

< Є. 

So ( / n ) n is Cauchy in L2 (/x^) which is complete; hence there exists tp G L2 (/i^) 
such that for every £ G E 

nlim J(fn-^dЏfh = 0. 

Since ( / n ) n i 2 ( fe)-converges to (/? it is possible to obtain a subsequence (/n f c) f c 

which converges to (p /i—almost everywhere. As (/n f c) f c | |m||-converges to / 

there exists (/nfc ) p which converges to / | |m||-almost everywhere. As /i^(-) = 0 

if and only if ||rn||(-) = 0 , tp = / /i^-almost everywhere. • 
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EXAMPLE 4.4. Let ft = [0,1], B be the a-algebraof Borel and m the Lebesgue 
measure. From the construction of m due to C h a t t e r j i [2], it follows that 
there exists an orthogonally scattered dilation m such that //^ = m. Consider 
/ : n ->R defined by 

r 4= * e jo, i], 
{ 0 x = 0. 

Then / G Ll(m) but, by Proposition 4.3, f $ L1(rh), as f $ L2^). 

PROPOSITION 4.5. Let fh: E -» H be a bounded c.a.o.s. measure. If f G 
L1(fh) then f G L1(fh). 

P r o o f . If / G L1(fh), by Proposition 4.3, / G L2(||m||2). Since ||m||2 is 
bounded / G ^ ( I H I 2 ) and so, by [1; Theorem 3.4] 

CO 

/ | |m||2(/ >t)dt = ff d||m||2 = / / d||m||2 < +<x>, 

0 fl Q 

namely / G L1(fh). • 

We now want to obtain the analogous results in the finitely additive case. 

COROLLARY 4.6L Let fh: S -* H be an s-bounded f.a.o.s. measure and /i = 
\\m\\2,ifj eLl(m) thenjeLl(m). 

P r o o f . By [9; Theorem 2.3] ||m||2 = ||m||2 and by Proposition 4.3 / G 
L2(ji). The remaining of the proof is identical with that of Proposition 4.5. • 

COROLLARY 4.7. Under the same assumptions of Corollary 4.6 if f eL1(fh) 
then f G L1(fh). 

P r o o f . We prove the assertion when / > 0. If / ranges on R it suffices to 
consider / + , / " . Observe that if ip(t) = \\fh\\2(f > t) and x(t) = IHI 2 ( / > t), 
as ||m||2 is a-finite the set H = {t G [0,+oo] : ip(t) ^ x(t)} ls a t most 
countable. Moreover, since ||m||2 = ||m||2, by [1; Theorem 3.6] and (3) we have 

oo oo 

ffd\\m\\2 = fX{t)dt = fmdt 
n o o 

oo oo oo 

< / P F ( 7 > 0 d* = / INI2 (7 > *) d* = / \\™\\2 (7 > 0 dt • 

D 
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COROLLARY 4.8. Under the same assumptions of Corollary 4.6 if f G L1(fh) 
then f G Ll(fh). 

P r o o f . It is a consequence of Proposition 3.4, Proposition 4.5 and Corol
lary 4.7. • 

5. Comparison between Ll(m) and LL(m) 

Let m: S —> H be a bounded measure. Then according to [2; Theorem 1] we 
can define H = H © L2(X), since a multiple of A satisfies [2; Lemma 2]; define 
m*: S -> H by the law 

m*(A)=[r(iA)J(j-r*r)i(A)] 
where T: L2(A) -> H is defined by T(/i) = / /i dm and T*: H -> L2(A) is such 
that for every h G L2(X) and for every x e H 

(T(h)\x) = (h\T*(x)). 

Note that (I — T*T) is a positive Hermitian operator from L2(A) to L2(X) 
since T has been supposed to be a contraction; hence the positive square root 
(I—T*T) 2 is a well-defined (positive, Hermitian) operator from F2(A) to F2(A). 
Then 

m(A) = [m(A),a(A)] = [m(A), 1A- (m(A),g)*] . 

THEOREM 5.1. Let m: S -» H be a bounded measure; assume that there 

exists a control measure X such that g = -------- is bounded. If f G Ll(m) then 

f ell(m). 

P r o o f . We want to obtain an estimate for ||m||2. For every A G £ 

| |m*| | |(^) = ((m © a)(A) \ (m © a)(A)) = \\m\\2
H(A) + \\a\\2

2(A). 

Since 

\\a\\l(A) = J\lA-(m(A)\g)\d\ 

<\(A) + J\(m(A)\g)\d\ 

(fi) 

(Q) 

= \(A) + var[ /"(m(A) I ^ ) dA 

= A(A) + v a r [ ( m ( ^ ) | y ^ ) 

<A(A) + 2||m||(A)||m||(fi), 
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hence 

||m*||2(/ >t)< ||m||2(/ >t) + \(f >t) + 2\\m\W) \\m\\(f > t). (6) 
^ OO 

Since f e Ll(m), J \\m\\(f > t) dt < oo. From [1; Theorem 3.9] / G Ll(m), 
o 

from Proposition 3.1 / G Ll(X) and finally, applying [1; Theorem 3.6], / G 
^ oo 

Ll(X)\ so J X(f > t) dt < oo. For what concerns the first summand of the r.h.s. 
o 

of (6) we can observe that the function (p(t) is non increasing and lim (p(t) = 0, 
t—>-oo 

so there exists a t such that for every t > t ||m||2(/ > t) = fi2(t) < (p(t) < 1. 
Then 

oo t oo 

f \\m\\2(f > t) dt = f \\m\\2(f > t) dt + f \\m\\2(f > t) dt 

OO 

I2(ÍŽ) + У*IHІ(/ <í | |m | | 2 ( f ř )+ / | | m | | ( / > í ) d ť , 

and so the assertion follows. • 

COROLLARY 5.2. Let m: S —> H be a bounded measure satisfying the same 
assumptions of Theorem 5.1 for a Rybakov control \(y \ m)\. Then the following 
chain of implications holds: 

feL\m*) => feL\m) ^ / eP(m) => feLl(m*). 

P r o o f . It follows immediately from Proposition 4.2, Proposition 3.3 and 
Theorem 5.1. • 

Now we prove that there holds: 

PROPOSITION 5.3. If m: E -> H is an s-bounded finitely additive measure 
then m is an orthogonally scattered dilation of m. 

P r o o f . It is easy to show that m is orthogonally scattered. We prove now 
that m is a dilation of m, namely for every B G Ga 

VPm(B) = m(B). 

Since m is an orthogonally scattered dilation of m for every G G G 

VPm(G) = VPm(h~l(G)) = m(h~\G)) = m(G). 

Let now e > 0 and B G GG be fixed. We denote by v1, v2 two controls for m 
and m respectively and let X = vx -{- v2. Since v1 and v2 are controls there 
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exist Sv62 > 0 such that if ux(A) < 5X then ||m||(.A) < e\ if v2(A) < 52 then 

||m||(j4) < e. We set 5(e) = mm{51(j^pn),<$2(f)}- Since B e £<- t h e r e e x i s t s 

G eG such that A (BAG) < 5 and hence 

I I ^ K B A G X ^ , | | m | | ( B A G ) < £ . 

So it follows that 

||m(fl) - m(G)\\ = \\m(B - G) - m(G - B)\\ < 2| |m| |(BAG) < 
2ЦPII ' 

| m ( Б ) - m ( б ? ) | | < 2 | | m | | ( Б Д G ) < | . 

Therefore 

\\m(B) - VPm(B)\\ 

< \\m(B) - m(G)\\ + \\m(G) - YPm(G)|| + HYPm(G) - VPm(B)\\ 

<£- + \\P\\\\m-(B)-m-(G)\\<e. 

The result follows by the arbitrariness of e. • 

The following proposition is straightforward. 

PROPOSITION 5.4. Let m: S -> H be an s-bounded f.a.m. and let h denote 
the Stone isomorphism. Then fnoh: S —> H is an orthogonally scattered dilation 
of m where H = H 0 L2(X) and X = \(y | m) | is a control for m. 

By Theorem 5.1 the following Corollary is true. 

COROLLARY 5.5. Let m: S -> H be an s-bounded f.a.m.. If there exists y G H 
such that 

(5.5.1) \(y | m)\ is a control for m, 

(5.5.2) —r-.—j—— is bounded. 
d | ( y | m ) | 

then f € L1(m) implies that f G L1 (m ) . 

THEOREM 5.6. Let m: S -> H be a bounded f.a.m.. If there exists y G H 
such that 

(5.6.1) |(2/ | m) | is a control for m, 

(5.6.2) -rr-—j—n- is bounded, 
d | ( y | m ) | 

then the following implications hold: 

feLx(m*) => feL\m) «-=> f ell(m) => fell(m*). 
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P r o o f . From Proposition 4.2, Theorem 3.9, Proposition 3.5 and Theo
rem 5.1 we have the chain of implications 

feL^m*) => jeLl(m) «=-> / ell(m) 4=> J ell(m) 

=» feZ^m). 
On the other hand, from Corollary 4.7, we know that / G Ll(m) ===> 
/ G L1(fh): for any orthogonally scattered dilation m of m. 

We want to show that m* =m . This will imply that L1(m ) = L1 (m*) 
and thus it will conclude the proof. 

fn = ra + T , where r: Qa -» L2 (A) is defined by 

r(G) = 1G - (m(G) | M ) , 

while m* = m-\- a = m -f- a where a: E —j> L2(A) is defined by 

a(.4) = l ^ - ( m ( A ) | - M ) . 

Hence it is enough to show that r — a. Let _4 G E, G — h(A) G <?. Since 

r(G) = la-(M{G)\m) = la-(miA)\m) 

and 

a(G) = 1A - (m(A) | * f ) = lh{A) - (m(A) \ *g) = lG - (m(A) \ *™) 

again it suffices to show that 

(m(G) | M ) = (m(A) | ^ ) A-a.e.. (7) 

In general, given /i: E -» H, A: E -> KQ" , li <C A such that -ry: fi -> iJ exists, 

for every y G H, the scalar f.a.m. (y | /i) admits a density with respect to A, as 
d(y 1 ») _ / „ I d £ \ 

dA " V ' dA / ' 
Applying this fact to the left hand side of (7) we find 

(m(G) | H ) = -j=<m(G) | m> = i ( m ( . 4 ) | m). 

On the other hand 
(m(A)\^) = -^-(m(A)\m). 

Since (m(A) \ m) = (m(A) | m), from the same argument used to prove Theo
rem 3.9, we get 

^=(m(A) | fn) = -jT-(m(^4) I m ) A-a.e.. dA dA 
This shows that r and a coincide on Q, and hence they coincide on Qo. The 
proof is now complete. • 
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