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COMMENT ON C. R. RAO'S MINQUE 
FOR REPLICATED OBSERVATIONS 

LUBOMlR KUBA£EK 

Introduction 

A replicated regression experiment [1] is a realization of a random vector 
Y = (y'i, y'2, ..., y'n)' = (/®X)/5 + (ci, £2, • ••, e'ny, where y; is an N-dimensional 
random vector, / = 1 , ..., n, i = ( l , ..., 1)' is n-dimensional, X is a known N x / c 
matrix (design matrix), (x) designates the tensor product of matrices, 0 is 
a k-dimensional unknown parameter, Pe3/lk (/c-dimensional Euclidean space) and 
Ei, i = 1, ..., n, is a vector of random errors. It is supposed that 

E ( e ) = 0, E ( w J ) = | ° i f i=H i,j=l,...,p. 

^QrVr if i = j 
r = l 

The NX N matrices Vi, i = 1, ..., p , ( p > l ) are known and O = ( 0 i , ..., 0 p ) ' e 9 c 
S£p. The set 0 is supposed to fulfil the condition 

p 

(*) a e © => Va = ^ a, V, is positive definite. 
.•=i 

The quantities @,, i = l , . . . , p , are variance components. In an n-times repli
cated experiment an estimator of the variance components can be determined 
n -times from the different single component vectors yi9 i=l,...,n (see [5]). 

n 

Further the estimator can be based on the vector y = ( 1 / A Z ) 2 X« ( s e e [1]> [5], [6]), 
i = i 

n 

on the matrix S = [l/(rz - l)]^(yi- y)(yi - y)' see ([1], [2]) and mainly on the 
i = l 

vector Y (see [1]). 
The aim of this note is to compare dispersions of those estimators in the case 

when all variance components are unbiasedly estimable and errors are normally 
distributed. 
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1. NOTATIONS AND AUXILIARY STATEMENTS 

According to [3] the class of estimators of a function / ( . ) : 0—• 3ft1, f(G) = f 0, 
fe$lp, is restricted to the following kinds of estimators 

(1) y=Y'AlY; 
(2) y2 = Tr(A2S) (Tr(.) means the trace); 
(3) i>3=K'A3y; 

(4) y4 = (l/")2y.A4y, 

Statistical properties of those estimators are investigated in [1] (estimator of the 
type (1)), in [2] (estimator of the type (2)) and in [1], [5], [6] (estimators of the 
types (3) and (4), respectively). 

According to [1] the following symbols are used: M = I-X(X'X) X'((X'X) is 
a generalized inverse [4] of the matrix X'X); 

{S(MvaM)+}«,; ((/,/)-th element of the matrix S(MvaM)+) 
Tr[(MVaM)+V,(MVaM)+V;], i,j=\, . . . , p , (MVaM)+ is the Moore—Penrose in
verse of the matrix MV„M, {SVa »},-.,• = TrO^V.V^V,), /, / = 1, ..., p. 

If all variance components are unbiasedly estimable by means of the estimator 
(1), (2), (3) and (4), then 0lp = M(K0) = M(Sya -), where {K0k, =Tr(V,MV,) = 
/, / = 1, ..., p (see Theorem 2.1 and Corrollary in [2]). The symbol M(K0) denotes 
the column space of the matrix K0. When MINQUE's (3) and (4) exist for all 
covariance components, then the matrix S(MvaM)+ is regular. 

In the following the assumption of normality of the vector Y is used. The 
Rao—Cramer lower bound for dispersions is denoted as R • C • [Y, (O', f) 
(P', 0')'] when the estimator of the function /(.) is based on the vector Y (the 
parametric space is 2/lk x O ; the notations K.C.[S , f'O] in the case of S (the 
parametric space is 0 ) and R.C.[y, (0', f )(/?', 0')'] in the case of y (the 
parametric space is $lk x 0 ) is used. 

Lemma 1.1. 

(1) R.C.[Y,(0',f')(&', &')'] = (2/n)f'Sv„1-f« 
s= 2r[S(„veM>+ + (n - l)Sv« «]"f = ®e(i>.); 

(2) R.C.[S,f'0] = [2/(n-l)]f'Sii . f = a » ( f 2 ) ; 
(3) R.C.[y,(0',f')(P', »') ' ] = 2f'Svi-if«2rS(-M

,veMrf=2)(i>3); 

(4) (2/n)t"S(M
,v«,M)^=2)(f4). 

Proof. It follows from the Remark 3.4 in [2] and from the definition of the 
Rao-Cramer lower bound for dispersions. 

Lemma 1.2. Let Va and S(MV„M>* be regular matrices; then for the matrices Sv„-> 
and S(Mv„M)* there exists a regular p x p matrix G such that G'Sv.-'G = I (identity 
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matrix), G'S(MvaM)+G = D (diagonal matrix) and 0 < d , , , = {D},, ,^1, / = 1, ..., p. 
Proof. The regularity of the matrix V„ implies (MVaM)+ = V^1 

- Va1X(X,V«1X)"X'V^1; thus the matrix (MV„M)+ is positive semidefinite. That is 
why there exists a matrix J with the property (MV„M)+ = JJ'. Because of the 
relation {S(MvaM)+},,,- = Tr(JJ'V,JJ'V;) = Tr[(J'V,J)(J'V;J)] the matrix S(MvaM)+is 
the Gramm matrix of the elements J'V,J, / = 1, ..., p, and therefore it is positive 
semidefinite. Under assumption of regularity it is positive definite. Now the 
existence of the matrix G follows from the symmetry of the matrices Sva-» and 
S(MV«M)+. The positive definiteness of the matrix S(MV„M)+ implies the relations 
0<d , ,„ i = l, . . . ,p and the relations diti^l> i=l,...,p, follow from (3) of 
Lemma 1.1. 

Lemma 1.3. Let h(.,.„): 2/ll^>9ll, where S/ll={(y,z): y ^ O , z^O} 
- {(0, 0)}, 911 = {x: x^O}, be defined by the relation h(y, z) = yz/(y + z). For 
5 = 1, 2, ... rhere holds: 

(a) V{y,zeMs:(yi = {y}i,Zi = {z}i)egil,i = l,...,s} 
V{ceflfc': c, = { c } , e » i , i = l, ..., s, (c'y)2 + (c'z)2±0} 

s 

^Cih(yi,Zi)^h(c'y,c'z); 
,=1 

(b) if y, z, cetfl5 (s^2) fulfil the conditions from (a), then 

[^Cih(yi,Zi) = h(c'y,c'z)^{3{k1^0}\/{i = l,...,s}yi = k1zi} 

or 

{3{k2^0}\/{i=l,...,s}zi = k2yi}. 

Proof, (a) The tangential plane of the function h(y, z) = yz/(y + z) at the 
point (y0, Zo)e0ll is x = [zoliyo + Zo)]2y + [yo/(yo + Zo)]2z. The relation 
min {p2y + q2z: p + q = \, p^0,q^0} = yz/(y + z), where y ^ O , z ^ O and 
y2 + z 2 > 0 implies x^h(y,z), (y,z)eS/ll. Therefore the function h(.,..) is 
concave. Suppose a vector c satisfies all conditions listed in (a) together with the 

p 

additional condition ]>]c, = l. Then assertion (a) is obviously true. Since 
i = l 

h(ky, kz)=kh(y, z) for k^O and (y, z)eRl the proof of the statement (a) is 
obviously concluded. 

(b) The equality 2 Cih(yt, z,) = h(c'y, c'z) holds if and only if all triples (y,, z,, 
i = l 

My«> &))> i = 1> •••> •*, fulfil the equation of some tangential plane [zo/(yo+ Zo)]2y« 
+ [y0/(yo + zo)]2Zi = yiZi/(yi + Zi) o p2y2 + q2z2 - yiZi(l-p2-q2) = 0(p = Zo/ 
l(yo + Zo), q = yol(yo + Zo)). Because of 1 = (p + q) = (p + q)2 = p2 + q2 + 2pq, we 
get p2y2 + q2z2 - 2pqytZi = 0 o (py, - qzt)2 = 0. Thus either y-Jzi = yo/zo or z,V 
lyi = Zo/yo for / = 1, ..., s, and (b) is proved. 
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2. Comparison of estimators 

Theorem, (a) Let f(.), i = 1, ..., p , be functions such that f(0)= f\0 and that 
G't = e, = (Oi, ..., 0,-1, L, 0l+i, ..., 0P)' , where G is the matrix from Lemma 1.2. 
Then there exist real numbers c,,2, c.,3, c , , 2 ^0, c , , 3 ^0, c,,2 + cl,3 = l so that 

^Yi)) = ®a[ci,2Yil)+c^Y3l)]. 

(b) Let a function f(Q)=f'Q, 0eS, not be a constant multiple of some 
function from (a). Then a necessary and sufficient condition for the existence of 
numbers c 2 , /^0 , c3,/-^0, c 2 , /+c 3 , /= l with the property 2)«[c2,/f2

/) + c^/jH^] 
= 3>a(yP)is the existence of a number do, 0 < d o ^ l such thatV{j: {G'f}j±0}dh, 
= {G'S(MV„M) + G}y,J- = do-

Proof, (a) Owing to Lemma 1.1 we have 

3 « [ Y ( W ] = 2fiGG-1[s(MvaM)+ + (n - l)SVa O-'G'-'G'/, = 

= 2e;[D + (n - l)l]_1e ( = 2/(d,,, + tz - 1), 

2 t - [ ) W ) ] = 2l(n - 1), 2>«[y?}(y)] = 2/di,,. 

By taking into account the definitions c,,2 = (n - l)/(n - 1 + dM), c.,3 = d.,,7 
/(n-l + di,i) and the stochastic independence of estimators f^S) and Yi(?) w e 

easily get (a). 
(b) If the function /(.) is not a constant multiple of some function from (a), then 

p 

in the expression ®a[f
(/)(Y')] = 2 {G'f}V(n - 1 + d,-,,-) at least two members differ 

i = l 

from zero. From Lemma 1.1, Lemma 1.2 and from the stochastical independence 
of the estimators Y(n(S) and Y(3f)(y) it follows that 

a[fiWHmin{a^^ 
k3,/^0, k2,f+k3,f=l} 

( = ® « [ r 2 / } ( S ) ] ® 4 ^ 

That is why the numbers c2,f, c3>/ can exist iff 

2>4iW)] = ajms)]®.[W(9)V{2>.[yt>(S)]+®.[W(9)]}-

Thus, with notation {G7},- = 0i, i = l, ..., p (G and D are matrices from Lem
ma 1.2), we obtain 

(**) 2i^/(«-i+«i,.()= 
i = l 

=[2/(/i-i)]ifl,2i(fl?/d/.;)/f[2/(«-i)]ifl?+2i(0?/di.i)}. 
i = l y = l L i = l > = 1 J 
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In Lemma 1.3 we substitute for c, yi9 z«, / = 1, ..., p: 

c = ( l , . . . , l ) ' e » p , y, = 2 ^ / ( n - l ) , Zi = 2gVdi,i, i = l , . . . , p . 

Because of 

2flf?/(/i - 1 + d,,,) = [2gV(n - l)](2gVdi, t)/{[2gV(n - 1)] + 2gVdu,}, 

for i = 1, ..., p , the equality (**) is valid iff there exists the real number k^O from 
Lemma 1.3 with the property 

V{je{i:gl±0}}2gV(n-l)=k2gVdi.,o 

o\/{je{i:gi*0}}di,j=k(n-l)( = d0). 

Corollary 1. Let D be the matrix from Lemma 1.2. Then 

{D}i,i<l implies 3{nt} V{/i^/i,}3«[fi' )(yi, ..., yO]>9«[fl°(S)] . 

The proof follows from (4) of Lemma 1.1, from the Theorem and from 
Lemma 1.2. 

Corollary 2. The implication n f oo z> Q,2 11 & c, 3 10 (see [1] p. 194) shows the 
growing importance of the estimator Y3°(S) with the growing number of replication 
of the experiment and the relation 2)«[Y2

,)(S)]/S«[Y(i°(Vr)]| 1. Following the 
Theorem these facts are valid for an arbitrary function f(0)= f'S, 0 e 0 . 

Corollary 3. The relations 

d,2 = (n - l)/(n - 1 + di,i) = 

= { 1 / S „ [ Y 2 ( S ) ] } / ( { 1 / S « [ Y 2 ( S ) ] } + {l/9.[fr(y)]}> 

and 

Ci, 3 = di, i/(n - 1 + di, i) = 

= {va>My)]V({va>m[US)]} +{i/a>AMy)]}) 

imply 

®a[Y2(S)V2>«[Uy)] = Ci,3/Ci,2 = di,i/(n-l)lO. 
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ЗАМЕТКА К М Ш О ^ Ц. Р. РАО ДЛЯ ПОВТОРЯЮЩИХСЯ НАБЛЮДЕНИЙ 

ЕиЪотгг К и Ь а с е к 

Резюме 

В работе приводятся необходимые и достаточные условия для равенства между двумя оценками. 
Первая оценка - М I N ^ ^ Е Рао в повторяющемся регрессионном эксперименте, созданная Клеф-
фе; вторая оценка является оптимальной комбинацией оценок, основанных на матрице Уишарта 
и на векторе арифметических средних наблюдений. 
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