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Math. Slovaca 39, 1989, No. 2. 215—224 

ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS OF 
A CERTAIN TYPE OF THE THIRD ORDER 

DIFFERENTIAL EQUATIONS 

JANA FETKOVA 

I n [ l ] M . Gregus among other things investigates the asymptotic proper­
ties of solutions without zero-points and also asymptotic properties of oscillato­
ry solutions of the third order linear differential equation in the normal form 

(A0) y'"(r) + 2A(T)V'(T) + [A'(T) + b(r)]y(r) = 0. 

The functions A, A\ beC°«r0, /?)), — oo ^ r0 < p<^ +oo. He simultaneously 
investigates the adjoint differential equation to the equation (A0) in the form 

(B0) z'"(r) + 2A(T)Z'(T) + [A'(T) - b(r)]z(r) = 0. 

The function b(r) (Laguerre invariant) is supposed to have the property 
(V): b(r) ^ Ofor all r e <r0, (3) and b(r) = 0 does not hold in any interval. 

In this paper we investigate asymptotic behaviour of solutions without 
zero-points and the asymptotic behaviour of the oscillatory solutions of a more 
general third order linear ordinary differential equation of the form 

(A,) [r(t) [r(t) x'(t)]']' + 2ax (t) x'(t) + [a\ (t) + b1 (t)] x(t) = 0, t = t0, 

where r(t) > 0, rx'eC°«t0, oo)), [rx7eC°« t 0 , oo), [r[rxT]'eC°«t0, oo)); axe 
eC 1 « t 0 , oo)), bjEC^to, oo)), - o o < t0< +oo. 

The adjoint equation to (A,) is of the form 

(BO [r(t) [r(t) £'(')]']' + 2ax (t) ?(t) + [a\ (t) - b1 (t)] ^(t) = 0. 

Two cases will be considered: 
/•OO 

I. (1) dt/r(t) = oo and 

/ •OO 

II. (2) d t / r ( t )<oo. 
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In both cases the solutions of (A,) will be transformed into solutions of equa­
tions which will have the form (A0), and conversely. On the basis of these 
transformations we shall apply the results from [1] and [2] for the solutions of 
(A,). The idea to apply the transformations stems from the paper [3] by 
Phi los . 

/•OO 

I. If dt/r(t) = oo, then we denote 

(3) R(t) = ds/r(s) for t = t0. 
J'o 

The function i?eC 4« t 0 , oo)), is increasing and maps the interval <t0, oo) onto 
the interval <0, oo). Its inverse function R~\T) is increasing on <0, oo), and the 
latter will be mapped onto the interval <t0, oo). 

Lemma I. Suppose that (1) holds. Let x(t) be a solution of(Ax) in the interval 
<t0, oo). Then the function 

(4) y(T) = X[R~\T)] for all re<0, oo) 

is a solution of 

(A01) y'" + 2ax[R~\T)]y' + [a\[R'\rj[ + bx[R~\T)]]r[R-\T)] y = 0 

in <0, oo). 
Conversely, if y(r) is a solution of(A01) in <0, oo), and the function x(t) is 

determined by relation (4), i.e. 

(4,1) x(t)=y[R(t)l tG<t0, oo), 

then the function (4,1) satisfies the equation (A,) in <t0, oo). 
Proof. Differentiating the relation (4), and considering R'(t) = l/r(t) for 

all te<t0, oo), we obtain the equalities 

(5) y\T) = r(t)x'(t) 

(6) y"(r) = r(t)[r(t)x'(t)]' 

(7) y'"(r) = r(t) [r(t) [r(t) X'(t)]']\ T = R(t), TE <0, oo), 

for the function, y(r) given by (4). From the equalities (5)—(7) and from 
t = R~\T) it follows on the basis of (A^ that 

y'"(r) = -2ax(t)r(t)x'(t) - [a\(t) + bx(t)]r(t)x(t) = 

^ -2ax[R~\T)]y' ^[a\[R~\T)] + bx[R~\T)]]r[R~\T)]y, 

and so y(r) is a solution of (A01) from the corresponding interval. 
The relation (4) means the bijective mapping of the space of solutions of (A^ 
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onto the space of solutions of (A01). Indeed, for arbitrary values y$\ i = 0, 1,2 
the system of conditions 

yo = *('o) 

y'o = r(to)x'(t0) 

yo = r(t0) [r(t0) x"(t0) + r'(t0) x'(t0)] 

has the only solution in the variables x(t0), x'(t0), x"(t0). From that the second 
part of the assertion of Lemma I follows. 

R e m a r k 1. Between the solutions of the adjoint equation 

(B,) [r(t) [r(t) $'(t)]']' + 2a, (t) ?(t) + [a\ (t) - b, (01 £(') = 0 

and those of the equation 

(B01) z'" + 2a}[R~](T)]z' + [a\[R-](T)] - bdR'](T)]]r[R-](T)]z = 0 

there is a similar relation as for the equations (A,) and (A01). If £(t) is the 
solution of (B^ in <t0, oo), then the function 

(4,2) z(r) = %[R-](T)] for all re<0, oo) 

is the solution of (B01). 
R e m a r k 2. If we put 

(8) A0](T) = al[R~](T)]; b01(r) = b1[i?-1(r)]r{i?-1(r)] 

for all re <0, oo), so on the basis of the equality 

[adR-\r)]]' = a\[R~](T)]r[R-](T)] 

the equations (A01) and (B01) can be written in the form 

y'" + 2A0](T)y' + [A'0](T) + b01(r)]y = 0, 

z'" + 2A01(T)Z' + [A'0](T) - b01(r)]z = 0. 
/ •OO 

II. If dt/r(t) < oo, then we define the function 

/*00 

(9) g(t) = ds/r(8), t = t0 
J'o 

which belongs to the class C4« t0 , oo)), is decreasing and maps the interval 
<t0, oo) onto the interval (0, £>(t0)). Denote g(t0) = g0. Its inverse function g~l 

is decreasing in the interval (0, £0>, and it maps this interval onto the interval 
<t0, oo). Then a composite function Q~1(\/T) and ^ - , (e~ r ) belongs to the class 
C4«r0 , oo)), where r0 = l/,o0 and r0 = — ln^0 respectively, is increasing in this 
interval, and maps the interval <r0, oo) onto <t0, oo). 
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Lemma II. Assume that (2) holds. Let x(t) be the solution of(Ax) in the interval 
<t0, oo). Then the function 

(10) y(r) = T2X[Q~\\/T)] for all re<r0 , oo) 

is the solution of(A02) in the interval <t0, oo), where 

(A02) y'" + 2r-4a lUT1( l /r)]y ' + T-\r[Q-\\\T)][a\[Q-\\\T)] + 
+ bdQ-\\/T)]]-4Ta][Q-\\/T)]}y = 0. 

Conversely, fy(r) is the solution of equation (A02) in <r0, OD), then the function 
x(t) determined by the relation (10), i.e. 

(10.1) x(t) = Q2(t)y[Q-\t)l te<t0, oo) 

satisfies (Ax) in <t0, oo). 
The proof can be obtained in a similar way as in the case of Lemma I. 
R e m a r k 3. By relation 

(10.2) Z(T)=T^[Q-\\/T)] 

the space of the solutions of (B,) is transformed bijectively onto the space of the 
solutions of 

(B02) Z'"(T) + 2T~\[Q-\\/T)]Z' + T-6{r[Q-\\/T)][a\[Q-\\/T)] -

-bi[Q-\\/T)]-4Tal[Q-\\/T)]}z = 0. 

R e m a r k 4. If we denote 

(11) A02(r) = T-\[Q-\\/T)]; b02(T) = T-%[Q-\\/T)]r[Q-\\/T)], 

so on the basis of equality 

A02(T)= -4T-\[Q~\\/T)] + T-6a\[Q-\\/T)]r[Q-\\/T)] 

the equations (A02) and (B02) can be written in the form 

>>'" + 2A 0 2 ( r ) / + [A02(r) + b02(T)]y = 0, 
z'" + 2A02(T)Z' + [A02(r) - b02(T)]z = 0. 

Lemma III. Suppose that (2) is satisfied. Let x(t) be the solution o/(A,) in 
<t0, oo). Then the function 

(12) >;(r) = e ' x t e - V O ] for all r = r0 = - ln^( t 0 ) 

is the solution of(Aoi) in <r0, oo), where 

(A03) y'" + 2[e-2r<71te-,(e-r)] - \/2]y' + c-^Q-'^Ma^Q-1^-^] + 

+ bt[Q-\e-r)] - 2e-2<at[Q-\e-:)]}y = 0. 
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Conversely, ify{?) is the solution of(A03) in <r0, oo), and x(t) is determined by 
(12), i.e. 

(12.1) x(t) = Q(t)y[-\ng(t)] te<t0, oo), 

then the function (12,1) satisfies an equation (Ax) in <t0, oo). 
The proof can be obtained in a similar way as in Lemma I. 
R e m a r k 5. By relation 

(12.2) z(r) = e-^[p-1(e- r)] 

the space of solutions of (Bx) is transformed bijectively onto the space of 
solutions of 

(B03) z'" + 2[e-2rfl1te-I(e-0] - 1/2]z' + e'3r{[a\[Q'x^'r)] -
~ bx[Q-\e-*)]]r[Q-](e-<)] - 2^ax[g-\^)]}z = 0. 

R e m a r k 6. By designating 

A03(T) = e-2<ax[Q-\e-<)]-l/2; 

b0,(r) = ^3Tbx[Q-l(^)]r[Q-](^)] 

and from the equality 

AM = e-Mp-^e-Olfllte- 'Ce"1)] - 2^ax[Q-\^)] 

the equations (A03) and (B03) can be written in the form 

y'" + 2,403(r)y' + [A'03(T) + b03(r)]y = 0 

z'" + 2,403(r)z' + [A'03(T) - b03(r)]z = 0. 

Next we shall present the results, which by using Lemma I and some lemmas 
and theorems proved by M. Gregus , for the solutions of (A,). 

Lemma 1.1. Let (X) hold. Let ax(t) S 0,a'x(t) + bx(t) = 0 in <t0, oo) and let the 
function bx (t) have the property 
(V,): bx(t) = Ofor all te<t0, oo) while bx(t) # 0 

in any subintervaL 
Let 0 < r(t) ^ M in <t0, oo). Let £ be the solution of the differential equation (B,) 
With £(«,) = ?{ax) = 0, ?{ax) > 0 for ax e <t0, oo). Then £(t) -> oo, £'(t) -> oo 
as t-> oo. 

Proof. If we transform the equation (A^ into (A01) by using Lemma I., 
we can see that (A01) satisfies all assumptions of Lemma 3.1 in [2, p. 120] and 
moreover, in this transformation [relation (4,1)] there corresponds to the solu­
tion £(t) of (B,) with a double zero-point ax the solution Z(T) of (B01) having a 
double zero-point in rx = R[ax]. According to Lemma 3.1 in [2] z(r)->oo, 
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z'(x) -> oo as r-> oo. From (4,1), (1) and (4,2) we have: £(t) - z[R(t)] -+ oo, 
£'(0 = r~\t)z'[R(t)] -* oo as f -> oo, because l/r(t) ^ 1/M > 0 for all / ^ f0. 

Lemma 1.2. Let the hypotheses of Lemma 1.1 be satisfied and, moreover, let 

Í 
X 

2/ (13) /?2(0[ai(t) + b,(t)]dt=oo. 
J/0 

Fben l/ze solution £ mentioned in Lemma 1.1 satisfies also 

(14) r(0 [r(/) £'(')]' + 2ax (t) £(t) -> oo as / - oo. 

Proof. With respect to both Lemma 1.1, from which we take the nota­
tion, and Lemma 3.2 in [2, p. 120] it is sufficient to prove that the condition 

r2[a;[7?-1(r)] t+b1[/?-1(r)]]r[/?-1(r)]dr=cx) 
fo 

is equivalent to (13) and the property of the solution z of (B01) lim [Z"(T) + 
+ 2^401(r)z(r)] = oo means the relation (14). However, 

J
»oc >,oo 

T2[a\[R-\T)] + bx[R-\r)]]r[R-\T)]dT= R2(t)[a\(t) + bx(t)]dt 
o J,0 

and on the basis of (4,1), (4,2) we get the statement of Lemma 1.2. 
By using (3), (4), (5), (6) and the monotonicity of R(t) we obtain from 

Theorem 4 in [1] the following: 
Theorem 1.1. Let the assumptions of Lemma 1.2 be satisfied in <t0, oo). Then 

there exists exactly one solution x of the differential equation (A,) [up to linear 
dependence] with the following properties: x(t) ^ 0, sgnx(t) = sgn[r(t)x'(t)]' ^ 
7-- sgnx'(t)for te </0, oo); x(t), r(t)x'(t), r(t)[r(t)x'(0]' are monotonicfunctions 
ofte(to, oo) and x(t)^>0, r(t)x'(t)->0, r(t)[r(t)x'(t)]'->0 as t-> oo. 

From Theorem 5 in [1] there follows 
Theorem 1.2. Let a,(t) = 0, a\(t) + b,(t) = 0 and b,(t) have the property (V,) 

far tG<t0, oo). If the differential equation (A,) has an oscillatory solution on 
<t0, oo), then all solutions of (A,) are oscillatory on <t0, oo) with one exception of 
the solution x [up to linear dependence] with the following properties: x(t) # 0, 
sgnx(t) = sgn[r(t)x'(t)]' # sgn*'(t)f0r tG<t0, oo); x(t), r(t)x'(t\ r(t)[r(t)x'(t)]' 
are monotonic functions for te<t0, oo) and r(t)x'(t) -> 0, r(t)[r(t)x'(t)]' -* 0 as 
t -+ oo. 

Example . Consider the equation 

(15) 
[tx[txx'(t)]']' + xt2(x~l)x'(t) + [X(x- 1) + (x- 2)(x- 3)]t2*~3x(t) =-= 0 
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for t = t0 > 0. x is a non-positive number. As easily verified, all the hypotheses 
of Theorem 1.2 are fulfilled, and the solution x(t) = 1// of (15) has all the 
properties satisfying the conclusions of Theorem 1.2. 

Since on the basis of (3) and (8), 

J
»QO /»O0 

bOІ(т)dт = /->,(/) d/, 
o Jln from Theorem 3.4 in [2, p. 122] it follows 

Theorem 1.3. Let bx(t) have the property (V,) in <t0, oo) and let 

f 
J'n 

bx(t)át = oo. 

Then the equation (A,) has at least one solution x with no zeros in <t0, oo) and 
satisfying liminfx(/) = 0. 

/ - + 00 

By using Lemma II we can obtain the following results for the equation (A,). 
Lemma 2.1. Let (2) hold. Let ax(t) = 0, Q(t)r(t)(a'x(t) + bx(t)) = 4ax(t) for 

te <t0, oo). Let b, (t) have the property (V,). Let £ be the solution of the equation 
(B,) with the properties: %(a2) = £'(a2) = 0, %"(a2) > 0, a2E</0, oo). Then 
Q~2(t) £,(t)-* oo, [r(t)£'(0 + 2Q~\t)i;(t)]-> oo as t-> oo, where Q(t) is deter­
mined by (9). t 

Lemma 2.2. Let the assumptions of Lemma 2.1 be fulfilled and, moreover, 

f Q\t) [a\ (/) + bx (/) - 40 - • (/) r ~' (/) a, (/)] d/ = oo 

Then the solution E, mentioned in Lemma 2.1 satisfies also [Q2(t) r(t) [r(t) £'(0]' + 
+ 2Q(t)r(t)£(t) + 2(\ + Q2(t)ax(t))£(t)]->oo as t-+oo. 

Further, we can prove a theorem where we use the formula (9) and derivatives 
of the relation (10). 

Theorem 2.1. Let the assumptions of Lemma 2.2 be satisfied in <t0, oo). 
771en there exists exactly one solution xof(Ax) [up to linear dependence] with the 

following properties: x(t) # 0, sgnx(t) = sgn[Q2(t)r(t)[r(t)x'(t)]' + 2Q(t)r(t)-
•x '(t) +2x(t)] # sgn[r(t)x '(t) + 2Q~\t)x(t)]for tG<t0, oo); Q~\t)x(t), r(t)-
•x'(t) + 2Q~\t)x(t), Q2(t)r(t)[r(t)x'(t)]' + 2Q(t)r(t)x'(t) + 2x(t) are mon-
otonic functions and Q~2(t)x(t) -•(), [r(t)x'(t) + 2Q~\t)x(t)] -^ 0, [Q2(t)r(t)-
• [r(t) x'(t)]' + 2Q(t) x'(t) r(t) + 2x(t)] -• 0 as t -» oo. 

Theorem 2.2. Let (2) hold. Let ax(t) = 0, Q(t)r(t)[a'x(t) + b,(t)] = 4ax(t) for 
t e <t0, oo) and b, (t) have the property (V,). If the differential equation (A,) has an 
oscillatory solution on <t0, oo), then all solutions of (A,) are oscillatory with one 
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exception of the solution x [up to linear dependence] with the following properties: 
x(t) * 0, sgn x(t) = sgn [Q\t) r(t) [r(t) x'(t)]' + 2Q(t) r(t) x'(t) + 2x(t)] * sgn-
'[r(t)x'(t) + 2Q~\t)x(t)]for te<t0, 00); £>"2(t)x(t), r(t)x'(t) + 2Q~\t)x(t), 
Q2(t)r(t)[r(t)x'(t)]' + 2Q(t)r(t)x'(t) + 2x(t) are monotonicfunctions on <t0, oo) 
and[r(t)x'(t) + 2Q~\t)x(t)] -> 0, te2(t)r(t)[r(t)x'(0]' + 26(t)r(t)x'(t) + 
+ 2x(t)] ->0 as t-> oo. 

Theorem 2.3. Let bx(t) have the property (V,) in <t0, oo) and let 

Q\t)b,(t)r~\t)(\t= oo. 

Then the equation (A,) has at least one solution x with no zeros in <t0, oo) and 
satisfying liminf £ - 2( t)x( t) = 0. 

/ - > 00 

Further assertions can be derived by using Lemma III. 
Lemma 3.1. Suppose that (2) holds and Q(t) is determined by (9). Let 

Q2(t)a{(t) = 1/2, Q(t)r(t)[a\(t) + bx(t)] = 2ax(t) and let bx(t) have the property 
(V,) in <t0, oo). Let £ be such a solution of(B,) that £(a3) = %'(a3) = 0, %"(a3) > 0, 
a3E<t0, oo). Then Q-\t)E,(t)-+ oo, [r(t)£'(0 + Q~\t)E,(t)]-* oo as t-> oo. 

Lemma 3.2. Let the assumptions of Lemma 3.1 be satisfied and, moreover, let 

ґ [\nQ(t)]2[Q

2(t)[a\(t) + b,(t)] - 26(t)r-\t)a](t)]dt 

diverge. Then the solution t; mentioned in Lemma 3.1 satisfies also [Q(t)r(t)-
• HO £'(')]' + r(t) £(t) + 20(0 a, (t) 5(0] -> oo as t -* oo. 

Theorem 3.1. Let the hypotheses of Lemma 3.2 be fulfilled in <t0, oo). Then 
there exists exactly one solution x of (A,) [up to linear dependence] with the 
following properties'. x(t) ^ Ofor te<t0, oo), Q~\t)x(t), r(t)x'(t) + Q~\t)x(t), 
Q(t)r(t)[r(t)x'(t)]' + r(t)x'(t) + Q~\t)x(t) are monotonic functions in <t0, oo); 
sgnx(t) = sgn[Q(t)r(t)[r(t)x'(t)]' + r(t)x'(t) + Q~\t)x(t)] # sgn[r(t)x '(t) + 
+ Q~\t)x(t)]for tG</0, oo) and Q~\t)x(t)^0, [r(t)x'(t) + Q~\t)x(t)] --> 0, 
Q(t) r(t) [r(t) x'(t)]' -> 0 as t -* oo. 

Theorem 3.2. Let (2) hold and let Q2(t)a](t) = 1/2, Q(t)r(t)[a\(t) + 6,(0] ^ 
= 2a, (0 and let b, (t) have the property (V,) in <t0, oo). If the differential equation 
(A,) has an oscillatory solution in <t0, oo), then all solutions of (A,) are oscillatory 
with one exception of the solution x [up to the linear dependence] with the following 
properties: x(t) # 0, sgnx(t) = sgn[e(t)r(t)[r(Ox '(0]' + r(t)x'(t)' + Q~\t)-

x(t)]^sgn[r(t)x'(t) + Q-\t)x(t)] for fE<t0, oo); x(t)Q~\t), r(t)x,(0 + 
+ Q~l (0*(0» Q{t)r(t)[r(t)x'(t)]' + r(t)x'(t) + Q~x(t)x(t) are monotonic func­
tions and [r(t)x '(0 + Q~\t)x(t)] -> 0, £>(t)/(t)[r(t)x/(t)] -» 0 as t -> oo. 
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Theorem 3.3. Let bj(t) have the property (V,) and let 

g2(t)b](t)dt = oo. f 
Then the differential equation (A,) has at least one solution x with no zeros in 
<r0, oo) and satisfying liminf Q~\t)x(t) = 0. 

t -* oo 

Finally the following theorem which generalizes Theorem 1.15 in [2, p. 20] 
can be proved by using the Lemmas I—III. 

Theorem 4. If the function b, (t) ^ Ofor te <t0, oo), then there exists a solution 
of the equation (A,) without zeros in <t0, oo). 

Example . In the equation 

[t[tx'(t)]']' + (1 - 3x2)\n~2 (t)x'(t) + ( t- ] ln-3( t))(3x2 + 2x3 - l)x(t) = 0, 

where x^ 0 is a constant, the Laguerre invariant bx(t) = 2(t_1 ln"3(t))x3 is 
nonnegative on an interval <t0, oo), t0 > e. This equation has by Theorem 4 
a solution without zeros. Such solutions, for example, are xx(t) = In1 + *(t), 
x2(0 = ln, + *(t).ln(lnt). 
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ACИMПTOTИЧECKИE CBOЙCTBA PEШEHИЙ OПPEДEЛEHHOГO TИПA 
ДИФФEPEHЦИAЛЬHЫX УPABHEHИЙ TPETЬEГO ПOPЯДKA 

Jana Feťková 

Peзюмe 

B paбoтax M. Гpeгyшa [1] и [2] пpивeдeны acимптoтичecкиe cвoйcтвa peшeний бeз нyлeвыx 
тoчeк и тaкжe acимптoтичecкиe cвoйcтвa ocциллиpyющиx peшeний диффepeнциaльнoгo ypaв-
нeния тpeтьeгo пopядкa в фopмe (A0). B этoй cтaтьe иccлeдoвaны вышe пpивeдeнныe cвoйcтвa 
для диффepeнциaльнoгo ypaвнeния в фopмe (A,). 

Пpeдпoлaгaeтcя, чтo ycлoвия (1) или (2) выпoлeны. B oбoиx cлyчaяx пpeoбpaзyютcя 
peшeния ypaвнeния (A,) в peшeния ypaвнeния (A0/) / = 1, 2, 3 (кoтopыe в фopмe (A0)) и нa-
oбopoт. Ha ocнoвaнии пpeoбpaзoвaния пpимeняютcя peзyльтaты paбoт [1] и [2] к peшeнию 
ypaвнeния (A,). 
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