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ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS OF
A CERTAIN TYPE OF THE THIRD ORDER
DIFFERENTIAL EQUATIONS

JANA FETKOVA

In [1] M. Gregus$ among other things investigates the asymptotic proper-
ties of solutions without zero-points and also asymptotic properties of oscillato-
ry solutions of the third order linear differential equation in the normal form

(Ao) y"(1) + 24(7) y'(7) + [4'(7) + b(D)] y(7) = 0.

The functions 4, 4’, be C°({%, P)), —© = 7, < B < + 0. He simultaneously
investigates the adjoint differential equation to the equation (A) in the form

By 2"(1) + 2A(7) z’(7) + [A'(1) — b(D)] 2(7) = 0.

The function b(7) (Laguerre invariant) is supposed to have the property
(V): b(7) = 0 for all te{1,, ) and b(t) = 0 does not hold in any interval.

In this paper we investigate asymptotic behaviour of solutions without
zero-points and the asymptotic behaviour of the oscillatory solutions of a more
- general third order linear ordinary differential equation of the form

(A r@[r(@) x" O] + 2a,(2) x'(¢) + [a7 () + b,(D] x(1) = 0, £ = ¢,,
where r(t) > 0, rx’ e C°({t,, ©)), [rx'] € C°({ty, ), [r[rx']] € C°({ty, ©)); a, €
e C'({ty, ©)), b€ C°({t,, ®0)), —0 < ty < + 0.

The adjoint equation to (A,) is of the form
(B) r@r(@) &N + 2a,(1) &'(2) + [ai (1) — by()] &(2) = 0.

Two cases will be considered:

L ) Jdt/r(t)=oo and
L. (2) j dt/r(t) < 0.
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In both cases the solutions of (A,) will be transformed into solutions of equa-
tions which will have the form (A,), and conversely. On the basis of these
transformations we shall apply the results from [1] and [2] for the solutions of
(A,). The idea to apply the transformations stems from the paper [3] by
Philos.

I. Iff dt/r(t) = oo, then we denote

3) R(t) = J ds/r(s) fort=1t,.

The function Re C*({t,, ©)), is increasing and maps the interval {t,, ) onto
the interval <0, o0). Its inverse function R ~'(7) is increasing on <0, o), and the
latter will be mapped onto the interval {¢,, o).

Lemma L. Suppose that (1) holds. Let x(t) be a solution of (A,) in the interval
{ty, ). Then the function

4 y(7) = x[R~'(7)] for all €0, o)
is a solution of
(Ag) V" + 2[Ry + [@[RT'(D]+ b [RT'@NAR()] y=0

in €0, o0).
Conversely, if y(7) is a solution of (Ay,) in 0, o), and the function x(t) is
determined by relation (4), i.e.

4.1 x(1) = y[R(@), tety, ),

then the function (4,1) satisfies the equation (A,) in {t,, o).
Proof. Differentiating the relation (4), and considering R’(t) = 1/r(¢) for
all te {¢y, ), we obtain the equalities

) y'(1) = r() x'(1)
(6) y'(@) = r(@)[r@)x' ()
(M y'(@) = r@r@r@x'O17, ©=R(@), re<0, ),

for the function, y(7) given by (4). From the equalities (5—(7) and from
t = R7'(7) it follows on the basis of (A,) that

Y1) = =2a,() r(t) x'(1) — [a} (1) + b r(D) x(1) =
= —2a[R7'(OY" — [a][R™' (D] + & [R™' (DR (D]y,

and so y(7) is a solution of (A,,) from the corresponding interval.
The relation (4) means the bijective mapping of the space of solutions of (A,).
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onto the space of solutions of (A,,). Indeed, for arbitrary values y{’, i =0, 1, 2
the system of conditions

Yo = x(to)
Yo = r(te) x'(t)
Yo = r(t) [r(t) x"(t,) + r'(t) x’(£))

has the only solution in the variables x(¢,), x'(¢,), x"(t,). From that the second
part of the assertion of Lemma I follows.
Remark 1. Between the solutions of the adjoint equation

(By) r@[r(®) &I + 2a,(1) §'(0) + [ai(t) — b, (D1 &6() =0
and those of the e'quation
(Bo1) z” +2a,[R7' (D)) 2" + [a{[R7'(D)] = b, [RT' (DN r[R7'(D]z =0

there is a similar relation as for the equations (A,) and (Ay,). If &(¢) is the
solution of (B,) in {f,, ), then the function

4,2) z(1) = {[R™'(7)] for all 7e<0, o0)

is the solution of (By,).
Remark 2. If we put

®) Ay (D) =a[R7'@D]; by (7) = b[R™(D]r[R™' ()]
for all 7€<0, o0), so on the basis of the equality
[a[R™' @I = ai[R™' (D] r[R™'(2)]
the equations (A,,) and (B,,) can be written in the form
V" + 240/(7) " + [Ag (7) + bey (1)]y = 0,
2" + 240, (1) 2" + [Ag, (1) — by (7)]z = 0.

II. Iff de/r(¢) < oo, then we define the function

) g(t)=f ds/r(s), t=t,

which belongs to the class C*({#, ©)), is decreasing and maps the interval
{ty, 0) onto the interval (0, o(t)))- Denote o(,) = g,. Its inverse function o'
is decreasing in the interval (0, gy, and it maps this interval onto the interval
{9, 00). Then a composite function ¢ ~'(1/7) and o~ '(e~") belongs to the class
C*({1p, 0)), where 7, = 1/g, and 7, = —In g, respectively, is increasing in this
interval, and maps the interval {7, c0) onto {#, o).
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Lemma I1. Assume that (2) holds. Let x(t) be the solution of (A) in the interval
{ty, o©). Then the function

(10) y(r) = t’x[o~'(1/0)] for all te{z,, )
is the solution of (Ay,) in the interval {t,, ), where
(Ap2) Y4270 [o” (10 + t%rlo” ' (1/D)]laile ' (/)] +

+ bilo'(1/0] — 41a,[e ' (1/D)l}y = 0.

Conversely, if y() is the solution of equation (A,) in {1,, ), then the function
x(t) determined by the relation (10), i.e.

(10,1) x(t) = @* () yle™'(], te<t, o)

satisfies (A)) in {t;, ).
The proof can be obtained in a similar way as in the case of Lemma I.
Remark 3. By relation

(10,2) z2(1) = r’£[o”'(1/7)]

the space of the solutions of (B,) is transformed bijectively onto the space of the
solutions of

(Bop) 2"(7) + 2t % [e ' (1/D)) 2’ + t~%{r[e ™' (1/ D] [ailo ™' (1/7)] —
—bile™'(1/0)] — 4za,[e~'(1/7)]} 2 = 0.
Remark 4. If we denote
(1 Ap(1) = 7%, [07'(1/D)];  bo(r) = %[0 '(1/D]rle~'(1/7)],
so on the basis of equality
Ap(1) = —4t7%aq)[o™'(1/D)] + t~%aj [0~ ' (/D)) rlo~'(1/7)]

the equations (A,,) and (B,,) can be written in the form

V" + 240(7)y" + [45:(7) + by (7)]y = 0,

2" + 240, (1) 2" 4 [Ag (1) — by ()] 2 = 0.

Lemma IIL. Suppose that (2) is satisfied. Let x(t) be the solution of (A)) in
{ty, ). Then the function

(12) y(r) =ex[o~ (™)) forall t= 1y= —Ino(t,)
is the solution of (A;) in {1y, ), where

(Ap) ¥ +2[e " afo' (79 — 1/21y" + e {rle~" (e lailo~ '€ N +
+bile~'(e™)] — 27" a[o ' D}y = 0.
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Conversely, if y(7) is the solution of (Ay;) in {7y, ), and x(t) is determined by
(12), i.e.

(12,1) x(1) = o) y[—Ing(0)] te<t, ),

then the function (12,1) satisfies an equation (A,) in {t,, ).
The proof can be obtained in a similar way as in Lemma 1.
Remark 5. By relation

(12,2) 2(1) = e "¢lo7 (7]

the space of solutions of (B,) is transformed bijectively onto the space of
solutions of

(Bo3) 2"+ 2[e "o (e = 1/2]2" + e *{lailo~' (7] —
—bile~'E Mrle~'(e7)] — 2¢'a, [0~ '™}z = 0.
Remark 6. By designating
Ap(7) = e [0 (e7I] — 1/2;
by (1) = 7B [o " (e rlo~'(e7)]

and from the equality

An(n)=e o~ (e M ajle~' ()] — 2 ¥a, [0 (e )]
the equations (Ay;) and (By;) can be written in the form

V" 4+ 240(0)y" + [A5(7) + b3 ()] y = 0
z" + 2A03(T)Z/ + [A63(T) - bm(T)]Z =0.

Next we shall present the results, which by using Lemma I and some lemmas
and theorems proved by M. Gregus, for the solutions of (A)).

Lemma 1.1. Let (1) hold. Let a,(t) £ 0, a|(t) + b,(t) = 0in<t,, ) and let the
function b,(t) have the property
(V): b,(¢t) = 0 for all tet,, ) while b,(t) 0

in any subinterval.
Let 0 < r(t) £ M in {t,, ). Let & be the solution of the differential equation (B,)
with &(a) = &'(ay) =0, &"(a)) > 0 for a,e{ty, o). Then &(t) - o0, &'(f) - ©
ast— oo.

Proof. If we transform the equation (A,) into (A,) by using Lemma 1.,
we can see that (A,,) satisfies all assumptions of Lemma 3.1 in [2, p. 120] and
moreover, in this transformation [relation (4,1)] there corresponds to the solu-
tion &(¢) of (B,) with a double zero-point g, the solution z(7) of (B,,) having a
double zero-point in 7, = R[e,]. According to Lemma 3.1 in [2] z(7) - oo,
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z(1) > o0 as 7— 0. From (4,1), (1) and (4,2) we have: £(t) = z[R(1)] » oo,
&) =r='(1)z’[R(1)] = o0 as t — oo, because 1/r(t) = 1/M > 0 for all 1 > ¢,
Lemma 1.2. Let the hypotheses of Lemma 1.1 be satisfied and, moreover, let

(13) f R¥(1)[a|(t) + by(1)]dt = 0.

Then the solution & mentioned in Lemma 1.1 satisfies also
(14) r()[r() E@)) + 2a,(t) E(t) » 00 as t - .

Proof. With respect to both Lemma 1.1, from which we take the nota-
tion, and Lemma 3.2 in [2, p. 120] it is sufficient to prove that the condition

f Cla[RT(D)+ 5 [RT'(@ONr[R™(D]dr = 0

is equivalent to (13) and the property of the solution z of (By,) lim [z"(7) +
+ 2A4,(7) z(7)] = o0 means the relation (14). However, *

L 2l [R™'(D) + b, [RT' (@) [R™(7)]d7 = f R*(D)[ai (1) + by (1)]dt

and on the basis of (4,1), (4,2) we get the statement of Lemma 1.2.

By using (3), (4), (5), (6) and the monotonicity of R(f) we obtain from
Theorem 4 in [1] the following:

Theorem 1.1. Let the assumptions of Lemma 1.2 be satisfied in {t,, o). Then
there exists exactly one solution x of the differential equation (A)) [up to linear
dependence)] with the following properties: x(t) # 0, sgn x(¢) = sgn[r(¢) x'(¢)]’ #
# sgn x’(¢) for te {1y, ©); x(¢), r(t) x'(t), r(¢)[r(t) x'(t)] are monotonic functions
of tety, w) and x(t) = 0, r(t) x'(¢) = 0, r()[r(t) x'(¢1)] - 0 as t = oo.

From Theorem 5 in [1] there follows

Theorem 1.2. Let a,(t) < 0, a(t) + b,(t) = 0 and b,(t) have the property (V,)
Sfor tety, o). If the differential equation (A,) has an oscillatory solution on
{ty, ), then all solutions of (A)) are oscillatory on {t,, ) with one exception of
the solution x [up to linear dependence] with the following properties: x(t) # 0,
sgn x(f) = sgn [r(2) x'(1)]" # sgn x’(z) for te{ty, 0); x(1), r(t) x'(t), r(1) [r(1) X" ()
are monotonic functions for te<t,, o) and r(t) x'(t) = 0, r(¢)[r(t) x'(?)] = 0 as
t— 0.

Example. Consider the equation

(15) \
[T (O + x>~ %' (0) + [ — 1) + (x — 2) (% — 3)] 2 3x(£) = 0
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for t = t, > 0. » is a non-positive number. As easily verified, all the hypotheses
of Theorem 1.2 are fulfilled, and the solution x(¢) = 1/t of (15) has all the
properties satisfying the conclusions of Theorem 1.2.

Since on the basis of (3) and (8),

f box(T)df:j b, (1) dt,
0 1y

from Theorem 3.4 in [2, p. 122] it follows
Theorem 1.3. Let b,(t) have the property (V,) in {t,, ©) and let

J b,(1)dt = 0.

Then the equation (A,) has at least one solution x with no zeros in {t,, o) and
satisfying liminf x(¢) = 0.
{— 0

By using Lemma II we can obtain the following results for the equation (A)).

Lemma 2.1. Let (2) hold. Let a,(t) £ 0, o(t)r(¢) (a;(t) + b,(t)) = 4a,(t) for
te{ty, ). Let b,(t) have the property (V,). Let & be the solution of the equation
(B,) with the properties: (@) = E'(ay) =0, &"(a,) >0, a,e{t;,, ). Then
0 ) E(t) > oo, [r() E'(t) + 207 '(1) E(t)] = o0 as t — oo, where o(t) is deter-
mined by (9). , .

Lemma 2.2. Let the assumptions of Lemma 2.1 be fulfilled and, moreover,

j o’ [ai(t) + b, (1) — 407" (t1)r ' (¢) a,(¢)]dt = o0.

0

Then the solution & mentioned in Lemma 2.1 satisfies also [0*(t) r(¢) [r(t) E'(D)] +
+ 20(0)r(t) E'(t) + 2(1 + 2*(t) a, (1)) E(1)] = o0 as t — 0.

Further, we can prove a theorem where we use the formula (9) and derivatives
of the relation (10).

Theorem 2.1. Let the assumptions of Lemma 2.2 be satisfied in {t,, ).
Then there exists exactly one solution x of (A,) [up to linear dependence] with the
following properties: x(t) # 0, sgnx(t) = sgn[0*(¢) r(t) [r(¢) X' ()] + 20(t) r(2)-
“X'(£) +2x(0)] # sgn[r(t) x'(t) + 207" () x(1)] for te {1y, ©); @2 (t) x(2), r(t)-
X(1) + 207'(@) x(0), X r()[r() X' @) + 20(t) r(t)x'(t) + 2x(t) are mon-
otonic functions and @~ *(t) x(t) = 0, [r(t) x'(t) + 20~"(¢) x(£)] = 0, [0*(t) r(2)-
Jr@) x’(0)) + 20(t) x’'(t) r(t) + 2x(¢1)] > 0 as t - oo.

Theorem 2.2. Let (2) hold. Let a\(t) £ 0, o(t) r(t)[a;(t) + b,(t)] = 4a,(t) for
te{ty, ) and b,(t) have the property (V). If the differential equation (A,) has an
oscillatory solution on {t,, ©), then all solutions of (A,) are oscillatory with one
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exception of the solution x [up to linear dependence) with the following properties:
x(1) #0, sgnx(r) =sgn[o’()r(2) [r(t) ()] + 20(e) r(t) x'(t) + 2x(1)] # sgn-
[r()x'(t) + 207" () x(0)] for telty, ); @ 2(1) x(2), r(t)x'(r) + 207 '(t) x(2),
X () r()[r(@) x' () + 20(t) r(t) x'(t) + 2x(t) are monotonic functions on {t,, o)
and [r(t) x'(t) + 207" () x(N] = 0, [* () r()[r()) X' (O] + 20(1) r(2) x'(t) +
+ 2x(1)] = 0 as t - 0.

Theorem 2.3. Let b,(t) have the property (V,) in {t,, o) and let

J o* ()b, ()r'(1)dt = 0.

Then the equation (A,) has at least one solution x with no zeros in {t,, ©) and
satisfying liminf 0 ~2(¢) x(¢) = 0.
1= 0

Further assertions can be derived by using Lemma III.

Lemma 3.1. Suppose that (2) holds and o(t) is determined by (9). Let
0’ () a, (1) £ 1/2, o(t) r(t)[a;(t) + b,(#)] = 2a,(¢) and let b,(t) have the property
(V) in {ty, ). Let & be such a solution of (B)) that é&(a;) = &'(as) = 0, £"(e;) > 0,
ay€ {ty, ). Then 9~ '(t) E(t) = oo, [r(t) E'(t) + 0" (2) £(1)] = 0 as t — o0.

Lemma 3.2. Let the assumptions of Lemma 3.1 be satisfied and, moreover, let

o

J [In o) [@*(1) [} (1) + by ()] — 20() r~' (1) ay (1)) dt

diverge. Then the solution & mentioned in Lemma 3.1 satisfies also [o(t) r(t)-
[r(@) &) + r() §(6) + 20(2) a) (1) £(1)] > o0 as t > 0.

Theorem 3.1. Let the hypotheses of Lemma 3.2 be fulfilled in {t,, ). Then
there exists exactly one solution x of (A)) [up to linear dependence] with the
Sfollowing properties: x(t) # 0 for te {t,, ), 0~ '(t) x(2), r(t) x'(t) + 0~ '(¢) x(2),
o) r()[r() x’ () + r(t) x'(t) + 07 '(¢) x(t) are monotonic functions in {t,, ©);
sgnx(t) = sgn[o(t) r(2) [r(t) X' ()] + r(0) x'(1) + 07" (t) x(1)] # sgn [r(2) x'(t) +
+ 07 (1) x(1)] for telty, ) and @' (t) x(t) = 0, [r(1) x'(t) + 0~ '(t) x(1)] = 0,
o) r®)[r(t)x'(t)] = 0 as t —» 0.

Theorem 3.2. Let (2) hold and let ¢*(t)a,(t) < 1/2, o() r(t)[a; (1) + b,(2)] =
2 2a,(¢) and let b,(t) have the property (V,) in {t,, o). If the differential equation
(A)) has an oscillatory solution in {t,, ©), then all solutions of (A)) are oscillatory
with one exception of the solution x [up to the linear dependence] with the following
properties: x(t) #0, sgnx(t) = sgn[o@)r()[r() x’ (O] + r(Dx'(t) + o~ '(¢)-
x(0)] # sgn[r() x'(t) + 07" () x(1)] for telty, 0); x(t)e (1), r(t)x'(t) +
+ 07 () x(0), o) r()[r(t) x' ()} + r(t) x'(t) + o~ ' (¢) x(¢) are monotonic func-
tions and [r(t) x'(t) + 0~ () x()] = 0, o(O)r () [r(H) x'(1)) = 0 as t » .

222



Theorem 3.3. Let b,(t) have the property (V)) and let
_[ 0’ () b, (1)dt = .

Then the differential equation (A,) has at least one solution x with no zeros in
{ty, ) and satisfying liminf o ~'(¢) x(¢) = 0.
11— 0

Finally the following theorem which generalizes Theorem 1.15 in [2, p. 20]
can be proved by using the Lemmas [—III.

Theorem 4. If the function b,(t) = 0 for tet,, o©), then there exists a solution
of the equation (A,) without zeros in {t,, o). :

Example. In the equation

[[ex’(OF) + (1 = 3 In~2(6) x'(¢) + (¢ ' In~3 (1)) B35¢? + 25 — 1) x(¢) = 0,

where » = 0 is a constant, the Laguerre invariant b,(f) = 2(t 'In=3(¢)) »° is
nonnegative on an interval {#,, o), t, > e. This equation has by Theorem 4
a solution without zeros. Such solutions, for example, are x,(f) = In' **(¢),
x,(t) = In'**%(¢)-In(In ¢).
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ACUMIITOTUYECKUE CBOVCTBA PELIEHU OMPENEJIEHHOIO TUIA
AUOPEPEHLIMAJIBHBIX YPABHEHWM TPETBEIO IMOPAOKA

Jana Fetkova
Pe3iome

B paborax M. I'peryua [1] u [2] npuBeacHBI aCHMITOTHYECKHE CBOMCTBA pELUCHHIT Oe3 HyJIeBBIX
TOYEK ¥ TAKXKE ACHMNITOTHYECKHE CBOWCTBA OCLMJLIMPYIOLLIMX peleHnit nnddepeHunansHoro ypas-
HEHUA TpeTbero nopsaaka B popMe (A,). B 3Toii cTaThe HCCeAO0BAHBI BbILLE IPHBEACHHBIE CBORCTBA
nns auddepeHunanbHOro ypaBHeHus B gopme (A)).

IMpennonaraercs, uro ycnosus (1) mwiu (2) BbimojeHsl. B oboux ciyuasx mpeobpasyiorcs
peuienus ypaBHeHus (A,) B peuieHus ypaBHeHus (Ay) i = 1, 2, 3 (xotopsie B dopme (A,)) 4 Ha-
o6opot. Ha ocHoBanuu npeobpa3oBaHus npuMeHAIOTCS pe3yabTathl pabor [1] u [2] x pewenuto
ypaBHeHus (A,).

224



		webmaster@dml.cz
	2012-08-01T05:20:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




