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ON A CERTAIN LATTICE OF TOPOLOGIES ON
A PRODUCT OF METRIC SPACES

JOZEF DOBOS

Introduction

Let T be a nonempty set. Denote by R the real line and by T the set of all
non-negative functions a: T— R. Denote by #(T) the set of all functions f:
T — R such that

d(x, y)= f({d.(x(2), y(1))}.e7) (1)

is a metric on the set n M, for every collection of metric spaces {(M, d\)}.er.
teT

In [1] we investigate the metrizability by the metric d of the product topology on

[1Mm.

teT

In the present paper we extend some results of [1]. In the special case of the set T
being finite, the paper presents a complete characterization of the lattice of
topologies on the set n M, generated by the set AH(T).

teT

1. Preliminaries

1.1. Notation. If § is a binary relation on R, define the binary relation 8- on R”
as follows: xdry if and only if x(#)8y(r) for each te T. Define the function 6r:
T— R by 6-(t)=0 for each te T. If T={t}, we write §, and 6.

In paper [1] the following results (1.2—1.6) are proved.

1.2. Lemma. Let fe M(T). Then
Va,be T : f(a+ b)=f(a)+ f(b), 2)
Va,be T : a=12b=> f(a)=2f(b). 3)
1.3. Theorem. Let f: T"— R. Then fe M(T) if and only if
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VxeT : f(x)=0<x=0r, )

Vx,y,zeT: (xS1y+z& ySEmx+z& 2= x+y)> (5)
> f()=f(y) + f(2).

1.4. Proposition. Let the set T be finite. Let fe M(T). Then f is continuous (we
consider T* by subspace of the topological product R") if and only if

Ve>03Axe T, x> 161 f(x)<Ee.

1.5. Notation. Let S T be a nonempty set. Define a mapping is r: S*—> T" as
follows

. _fa(t) for teS,
(is T(“))(')‘{ 0 for teT-S,

for each ae S*. If S={s} we write i r.

1.6. Lemma. Let fe M(T). Then (fois.t) € M(S).
1.7. Remark. The mapping is r is continuous (see [2], p. 59, Theorem 1).

1.8. Proposition. Let Q be a nonempty finite set. Let fe M(Q). Then f is
continuous if and only if foi, o is continuous for each q € Q.

Proof. = : By 1.7.

& : Let £>0, ge Q. Since by 1.6 we have

(f is 0)e M({q}).
by 1.4 we obtain

3x,e{q}", x,>,0,: (foi, 0)(x;)< €/(card Q).
We put
a= > i, o(x,).
ico
Thus a€ Q", a> o6, and by 1.2 we have
f(a)éqgo(fo i 0)(x,)<€.

Then by 1.4 the function f is continuous.

1.9. Notation. For each fe #(T) we put
F(f)={teT;f i r iscontinuous}.
Define a function jr: T*— R as follows

0 for x=6r,

’T(x)={1 for x+ 6r.
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The following Example shows that the condition “finite” in Proposition 1.8
cannot be omitted.

1.10. Example. Let P be a nonempty set. Define a mapping f: P*—> R as
follows

f(x)=sup {min (1, x); te P}.
Then fe M(P), F(f)=P and f is continuous if and only if P is finite.

1.11. Corollary. Let the set T be finite. Let f € M(T). Then f.is, r is continuous if
and only if S c F(f).

Proof. By 1.6 we have (fois.t)€ #(S). Then by 1.8 we obtain that fois r is
continuous if and only if foi.r = (fois.r)oi.s is continuous for each se S.

1.12. Proposition. Let the set T be finite, 8+ S T. Let h e M(T) be continuous.
Define a mapping hs: T*— R as follows

_[h(x)/(1+ h(x)) for xelIm (is.7),
hs(x)= { 1 otherwise.

Then hs e M(T) and F(hs)=S.
Proof. Let xe T". Then hAs(x)=0<>h(x)=0<>x=6r.
Let x, y, zeT', x=1y+z, y=x+2, z=mx+y. Since he M(T), by 1.3 we
have
h(x)= h(y)+ h(2).

If As(y)+hs(z)<1, then x, y, zelm(is. 1), thus hs(x) = h(x)/(1+h(x)) =
h(y)/(1+ A(y)) + h(2)/(1+ h(2)) = hs(y) + hs(2). If hs(y) + hs(z)21, then
hs(x)=1= hs(y) + hs(z). Then by 1.3 we have ks e M(T).

Since A is continuous, by 1.7 we obtain hsois. r=(h/(1 + h))ois, r is continuous.
Thus by 1.11 we get S < F(hs).

Let te T—S. Since hsoi, r=jroi. r is not continuous, by 1.11 we have te T—
F(hs). Thus T— S < T— F(hs). '

2. Lattice of topologies generated by the set #(T)

2.1. Notation. Let T be a nonempty set. Let {(M,, d.)}.r be a collection of
metric spaces. We put M= n M,. For each fe M(T) denote by J; the topology on
teT

the set M derived from the metric (1). We put

£={9;: fe M(T)},
H={teT: M\ %0}

(where A’ is the derived set of A).
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2.2. Proposition. Let f, ge M(T). Let Ty« T, Then
F(f)= F(g)nH.

Proof. Let re F(g)nH. Let £¢>0. Select ae M such that a(t)e M’'. Since
I, J,, there exists 6 >0 such that

S.(a, 28) <= S(a, €). @)

Since goi, r is continuous, by 1.4 we have

ye{t}", y>.0:(g-i.t)y)<é.

Let ge M, such that 0<d(a(?), q)<y(r). Define a mapping b: T—|JM, as

teT

follows

[ q for s=1u,
b(s)—{a(s) otherwise,

Define a mapping x. {¢}— R as follows

x(8) = d.(a(r), b(1)).

Then obviously x € {t}*, x> ,0,. Since (goi r)e M({t}) and x=,y, by 1.2 (3) we
obtain g({d(a(?), b())}ier)= (goirr)(x) = 2:(goi r)(y)<28. Thus

b e S,(a, 28). Then by (7) we have (foi, )(x) = f({d/(a(t), b(t))}.cr)<&e. Hence
by 1.4 the function foi. r is continuous.

In the following it will be proved that if T is finite, then the topologies of metrics

which are generated by functions from #(T) are determined by subsets of the set
of all indices ¢, so that d, is not discrete.

2.3. Theorem. Let the set T be fmite. Let f, g € M(T). Then I, J, 1f and only if
F(f)> F(g)nH.

Proof. = : By 2.2.
& : Let ae M, €>0. We show that

36>0: S,(a, 8)c S(a, ¢).
Let y>0 such that

Vite T-HVbe T : (d(a(t), b(£))<y)=> a(t)=b(1). (8)
Let n>0 such that

Vte T-F(g)Vxe{t}", x>.0:(g-i r)(x)Z1. 9)
Let t e F(f). Since foi, r is continuous, there exists x, € {t}", x.> .6, such that
(f i r)(x)<el/(2card T). (10)
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We put
6, = g(i. (x.))/2.

For each t e T— F(f) we put x, = ,. For each t € T define a function y.: {t}— R by
y.(#) =y and put

¥ = g(i. v(y.))/2.

We put §=min ({8: te F(f)}u{y.: te T} u {n/2}). Let beS,(a, 8), te F(f).
Since 2g({d.(a(u), b(u))}uer) < 28 = g(i.r(x)), by 1.2 (3) we obtain

2d,(a(1), b(£))<x.(2).
Let re T—H. Since 2g({d.(a(u), b(u))}ucr) = 28 = g(i.+(y)), by 1.2 (3) we
have 2d.(a(t), b(1))<y. Then by (8) we get a(t)=b(¢).
Let te T— F(g). Define a function u: {t}— R by
u(t)=d.(a(t), b(r)).
Since i r(u)=12-{d.(a(v), b(v))}ver, by 1.2 (3) we have
(goi T)(U)=2-g({d.(a(v), b(V))}oer)<28=1.
Thus by (9) we set a(z)= b(r).
Then by 1.2 and (10) we obtain

f{d(a(), b()}ier)=
=2-f (ETI T(x.)) =2 ;T(fo i) (x)<Ee.
Hence b € S(a, €).

2.4. Corollary. Let the set T be finite. Let f, g e M(T). Then J; =T, if and only if
HnF(f)= HnF(g).

The following Example shows that the condition “finite’” in Theorem 2.3 cannot
be omitted.

2.5. Example. Let W be a infinite set. Let a: W— N be a surjection (when N
denotes the set of all natural numbers). Define a mapping g: W — R as follows:

g(x)=sup {min (1, a,-x,); te W}.

Then g € M(W). Let fe M(W) be the function from Example 1.10. Consider the
collection of metric spaces {(M,, d.)}.ew given by M, =R, d,(x, y)=|x—y| for
each t € W. Evidently S,(6w, 1) € 7,. We prove that S,(6w, 1) ¢ J;. Since for every
constant function u e W*, u# 6w we have g(u) =1, for every £>0 we obtain

S/(ew, €)¢ S,(Gw, 1).
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Thus S,(68w. 1) is not the neighbourhood of 8w in ,. Hence S,(6w, 1)¢ J,. Then
T, ¢t 9, but F(f)=F(g)=W.

2.6. Proposition. Let the set T be finite. Let h € M(T) be continuous. Put hy = jr.
Then

P={Th: Sc H).

Proof. Let fe M(T) We put S= HnF(f). Then by 1.12 we have HnF(hs)
= HNS = HnNF(f). Hence by 2.3 we obtain

9_[= g_hs-

2.7. Remark. It is not difficult to prove that the partially ordered set (£, <) is
a lattice.

2.8. Theorem. The lattice (¥, <) is dually isomorphic to the lattice (exp H, ).
Proof. Define a mapping §2: ¥—exp H by

Q(J)=HnF(f)
foreach fe M(T). By 1.12, 2.3, 2.4 and 2.6 the mapping €2 is a dual isomoprhism.
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Ob O[IHOW CTPYKTYPE TOINOJIOTMH
HA TMMPOU3BENEHHHU METPUYECKHX INMPOCTPAHCTB
Hozed Jobow
Pe3iome
IMycts T sABAfeTCA HENYCTbIM KOHe4YHbIM MHOXecTBOM. O603HauuM T MHOXECTBO BCEX HEOT-

pPHUATENbHBIX BELECTBE HHbIX (DYHKUMNH, Onipefete HHbIX Ha MHOXecTBe T O603HaunMm HM( T) MHOXKECT-
Bo Bcex yHkumit f: T"— R, ans KoTopwix

d(x. y)~ f({d(x()). y(1))} < 7)

ABASACTCH MeTpHKOFI HAa MHOXECTBE
[ m
I

AAS KaXOTO CeMEUCTBa MeTpUdecKHX npoctpaHcTs {(M. d)} .r. B Hactoswe#n paGote Mbl npe-
ANaracM XapakTepPH3aUMIo CTPYKTYPbl TOMONIOTHI, NOPOXaeHHOH MHOXecTBoM A(T).
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