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ON A CERTAIN LATTICE OF TOPOLOGIES ON 
A PRODUCT OF METRIC SPACES 

JOZEF DOBOS 

Introduction 

Let T be a nonempty set. Denote by R the real line and by T the set of all 
non-negative functions a: T-*R. Denote by M(T) the set of all functions /: 
T-*R such that 

d(x,y) = f({d,(x(t),y(t)))leT) (1) 

is a metric on the set \\ M, for every collection of metric spaces {(M„ d,)},eT. 
I i 7 

In [1] we investigate the metrizability by the metric d of the product topology on 

IlM. 
I E T 

In the present paper we extend some results of [1]. In the special case of the set T 
being finite, the paper presents a complete characterization of the lattice of 

topologies on the set \\M, generated by the set M(T). 
, e T 

1. Preliminaries 

1.1. Notation. If 6 is a binary relation on R, define the binary relation <5r on RT 

as follows: xb\y if and only if x(t)5y(t) for each te T. Define the function 0T: 
T^R by t9i-(i-) = 0 for each te T. If T={t}, we write S, and ft. 

In paper [1] the following results (1.2—1.6) are proved. 

1.2. Lemma. Let feM(T). Then 

Va,beT:f(a + b)^f(a) + f(b), (2) 

Va,beT:a^T2bd>f(a)^2f(b). (3) 

1.3. Theorem. Let f: T->R. Then fe M(T) if and only if 
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VxeT:f(x) = Oox = dT, (4) 

VJC, y,ze T:(x^Ty + z&y<Tx + z&z^Tx + y)^> (5) 
^f(x)<f(y) + f(z). 

1.4. Proposition. Let the set Tbe finite. Let feM(T). Then f is continuous (we 
consider T* by subspace of the topological product RT) if and only if 

V e > 0 3xeT, X>T6T: f(x)<e. 

1.5. Notation. Let ScT be a nonempty set. Define a mapping is T: S*—>T* as 
follows 

/• / w/ \ íf l(t) I o r t£S, (tS,(fl))(t) = { 0 \ o r ř e r _ s , 
for each a e S*. If S = {s} we write /, T. 

1.6. Lemma. Let feM(T). Then (fois.T)eM(S). 
1.7. R e m a r k . The mapping is T is continuous (see [2], p. 59, Theorem 1). 

1.8. Proposition. Let Q be a nonempty finite set. Let feM(Q). Then f is 
continuous if and only if fo iq. Q is continuous for each qeQ. 

Proof. ^>: By 1.7. 
<!=: Let e > 0 , qeQ. Since by 1.6 we have 

(f iq0)eM({q}), 
by 1.4 we obtain 

3xqe{q}+, xq>qdq: (foiq 0)(xq)<e/(caTd Q). 

We put 
fl= X k-o(xq). 

qtO 

Thus a e 0 + , a>o0o and by 1.2 we have 

f(a)^^(foiq 0)(xq)<e. 
Then by 1.4 the function / is continuous. 

1.9. Notation. For each feM(T) we put 

F(f) = {teT; f i, T is continuous}. 

Define a function j T : T* —*R as follows 

. . . (0 for x = 0 r , 
M X ) = U ioTx*6T. 
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The following Example shows that the condition "finite" in Proposition 1.8 
cannot be omitted. 

1.10. Example. Let P be a nonempty set. Define a mapping / : P*—*R as 
follows 

/(*) = sup (min (1, x,);teP). 

Then feM(P), F(f) = P and / is continuous if and only if P is finite. 

1.11. Corollary. Let the set T be finite. Let f e M( T). Then fa is, T is continuous if 
and only if ScF(f). 

Proof. By 1.6 we have (fois,T)eM(S). Then by 1.8 we obtain that /o/ s .T is 
continuous if and only if /O/,.T = (fois,T)oi,,s is continuous for each seS. 

1.12. Proposition. Let the set Tbe finite, 0 ¥= S c T. Let A e M(T) be continuous. 
Define a mapping hs: T*—*R as follows 

hs(x) = [h(x)/il + H(x)) f°r X€lm^r\ s 1 1 otherwise. 

Then hseM(T) and F(hs) = S. 
Proof. Let xeT*. Then hs(x) = 0oh(x) = 0*>x = dr. 
Let x, y, zeT*, x^Ty + z, y^Tx + z, z = Tx + y. Since heM(T), by 1.3 we 

have 
h(x)^h(y) + h(z). 

If As(.y) + As(-)<1, then x, y, z€lm(/s.T), thus hs(x) = h(x)l(\ + h(x)) ^ 
h(y)l(\ + h(y)) + h(z)l(\ + h(z)) = As(v) + As(z). If hs(y) + AS(-)S1, then 
hs(x)^\^hs(y) + hs(z). Then by 1.3 we have hseM(T). 

Since A is continuous, by 1.7 we obtain ASO/S,T = (A/(1 + A))O/S.T is continuous. 
Thus by 1.11 we get ScF(A s). 

Let te T—S. Since ASO/..T=/TO/',.T is not continuous, by 1.11 we have te T— 
F(hs). Thus T-ScT-F(hs). 

2. Lattice of topologies generated by the set M( T) 

2.1. Notation. Let T be a nonempty set. Let {(M„ d,)},tT be a collection of 

metric spaces. We put M = J l M . For each feM(T) denote by 3"f the topology on 
teT 

the set M derived from the metric (1). We put 

<£={3-f:feM(T)}, 
H={teT:M',±0} 

(where A' is the derived set of .A). 
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2.2. Proposition. Lef / , g e M(T). Let 9~, c Ju Then 

F(f)=>F(g)nH. 

Proof. Let teF(g)nH. Let e > 0 . Select u e M such that a(t)eM'. Since 
f f c j , , there exists <5>0 such that 

Sa(a,26)^Sf(a, e). (7) 

Since goi, r is continuous, by 1.4 we have 

3ye{ty, y>,e,:(goi,.T)(y)<6. 

Let qtM, such that 0 < d,(a(t), q)<y(t). Define a mapping b: T - * ( J M, as 
IS T 

follows 

b(s) = {a 
q for s = t, 
(s) otherwise. 

Define a mapping x. {t}-+R as follows 

x(t) = d,(a(t),b(t)). 

Then obviously xe{t}+, x>,6,. Since (go/, T)eM({t}) and J. = ,y, by 1.2 (3) we 
obtain g({d,(a(t), b(t))},eT)= (gai,T)(x) ^ 2(goi, T)(y)<28. Thus 
b e Sa(a, 28). Then by (7) we have (foi, T)(x) = f({d,(a(t), b(t))},,T)< e. Hence 
by 1.4 the function foi,.T is continuous. 

In the following it will be proved that if T is finite, then the topologies of metrics 
which are generated by functions from M(T) are determined by subsets of the set 
of all indices t, so that d, is not discrete. 

2.3. Theorem. Let the set T be finite. Letf,geM( T). Then J, c °Ta if and only if 
F(f)^F(g)nH. 

Proof. =->: By 2.2. 

<= : Let A e M, e > 0 . We show that 

38>0: Sg(a,8)cSf(a, e). 

Let y > 0 such that 

Vf e T - H V b e T : (d,(a(t), b(t))<y) z> a(t) = b(t). (8) 

Let 77 > 0 such that 

VteT-F(g)Vxe{t}+,x>,e,:(goi,T)(x)^rl. (9) 

Let t€F(f). Since foi, T is continuous, there exists x,e{t}+, x,>,6, such that 

(/ /, T)(A:,)<e/(2cardT). (10) 
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We put 
<5, = .<7(/,T(*,))/2. 

For each teT— F(f) we put x, = 6,. For each teT define a function y,: {t} —» R by 
y,(t) = Y and put 

y, = .a(i,.TO',))/2. 

We put <5 = min({<5,: (eF( / )}u{y, : teT} u {n/2}). Let beS„(a, 6), teF(f). 
Since 2g({du(a(u), b(u))}u€T) < 28 =\ g(i,.T(x,)), by 1.2 (3) we obtain 

2d,(a(t),b(t))<x,(t). 

Let teT-H. Since 2g({du(a(M), 6 ( M ) ) } „ £ T ) = 25 = g(i,.T(y,)), by 1.2 (3) we 
have 2d,(a(t), b(t))<y. Then by (8) we get a(t) = b(t). 

Let te T-F(g). Define a function u: {t}-*R by 

M(r) = d,(fl(0,ft(0)-
Since i, T(u)^T2- {dv(a(v), b(v))}v^T, by 1.2 (3) we have 

(got, T)(u)^2g({dv(a(v), b(v))}„T)<26^n. 

Thus by (9) we set a(t)=b(t). 
Then by 1.2 and (10) we obtain 

/({d , (a(0, *( '))},«T) = 

=:2f('Zi,.T(x,))^2-2(f0i,,T)(x,)<E. 

Hence b e Sf(a, e). 

2.4. Corollary. Let the set T be finite. Letf, geM(T). Then&'f = ST„ if and only if 
HnF(f) = HnF(g). 

The following Example shows that the condition "finite" in Theorem 2.3 cannot 
be omitted. 

2.5. E x a m p l e . Let Wbe a infinite set. Let a: W—»/Vbe a surjection (when N 
denotes the set of all natural numbers). Define a mapping g: W*-* R as follows-

g(x) = sup {min(l , a,x,);te W}. 

Then geM(W). Let feM(W) be the function from Example 1.10. Consider the 
collection of metric spaces {(M„ d,)},eVV given by M, = R, d,(x, y)=\x — y\ for 
each t e W. Evidently Sa(6Wj 1) e 9~a. We prove that SB(6W, 1) ̂  5}. Since for every 
constant function ue W*, u4= 8W we have g(u) = 1, for every e > 0 we obtain 

S,(6W, e)<£Sg(6w, 1). 

401 



Thus Su(6w, 1) is not the neighbourhood of 6W in J,. Hence S„(6w, 1)^ 3~f. Then 
J,<t3-„ but F(f)=F(g)=W. 

2.6. Proposition. Let the set T be finite. Let h e M( T) be continuous. Put h» = jr-
Then 

¥=(3-hs:S^H}. 

Proof. Let feM(T) We put S = HnF(f). Then by 1.12 we have HnF(hs) 
= HnS = HnF(f). Hence by 2.3 we obtain 

or — or 
J i — U hs • 

2.7. R e m a r k . It is not difficult to prove that the partially ordered set (if, c ) is 
a lattice. 

2.8. Theorem. The lattice (££, c ) is dually isomorphic to the lattice (exp H, cz ). 
Proof. Define a mapping Q: if—»exp H by 

Q(Sr,) = HnF(f) 

for each feM(T). By 1.12, 2.3, 2.4 and 2.6 the mapping f2is a dual isomoprhism. 
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О Б ОДНОЙ СТРУКТУРЕ ТОПОЛОГИИ 
НА ПРОИЗВЕДЕНИИ МЕТРИЧЕСКИХ ПРОСТРАНСТВ 

Иозеф Добош 

Резюме 

Пусть Т является непустым конечным множеством. Обозначим Г" множество всех неот­
рицательных вещественных функции, определенных на множестве Т Обозначим М( Т) множест­
во всех функций /: Т~—>К. для которых 

<Цх.у)-П{АШ.уО))).т) 

является метрикой на множестве 

для каждого семейства метрических пространств {(М,с1)} , т . В настоящей работе мы пре­
длагаем характеризацию структуры топологий, порожденной множеством М(Т). 
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