Mathematica Slovaca

Irena Rachinkova
On a certain three-point boundary value problem

Mathematica Slovaca, Vol. 39 (1989), No. 4, 417--426

Persistent URL: http://dml.cz/dmlcz/130325

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/130325
http://project.dml.cz

Math. Slovaca 39, 1989, No. 4, 417—426

ON A CERTAIN THREE-POINT BOUNDARY
VALUE PROBLEM

IRENA RACHUNKOVA

In this paper there are proved theorems of existence and uniqueness of
solutions of the equation

0.1) u"=f( u u’),
satisfying the conditions

0.2) u(@g=A4, ulb)—u(t)=1B
or

0.3) u'(a)=0, u(b) —u(t) =0,

where —0 <a<ty<b< +00, A. Be(—o0, + o). We use the method of
lower and upper functions here.

The question of existence and uniqueness of solutions of the problem (0.1),
(0.2) were studied by V. Seda ([13]) by means of a method different from
that used here and the results obtained in this paper are different. A similar
three-point problem, with the boundary condition u(a) = 4, u(b) — u(t,) = B,
was solved by I. Kiguradze and A. Lomtatidze in [7, 8]. Further, in the
works [9—11] there were proved existence and uniqueness theorems for four-
point boundary value problems with the boundary condition u(c) — u(a) = A4,
u(b) —u(d) = B, where —0o <a<c<d<b< +w.

1. The main results

We will use the following notations:
R=(—o0, +m), R, =[0, +), D= [a, b] x B, N — the set of all natural
numbers, @ = max{l, |A4[},

Di, q,~€[1, +(D], 1/p1+ l/qi= l,i=1,..,n nekn, go(t) = aot2 + ﬂot,

where _
o = [B/(b— 1)) — A](b+ ty— 2a)™", By = [A(b + 1) — 2aB/(b — 1)) (b + 1, —
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—2a)™", AC'(a, b) is the set of all real functions having absolutely continuous
first derivatives on [a, b],

Car,.(©) is the set of all real functions satisfying the local Carathéodory
conditions on 2,

a.e. = “‘almost every”.

We say that some property is satisfied on 2 if it is satisfied for a.e. € [a, b] and
every (x, y)e % Let d,, d,e C(a, b), d,(t) £ dy(¢) for te[a, b]. We say that some
property is satisfied on D(d,(?), d,(?)) if it is satisfied for a.e. 7€[a, b] and for
every x€[d,(?), dy(1)], |yl 2 a.

Definition. A function ue AC'(a, b) which fulfils (0.1) for a.e. t€[a, b] will be
called a solution of the equation (0.1). Each solution of (0.1) which satisfies (0.2)
will be called a solution of the problem (0.1), (0.2).

Definition. A function o,€ AC'(a, b) will be called a lower function of the
problem (0.1), (0.2) if

(1.1 ol()=zf, a, o) for a.e. tela, b],
(1.2) ci(@z4, o) —al=B.

A function oy€ AC'(a, b) will be called an upper function of the problem (0.1),
0.2) if

(1.3) oy(t) £ f(t, o5, 03) for a.e. tela, b],

(1.4) oy(a) = A, o,(b) — 0y(1)) = B.

In the whole paper we suppose that fe Car,.(Z) and denote
r,=max {|o\" (1) + |63? ()| :a £ t £ b}, i=0,1.

Theorem 1. Let o, be a lower and o, an upper function of (0.1), (0.2) and
0,(t) £ o5(1) for a < t £ b. Further, let on the D(0,(1), 05(1)) the inequality

(1.5) f(t, x, pysgny £ 0(p) Y g h(x) (1 + |y
i=1

be satisfied, where g,e L"(a, b), hye L“(—r,, 1), i =1, ..., n, and ®e C(R) is a
positive function such that

(1.6) J*"«_qs_zr"v & _ 1o
« () e« (=S

Then the problem (0.1), (0.2) has a solution.

Theorem 2. Let g;, h;, i = 1, ..., n, and o be the functions from Theorem 1 and
let there exist re (0, + o) such that the condition (1.5) is satisfied on D(gy(t) —r,
80(?) + r) and the condition '
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1.7) (f(t, x + go(1), go(1)) — 2ap)sgnx 20 for |x| = r
is satisfied on D.
Then the problem (0.1), (0.2) has a solution.

Corollary 1. Let g;, h;, i = 1, ..., n, and o be the functions from Theorem | and
let there exist re (0, + o) such that (1.5) is satisfied on D(—r, r) and the condition
(1.8) f(t, x,0)sgnx =0 for|x|=r

is fulfilled on D.
Then the problem (0.1), (0.3) has a solution.

Theorem 3. Let thee exist a non-negative function he L(a, b) such that on the
set D the inequality

(1.9) S x1, ) = f(t, X5 y) + B(Dly, — ¥l > 0 for x, > x,

is satisfied.
Then the problem (0.1), (0.2) has not more then one solution.

Corollary 2. Let all assumptions of Theorem 3 be satisfied and let there exist
re(0, + oo) such that

(1.10) ft,(=1)r,00(=1Y=0 forae te(ab),i=1,2.

Then the problem (0.1), (0.3) has just one solution.
Corollary 3. Let all assumptions of Theorem 3 be satisfied and let thee exist
re(0, + oo) such that

(1.11) /@ (= 1)+ go(0), g6(1) — 2] (—=1)' 2 0
forae. te(a,b)andi=1,2.

Then the problem (0.1), (0.2) has just one solution.

2. Auxiliary statements

Lemma 1.Let ke (0, + o). Then the problem

2.1 v" = kv,

2.2) v'(@=0, v(b) —v(t) =0

has only the trivial solution and there exists c, € (0, + o) such that

oG (1, s)
ot

where G is the Green function for the problem (2.1), (2.2).
Proof. Let us suppose that the solution of (2.1) v(?) = ¢,e* + a,e
a,€ R, satisfies (2.2). We obtain the system

(2.3) +1G(¢, s)| £ ¢, foragt s<b,

—kt
s ah
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(2.4) aM =0
where @ = (a;, @), and
2.5) detM = k(""" — e2) (e — ") e """ > 0.

Therefore the system (2.4) has only the trivial solution ¢, = &, = 0. Let

Gt 5) = a,(s)e" +ay(s)e ™™ fora<s<t=b
T by(s)eM + bys)e™ forast=<s<b,

and
Jim G(t, s) — lim G(¢,5) =0,
t—s+ t—s—
(2.6) -
im 9009 _ L 8G@) _ |
t— s+ ot t—s— ot
2.7 a—G—gﬁ=o, G(b,s) — G(t,, 5) = 0.
t
From (2.6) we get
(2.8) a,(s) — b,(s) = e X2k, ay(s) — by(s) = —e*[2k.

Since (2.7), (2.8),

bi(s)ke* — by(s)ke™ =0
29 {BEE —e") + by —e ) =

= — (kb9 — ™) _gks=t) 4 Ty np for sela, 1)
and

by(s) ket — by(s)ke ™ =0
(2.10) Bi(s) (@ — &%) + by(s) (™ — ™) =

= — (=9 — =2k for selt,, b].

The systems (2.9), (2.10) have the same matrix M as the system (2.4), and so,

by (2.5), the functions b,, b,, a,, a, are uniquely determined on [a, b]. It is not
difficult to show that the constant

e = (1/k + D)1 + €™ + 1)/det M),

where b, = max {|a|, |b|}, satisfies (2.3).
~Lemma 2. Let there exist he L(a, b) such that

(2.11) I/, x, )| < h(t) on D.
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Then for any ke (0, + o) the problem
(2.12) ‘ u' =k*u+f(t,u,u),
(2.13) u'(@)=A,ub) —u(@)) =B

has a solution.
Proof. The proof is analogous to the proof of Lemma 2 in [12] and so it
is omitted.

3. A priori estimates

Lemma 3. Let re(0, + ), g€ L7(a, b), he L(—r, r) i=1, ..., n, and
we C(RB) be a positive function satisfying the condition (1.6). Then there exists
r*e(a, +o0) such that for any function ue AC'(a, b) the conditions

3.1 u@=A4,lu@)|=r forast=<bh
and .
6D WO S 0w ) Y OO + 6"

for ae. te[a, bl and |u' ()| = a
imply the estimate

3.3) lu' (@) = r* forast=b.
b 1/p
Proof. We will write |gllpgs = (I Ig(t)l"dt) for 1=p< +o and

l&llioqn = esssup{lg@dl:a <t < b} Putey =2 Y lgill gy lfill 5, From
i=1

(1.6) it follows that there exists r*e(a, + c0) such that

(3.9 ds > ¢, and J ds > ¢-
« a(s) a 0(—s)

Let ue AC'(a, b) satisfy (3.1) and (3.2) and let there exist ¢,€ (a, b] such that
(3.5) u (t)] > r*.

Let [t,, ;] < [a, b] be the maximal interval containing ¢, in which |u’(f)] = @ and
let t* € (1), t,] be such point that

(3.6) ' (t*)] = ¢, =max{lu’(O]:{, S t S 1;}.
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Then, from (3.2), it follows
[ 0D g [ 3 g0 h @)+ )" .
f o(u’ (1)) 4 oi=1

If u’(t) 2 a on [t,, t*], then by the Holder inequality, we can obtain from the
last inequality

“ ds
3.7 —_— < .
3.7) . o) =6

According to (3.4) and (3.7), c,\ < r*, which contradicts (3.5). If u’(f) £ —aon
[t,, t*], then we get a similar contradiction. Therefore the estimate (3.3) is valid.

4. Existence proposition

Proposition: Let o, be a lower function and o, an upper function of the problem
(0.1), (0.2) and o,(¢) < 0,(¢) for a < t < b. Further, let on the set D(o,(t), o,(1))
the inequality

4.1 Lf @ x, p)I = g(0)

be valid, where ge L(a, b).
Then the problem (0.1), (0.2) has a solution u fulfilling the condition

4.2) o()su(t)s0,(1) forastsb.
Proof. Similarly as in [12] put
wi(ta X, y) = (_ l)im(x - O-x)(f(t’ O O-nl) '—f(ta O;» y) + (— l)iro/m]’ i= l, 29

and

f(t, oy, o)) —ry/m forx<o,(t)— 1/m

f(, o, )+ wl(t, x, y) for gy()—1/m < x < 0,(2)
4.3)  fut, x, ) =< f(t, x, p) for 01(1) = x < 6,(9)

f(t, 63 y) + wo(t, X, ¥)  for oy(f) < x < () + 1/m

f(t, oy, 63) + ro/m for x = o,(t) + 1/m,

where me W, (t, x, y)€[a, b] x &% Then, by (4.1),
4.4 |fm(t, X, Y)I < 1o+ g(2) on D.

Let us consider the equation
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4.5) u"(t)y =u/m+f,(t, u, u’), me V.

According to Lemma 2, the problem (4.5), (0.2) has a solution u,,. We shall show
that u,, satisfies the inequalities

(4.6) a)—1/m=Zu,lt) o)+ 1/m fora<t=<b.
By (1.1) and (1.3),
(4.7) (=1 (fu(t x, y) — 0(1)) Z ro/m

for (=1)(x—oc(®)=1/m,i=1,2, meW.

Put v(¢) = (= 1) (u,(t) — 6,(t)) — I/mfora < t £ b, ie{l, 2}.
Then from (0.2), (1.2), (1.4) it follows

(4.8) V@20, v —v(p)=0.
This means that there exists b, €(¢,, b) such that
4.9) v'(b) =0.

Let us suppose that (4.6) is not satisfied on (a,b,). Then for certain ie {1, 2} and
tO € (a, bl)

v(ty) > 0.
In view of (4.8) there exists #, €[a, %) such that
v(t,) 20,0'(t,) 20 and v(f) > 0 on (2, ).
Let t*e(t,, b,] be such that
(4.10) v(t*)=0 and v() > 0 on [z, t*).

In view of (4.7) there is satisfied v"(¢) = (ry + (=1 'u,())/m = 1/m? for
te(t,, t*]. Integrating the latter from ¢, to ¢, where te(t,, t*], we get v’ () > 0
for te (¢, t*], which contradicts (4.10). Therefore v(¢) > 0, v’ (f) > 0 on (¢,, b,].
But in view of (4.9) this is impossible. Hence, we have proved v(f) £ 0 for
a <t £ b,. Moreover, by (4.8), v(b) < 0. Supposing that (4.6) is not satisfied on
(b, b), we get a similar contradiction as for (a, b,). Consequently u,, satisfies (4.6)
on [a, b]. :

From (0.2), (4.5), (4.6) it follows that the sequences (u,,)%_, and (u,,)2_, are
uniformly bounded and equi-continuous on [q, b] and thus, by the Arzela-Ascoli
lemma, without loss of generality we can suppose that they are uniformly
converging on [a, b]. By (4.3)—(4.6), the function u(¢f) = lim u,,(¢) on [a, b]

satisfies (4.2) and is a solution of the problem (0.1), (0.2). Proposition is proved.
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5. Proofs of Theorems

Proof of Theorem 1. Let r* be the constant found by Lemma 3 for
r=ry.Put gg=r*+ry+r,

1 for0 <s =< g
x(00 5) =< 2—s/g,  for gy <s<2g
0 for s = 29,
(5.1 J(, x, y) = 2(00, IXl + 1)) f(t, x, y) on D
and consider the equation
(5.2) u" =f(t u u’).

Since max{|o; ()| + |o/():a Lt < b} < gy, i=1, 2, 0, is a lower and o, an
upper function of the problem (5.2), (0.2). Further | £(z, x, y)| £ g(¢) on D, where
g(® = sup{lf(@, x, y)|:|1x| + |y| £ 20,} € L(a, b). Thus, by Proposition, the pro-
blem (5.2), (0.2) has a solution u satisfying (4.2). Consequently « fulfils (3.1) for
r =r, Further, according to (1.5) u”sgnu’ < w(u’) > g()hu@®)( +
i=1

+ Iu’(t)l)l/"’ for a.e. te[a, b] and |u’ (¢)| = a. Therefore, by Lemma 3, u satisfies
the inequality (3.3). Consequently, by (4.2), we get

(5.3) @l + '@ =0 forast=sh.
In view of (5.1), (5.2), (5.3), u is a solution of the problem (0.1), (0.2).

Proof of Theorem 2. Let us put o,(¢) = go(t) — r, 0,(t) = g,(t) + r for
a = t=<b. Then ai(t) = o5(t) = 2a, and, by (1.7), f(¢t, 6y, o) =f(t, go— 1,
g0) S 2a, and f(¢, 0y, 0) =f(t, 8o+ 1, 80) = 2q, for a.e. t€[a, b]. Further
o1(@) = o3(a) = go(a) = A and 0,(b) — 0,(t;) = 0;(b) — a(ty) = &(b) —
— 8o(t) = B. Therefore o, is a lower and o, is an upper function of the problem
(0.1), (0.2) and ,(?) < 0,(?) on [a, b]. Thus, by Theorem 1, the problem (0.1),
(0.2) has a solution. Theorem 2 is proved.

Proof of Theorem 3. Let us assume that the problem (0.1), (O 2) has
two solutions u;, u,. Put v = 4, — u, on [a, b]. Then

(54 ' v'(a) =0, v(b) — v(t)) =0
and there exists ¢, € (¢,, b) such that
(5.5) v'(t) =0
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First let us suppose that v(sy) # 0 for some s, € (a, ¢,). Then there exist ¢, t*€|[a,
t,] such that

" (5.6) v(t)>0  for te(ty, t*), v'(t,) = 0, v'(*) £ 0.

From (1.9) we get v”(2) + A(f)v’(f) > 0 on [t,, t*], where A(f) = h(f)sgnv’(¢).
Thus

5.7 (exp (flﬁ(r)dr>v’(t)>’ >0 on [t,, t*].

Integrating (5.7) from ¢, to t*, we get by (5.6),

(5.8) 0 =exp (J‘" f[(r)dr)v’(t*) — exp (Jﬂt ff(‘r)dr)v’(t*) >0.

The contradiction (5.8) implies v(¢) = 0 for t€[a, ¢,]. From (5.4) it follows that
(5.9) v(b) =0.

Now, let us suppose that v(s,) > 0 for soe(¢,, b). Then there exist z,, t*€[t,, b]
such that (5.6) is fulfilled. Therefore, by (5.7), we get the contradiction (5.8).
Thus v(f) = 0 for te[a, b]. This completes the proof.

Proof of Corollary 2. The uniqueness is clear. Let us prove the exis-
tence. Let x > r. Then, by (1.9), (1.10), f(¢, x; 0) — f(¢, r, 0) > 0 and thus
f(t,x,00=0 for x=r. If x< —r, then f(¢t, —r, 0) —f(z, x, 0) > 0 and so
f(t,x,0) = 0 for x < —r. Therefore f satisfies (1.8) on D.

Further, according to (1.9), (1.10), if y = a, xe[—r, r), then f(z, x, y) <
<f(, r, )+ h@®|yl and if y < —a, xe(—r, r], then —f(¢, x, y) < —f(4,
—r,0) + h(®|yl. Thus f(2, x, y)sgny < h,(t) + hy(¢)|y]| on D(—r, r), where

f(,r,0) fory=a
—f(t, =r,0) forys —a, h()=h(), te(a, b).

Consequently f'satisfies (1.5) on D(—r, r) and by Corollary 1 the problem (0.1),
(0.3) has a solution. This completes the proof.

h, () ={

Proof of Corollary 3. Put g(t, x, y)=f(t, x+ gy ¥+ &) — &o-
Then fsatisfies (1.9) exactly just g satisfies (1.9). Further, if fsatisfies (1.11), then
g satisfies (1.10) and so, by Corollary 2, the problem

v" =g(, v, 0, v'(@) =0, v(b) —v(ty) =0

has just one solution v. Then u = v + g, is the unique solution of (0.1), (0.2).
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Pe3ome

B cratbe J10Ka3aHbl TECOPEMBI CYILICCTBOBAHUSA U €AHHCTBEHHOCTH pCI.I.leHHﬁ 3a4avu

u” =f(t! u, ll/), ul(a) = Aa ll(b) - u(’O) = B,
rae
—o<a<ty<b< +w, A, Be(—w, +©).
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