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ON A CERTAIN THREE-POINT BOUNDARY 
VALUE PROBLEM 

IRENA RACHUNKOVA 

In this paper there are proved theorems of existence and uniqueness of 
solutions of the equation 

(0.1) u"=f(t9 u9 u')9 

satisfying the conditions 

(0.2) u\a) = A , u(b) - u(t0) = B 

or 

(0.3) u\a) = 0, u(b) - u(t0) = 0, 

where —oo<a<t0<b< +00, A. 2?e(—00, +00). We use the method of 
lower and upper functions here. 

The question of existence and uniqueness of solutions of the problem (0.1), 
(0.2) were studied by V. Seda ([13]) by means of a method different from 
that used here and the results obtained in this paper are different. A similar 
three-point problem, with the boundary condition u(a) = A9 u(b) — u(t0) = B9 

was solved by I. K i g u r a d z e and A. L o m t a t i d z e in [7, 8]. Further, in the 
works [9—11] there were proved existence and uniqueness theorems for four-
point boundary value problems with the boundary condition u(c) — u(a) = A9 

u(b) — u(d) = B9 where —00 < a < c < d< b < +00. 

1. The main results 

We will use the following notations: 
» = ( - o o , +00), R+ = [0, +00), D= [a, b] x !R2

9 M — the set of all natural 
numbers, a = max{l, \A\}9 

Pn fte[l, +00], \/Pi+ \/q{= 1, 1= 1, ..., n, nelM9g0(t) = c^t2 + fi0t9 

where 
«o = [B/(b - to) -A](b + t0- 2a)~\ fi0 = [A(b + t0) - 2aB/(b - t0)](b + t0 -
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— 2a)"1, ACx(a9 b) is the set of all real functions having absolutely continuous 
first derivatives on [a, b], 
Car,oc(C) is the set of all real functions satisfying the local Caratheodory 
conditions on P9 

a.e. = "almost every". 
We say that some property is satisfied on D if it is satisfied for a.e. te [a, b] and 
every (x, y)e t2. Let dX9 d2eC(a9 b), dj(t) = d2(t) for te[a9 b]. We say that some 
property is satisfied on D(dx(t)9 d2(t)) if it is satisfied for a.e. te[a9 b] and for 
every xe[dj(t), d2(t)], |y | = a. 

Definition. A function ueAC](a9 b) which fulfils (0.1) for a.e. te[a9 b] will be 
called a solution of the equation (0.1). Each solution of (0.1) which satisfies (0.2) 
will be called a solution of the problem (0.1), (0.2). 

Definition. A function axeAC](a9 b) will be called a lower function of the 
problem (0.1), (0.2) // 

(1.1) <r?(0 £ / ( / , CJX9 a\) for a.e. te[a9 b], 

(1.2) CJ\(O)ZA9 ax(b) - ax(t0) ^ B. 

A function a2eAC](a9 b) will be called an upper function of the problem (0.1), 
(0.2) if 

(1.3) a'{(t) = / ( t , a29 ad for a.e. te[a9 b], 

(1.4) cr2(a)SA9 a2(b)-a2(t0)^B. 

In the whole paper we suppose that fe Carloc (O) and denote 

rt = max {|of(/)| + |of>(/)|: a ^ t S b}, i = 0, 1 . 

Theorem 1. Let ax be a lower and a2 an upper function of (0A)9 (0.2) and 
ax(t) = a2(t)for aigt^Lb. Further, let on the D(ax(t)9 a2(t)) the inequality 

(1.5) f(t, x, y)sgny = co{y) £ g,(/)/..(*)(. + \y\) 

be satisfied, where g(eLPi(a9 b), hieLqi( — r09 r0), / = 1, ..., n, and coeC(R) is a 
positive function such that 

(1.6) ' ds Г 
Ja 

0)(S) 

ds 
= +00 ť ü ( - í ) 

rben /be problem (0.1), (0.2) bas a solution. 
Theorem 2. Let g,, hi9 i = 1, ..., n, #nd #> be the functions from Theorem 1 and 

/et there ex/8/ re (0, + oo) swcb that the condition (1.5) is satisfied on D(g0(t) — r, 
£o(0 + r) and the condition 
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(1.7) (f(t, x + g0(t)9 g'0(t)) - 2oo)sgnx = 0 for \x\ = r 

is satisfied on D. 
Then the problem (0.1), (0.2) has a solution. 

Corollary 1. Let gi9 hi9 i = 1,..., n9 and co be the functions from Theorem 1 and 
let there exist r e (0, + co) sweh that (1.5) is satisfied on D( — r9r) and the condition 

(1.8) / ( / , x, 0)sgnx = 0 for|x| = r 

is fulfilled on D. 
Then the problem (0.1), (0.3) has a solution. 

Theorem 3. Let thee exist a non-negative function heL(a9 b) such that on the 
set D the inequality 

(1.9) f(t, x]9 y,) - f ( t , x29 y2) + h(t)|y, - y2| > 0 for x, > x2 

is satisfied. 
Then the problem (0.1), (0.2) has not more then one solution. 

Corollary 2. Let all assumptions of Theorem 3 be satisfied and let there exist 
re(0, +co) sweh that 

(i.io) f(t,(-iyr, o ) ( - i y = o fora.e. te(a,b), i=i,2. 

Then the problem (0.1), (0.3) has just one solution. 
Corollary 3, Let all assumptions of Theorem 3 be satisfied and let thee exist 

re(0, +co) sweh that 

(111) LA'. ( - \)'r + g0(t)9 g'0(t)) - 2a 0 ] ( - 1)' = 0 
for a.e. te (a, b) and i = 1, 2. 

Then the problem (0.1), (0.2) has just one solution. 

2. Auxiliary statements 

Lemma l.Let ke(09 +cc). Then the problem 

(2.1) v" = k2v9 

(2.2) t;'(a) = 0, v(b) - v(t0) = 0 

has only the trivial solution and there exists cke(09 +oo) sweh that 

\dG(t,s)\ 
(2.3) 

ôt 
+ |G(t, s)\ g ck for a ^t,s^b, 

where G is the Green function for the problem (2.1), (2.2). 
Proof. Let us suppose that the solution of (2.1) v(t) = a,e*' + a2e~kt

9 a,, 
a2e!R9 satisfies (2.2). We obtain the system 
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(2.4) a M = 0 

where a = (ax, a2), and 

(2.5) det M = k(ckib + 'o) - e2a*) (e*6 - e*'°) e ~Ha + b + 'o) > 0. 

Therefore the system (2.4) has only the trivial solution a, = a2 = 0. Let 

' a,(s)e*' + a2(s)e-*' for a = s = t = b 
{ bx(s) e*ł + b2(s) Q-1" fora = t = s = b, 

аnd 

% lim G(t, s) - lim G(t, s) = 0, 
/->5+ t-+S-

(2.6) 
l i m 5G(^_ H m 5G( £ l i ) = l i 

'-"+ 9/ ' - * - Qt 

(2.7) eG(a,5) = Q^ G(6,5)-G ( t 0 ,5) = 0. 

8t 

From (2.6) we get 

(2.8) a,(5) - 6,(5) = e-to/2ik, a2(s) - b2(s) = -eks/2k. 

Since (2.7), (2.8), 

fbx(s)keka - b2(s)kc-ka = 0 
(2.9) )bx(s)(ekb - e*'°) + b2(s)(e~kb - e"k'°) = 

( = _ (e*
(* - *> - e* ( '°"5) - eHt -"> + e*<5" 'o))/2fc for 5 e [a, t2] 

and 
rfc,(j)fce*°-&2(.s)fce-*B = 0 

(2.10) } bx(s) (ckb - e*'0) + b2(s) (c~kb - e-*'0) = 

( = _ (e*(6 - *> - e*(! - h))/2k for s e [t0, b]. 

The systems (2.9), (2.10) have the same matrix M as the system (2.4), and so, 
by (2.5), the functions bx, b2, a,, a2 are uniquely determined on [a, b]. It is not 
difficult to show that the constant 

ck = (\/k + l ) e * \ l + (e*"° + l)/det M) , 

where b0 = max{|a|, \b\}, satisfies (2.3). 
Lemma 2. Let there exist h e L(a, b) such that 

(2.11) \f(t,x,y)\ = h(t)onD. • 
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Then for any ke (0, +00) the problem 

(2.12) u" = k2u+f(t9 u, 11'), 

(2.13) u'(a) = A, u(b) - w(t0) = B 

has a solution. 
Proof. The proof is analogous to the proof of Lemma 2 in [12] and so it 

is omitted. 

3. A priori estimates 

Lemma 3. Let re(0, +00), g{eLPi(a9 b), ^eL^'X —r, r) i= 1, ..., n, and 
coeC(IB) be a positive function satisfying the condition (1.6). Then there exists 
r*e(a, +00) such that for any function ueACl(a, b) the conditions 

(3.1) u'(a) = A, \u(t)\ = r for a = t = b 

and 

(3.2) „"( t)sgn«'(0 < <o(u'(t)) t ft(0*i(«(0)(l + l«'(0l)I/* 
/ = 1 

for a.e. te[a, b] and \u'(t)\ ^ a 

imply the estimate 

(3.3) |w'(t)| = r* fora = t = b. 

a b \\/P 

\g(t)\pdt\ for l ^ p < + c o and 
n 

llsll.-M) = esssup{|g(t)l :a < t < b). Putc0 = 2 £ WStW^^WhiW^^y From 
I = 1 

(1.6) it follows that there exists r*e(a, +00) such that 

(3.4) \ >Co and — — - > e 0 . 
J a 0)(s) J a (D( — S) 

Let ueACl(a, b) satisfy (3.1) and (3.2) and let there exist t0e(a, b] such that 

(3.5) |« ' ( t 0 ) |>r*. 

Let [/-, t2] cz [a, b] be the maximal interval containing t0 in which |w'(t)| ^ a and 
let t*e(t!, t2] be such point that 

(3.6) |w'(t*)| = e, = max{|w'(t)|: t, = t = t2}. 
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Then, from (3.2), it follows 

í '* u"(t)sgnu'(t) 

a>(u'(t)) 

f * t * n 

dt = ZgMЫuШl +\uШ'*dt. 
i, 1 = 1 

If w'(t) ^ a on [t,, t*], then by the Holder inequality, we can obtain from the 
last inequality 

(3.7) f - V . - * -

According to (3.4) and (3.7), c, < r*, which contradicts (3.5). If u'(t) <£ — a o n 
[t,, t*], then we get a similar contradiction. Therefore the estimate (3.3) is valid. 

4. Existence proposition 

Proposition: Let a2 be a lower function and a2 an upper function of the problem 
(0.1), (0.2) and ax(t) S ^2(t)for a^t%b. Further, let on the set D(ax(t)9 a2(t)) 
the inequality 

(4.1) \f(t9x9y)\Sg(t) 

be valid, where geL(a9 b). 

Then the problem (0.1), (0.2) has a solution u fulfilling the condition 

(4.2) ax(t) = u(t) S cr2(t) for a^t^b. 

P r o o f Similarly as in [12] put 

w,(t9 x9 y) = (-\ym(x - at)(f(t9 ai9 cr,')-/(/, ai9 y) + ( - l)'r0/m], i = 1,2, 

and 
ff(t9 aX9 a\) - r0/m for x ^ ax(t) - 1/m 
/( t , <r„ y) + w,(t, x, y) for (T,(0- \/m<x< ax(t) 

(4.3) / , ( / , x, y) = < / ( t , x, y) for ax(/)£*£ (T2(t) 

/ ( / , ^ y) + w2(/, *, y) for a2(t) <x< a2(t) + 1/m 
J(t9 a29 a2) + r0/m for x ;> cr2(/) + 1/m, 

where meM, (/, x, y)e[a, b] x /J?2. Then, by (4.1), 

(4.4) \fm(t9x9y)\£r0 + g(t) on D. 

Let us consider the equation 
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(4.5) «"(/) = u/m +fm(t, u, «'), we.V. 

According to Lemma 2, the problem (4.5), (0.2) has a solution um. We shall show 
that um satisfies the inequalities 

(4.6) o-| (t) - l / w = wm(/) ;= cr2(/) + 1/m for a = t = b. 

By (1.1) and (1.3), 

(4.7) ( - l)'(/m(/, x, y) - <-;'(/)) = r0/m 

for (-l)'(x - <r,(/)) = 1/m, i = 1, 2, we .¥ . 

Put v(t) = (-1 )'(«„(/) - cr,(/)) - 1/m for a ^ / = 6, /e{ l , 2}. 
Then from (0.2), (1.2), (1.4) it follows 

(4.8) v'(a) = 0, v(b)-v(t0) = 0. 

This means that there exists t>|e(/0, b) such that 

(4.9) v'(b,) = 0. 

Let us suppose that (4.6) is not satisfied on (a,bx). Then for certain /e{ l , 2} and 
t0e(a, /3,) 

v(t0)>0. 

In view of (4.8) there exists /„. e [a, /0) such that 

v(t*) = 0, v'(tj = 0 and »(/) > 0 on (/#, / 0 ] . 

Let /*e(/0 , /3,] be such that 

(4.10) v(t*) = 0 and v(t) > 0 on [/0, /* ) . 

In view of (4.7) there is satisfied v"(t) = (r0 + (-l)'«m(/))/m = 1/m2 for 
/€[/>..,/*]. Integrating the latter from /* to /, where / e ( / # , / * ] , we get v'(t) > 0 
for /£(/*, / * ] , which contradicts (4.10). Therefore v(/) > 0, t/(/) > 0 on (/„., 6,]. 
But in view of (4.9) this is impossible. Hence, we have proved t>(/) _: 0 for 
a _: / ^ bt. Moreover, by (4.8), v(b) _: 0. Supposing that (4.6) is not satisfied on 
(bx, b), we get a similar contradiction as for (a, bx). Consequently um satisfies (4.6) 
on [a, b]. 

From (0.2), (4.5), (4.6) it follows that the sequences (um)%., and («m)™=, are 
uniformly bounded and equi-continuous on [a, b] and thus, by the Arzela-Ascoli 
lemma, without loss of generality we can suppose that they are uniformly 
converging on [a, b]. By (4.3)—(4.6), the function u(t) = lim um(t) on [a, b] 

m«-»ao 

satisfies (4.2) and is a solution of the problem (0.1), (0.2). Proposition is proved. 
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5. Proofs of Theorems 

Proof of Theorem 1. Let r* be the constant found by Lemma 3 for 
r = r0. Put Q0 = r* + r0 + r,, 

for 0 = s = Q0 

for Q0 < s < 2Q0 

for s = 2Q0 

(5.1) /( t , x9 y) = z(Q6,\x\ + lyl)/(t, x9 y) on © 

and consider the equation 

(5.2) u"=f(t9u9u'). 

Since max {|crf(t)| + |o"/(0l :a = * = b} < Q09 i = 1, 2, CTJ is a lower and a2 an 
upper function of the problem (5.2), (0.2). Further |/(t, x9 y)\ = g(t) on D9 where 
g(t) = sup{|/(t, x9 y)|: |x| + |y| = 2ft}eL(fl, b). Thus, by Proposition, the pro­
blem (5.2), (0.2) has a solution u satisfying (4.2). Consequently u fulfils (3.1) for 

n 

Further, according to (1.5) w"sgnt/' = co(u') £ g,(t)h,(w(t))(l + r = rn 

+ |«'(0l)1/?' for a.e. te[a, 6] and \u'{t)\ ^ a. Therefore, by Lemma 3, u satisfies 
the inequality (3.3). Consequently, by (4.2), we get 

(5.3) |«(/)| + \u'(t)\ ^Q0 for a ^ t g b. 

In view of (5.1), (5.2), (5.3), u is a solution of the problem (0.1), (0.2). 

P roo f of Theorem 2. Let us put <7,(f) = g0(t) — r, a2(t) = g0(t) + r for 
a^t%b. Then oftO = cx2'(t) = 2 ^ and, by (1.7), f(t, «r„ <x0 =/(r , #„ - r, 
£o) ^ 2oo and / ( / , <r2, a2) = / ( / , g0 + r, go) ^ 2 ^ for a.e. te[a, b]. Further 
a\(a) = 0-2(0) = g'o(a) = A and <yx{b) - o-,(t0) = o-2(/_>) - o2(t0) = g0(6) -
— £o(lo) = B- Therefore cr, is a lower and a2 is an upper function of the problem 
(0.1), (0.2) and o-,(t) ^ o-2(t) on [a, b]. Thus, by Theorem 1, the problem (0.1), 
(0.2) has a solution. Theorem 2 is proved. 

P roo f of Theorem 3. Let us assume that the problem (0.1), (0.2) has 
two solutions ut, u2. Put v = ux — u2 on [a, b\. Then 

(5.4) v'(a) = 0, v(b) - v(t0) = 0 

and there exists t, e (t0, b) such that 

(5.5) »'(.*,) = 0 . 
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First let us suppose that v(s0) # 0 for some s0e (a, tx). Then there exist t*, t* e [a, 
t,] such that 

(5.6) v(t) > 0 for te(t*9 t*), v'(tj = 0, !>'(**) = 0. 

From (1.9) we get v"(t) + h(t)v'(t) > 0 on [t*, t*], where h(t) = h(t)sgnv'(t). 
Thus 

(5.7) ( e x p ( | h(T)dT\v'(t)\ > 0 on [t*, t*]. 

Integrating (5.7) from t* to t*, we get by (5.6), 

(5.8) 0 = expM /T(r)drV(t*) - expM */7(r)drV('*) > 0. 

The contradiction (5.8) implies v(t) = 0 for te[a, f,]. From (5.4) it follows that 

(5.9) i;(b) = 0. 

Now, let us suppose that v(s0) > 0 for s0e(t}, b). Then there exist t*, t* e[tl9 b] 
such that (5.6) is fulfilled. Therefore, by (5.7), we get the contradiction (5.8). 
Thus v(t) = 0 for te[a, b]. This completes the proof. 

Proof of Corollary 2. The uniqueness is clear. Let us prove the exis­
tence. Let x > r. Then, by (1.9), (1.10), f(t, x9 0) - f( t , r, 0) > 0 and thus 
f(t,x,0) = 0 for x = r. If x < - r , then f(t, - r , 0) - f( t , x9 0) > 0 and so 
f(t,x,0) = 0 for x = - r . Therefore / satisfies (1.8) on 0. 

Further, according to (1.9), (1.10), if y = a, xe[ — r, r), thenf(t, x, y) < 
< / ( ' , r, 0) + h(t)|y| and if y = - a , xe(-r, r], then -f(t, x, y) < -f(t, 
-r ,0) + h(t)\y\. Thusf(t, x9 y)sgny ^ h,(t) + h2(t)|y| on Z)(-r, r), where 

W,) = J / ^ r ' ° > fory = a 
I - / a - r , 0) for y = - a , h2(t) = h(t)9 te(a9 b). 

Consequentlyfsatisfies (1.5) on D( — r9 r) and by Corollary 1 the problem (0.1), 
(0.3) has a solution. This completes the proof. 

Proof of Corollary 3. Put g(t9 x9 y) =f(t, x + g09 y + g'0) - gj. 
Then fsatisfies (1.9) exactly just g satisfies (1.9). Further, iffsatisfies (1.11), then 
g satisfies (1-10) and so, by Corollary 2, the problem 

v" = g{t, v9 v')9 v'(a) = 0, v(b) - v(t0) = 0 

has just one solution v. Then u = v + g0 is the unique solution of (0.1), (0.2). 
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ОБ ОДНОЙ ТРЕХТОЧЕЧНОИ ЗАДАЧЕ 

1гепа ЯасЬйпкоуа 

Резюме 

В статье доказаны теоремы существования и единственности решений задачи 

и" =/(Г, и, и'), и'(а) = А, и(Ь) - и(10) = В, 
где 

- с о < а < 10 < Ь < -г-оо, А, Ве( — со, +оо ) . 
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