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DOMATIC NUMBER 
AND LINEAR ARBORICITY OF CACTI 

BOHDAN ZELINKA 

A cactus is a connected undirected graph with at least two vertices and with the 
property that each of its edges is contained in at most one of its circuits. Every tree 
is a cactus, but not conversely. In this paper we shall prove two theorems on 
numerical invariants of cacti. 

The domatic number of a graph was introduced by E. J. Cockayne and 
S. T. Hedetniemi [2]. A dominating set in an undirected graph G is a subset D of 
the vertex set V(G) of G with the property that to each vertex x e V(G) - D there 
exists a vertex yeD adjacent to x. A domatic partition of G is a partition of V(G), 
all of whose classes are dominating sets in G. The maximal number of classes of 
a domatic partition of G is called the domatic number of G and denoted by d(G). 

The domatic number of G may be defined also as the maximal number of colours 
of a domatic colouring of G. A domatic colouring of G is a colouring of vertices of 
G with the property that to each vertex x of G and to each clour c distinct from the 
colour of x there exists a vertex of G having the colour c and adjacent to x. (Two 
vertices of the same colour may be adjacent.) Evidently both definitions are 
equivalent. The set of all vertices coloured by a given colour is a class of the 
corresponding domatic partition of G. 

The linear arboricity of a graph was introduced by J. Akiyama, G. Exoo and 
F. Harary [1]. A linear forest is an undirected graph, all of whose connected 
components are paths. The linear arboricity S(G) of a graph G is the minimum 
number of edge-disjoint subgraphs of G which are linear forests and whose union is 
whole the graph G. 

Before formulating theorems, we shall explain briefly the structure of cacti. Each 
block of a cactus is either a circuit, or an edge with its end vertices. A cactus 
consisting of one block will be called trivial; other cacti will be called non-trivial. 
A block of a non-trivial cactus G which contains only one articulation of G will be 
called a terminal block of G. Evidently each finite non-trivial cactus has at least 
two terminal blocks. 

A path in a graph G whose inner vertices (if any) have degree 2 and whose 
terminal vertices have degrees different from 2 will be called a simple path. If 
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a circuit C in a non-trivial cactus G does not form a terminal block, then it contains 
at least two articulations and is the union of at least two edge-disjoint simple paths; 
each of these paths connectes two articulations of G . The set of these paths will be 
denoted by V(G). 

For trivial cacti the domatic number is well known. If such a cactus consists of 
one edge with its end vertices, then evidently its domatic number is 2. If such 
a cactus G is a circuit, then d(G) = 3 if and only if the length of this circuit is 
divisible by 3, otherwise d(G) = 2; this was proved by E .J .Cockayne and 
S. T. Hedetniemi. Thus it remains to consider non-trivial cacti. 

Theorem 1. Let G be a finite non-trivial cactus. Then the following two 
assertions are equivalent: 

(i) Each terminal block of G is a circuit of a length divisible by 3 and for any 
circuit C in G not forming a terminal block the set £f(C) contains either at least one 
path of length 1, or the number of paths of if(C) with lengths non-divisible by 3 is 
different from 1. 

(ii) d(G) = 3 and there exists a domatic partition of G with 3 classes such that 
each vertex is adjacent to at most one vertex of the same class and any edge joining 
two vertices of the same class belongs to a circuit. 

If (i) does not hold, then d(G) = 2. 
Proof. First we prove that 2= : d(G)= : 3 for any finite cactus G. The inequality 

2;=d(G) follows from the fact that a cactus has no isolated vertices [2]. The 
inequality d(G)=:3 follows from the fact that any cactus contains at least one 
vertex of degree 1 or 2 (in a non-trivial cactus such a vertex is in its terminal block) 
and thus the minimal degree 6 ( G ) ^ 2 ; in [2] it was proved that d(G) = <5(G)+ 1. 
Now we prove the equivalence of (i) and (ii). 

(i) 4> (H). The proof will be done by induction according to the number k of 
non-terminal blocks of G. Let k = 0. Then G has only one articulation a which is 
common to all blocks of G. We shall construct a domatic colouring of G. The 
vertex a will be coloured by the colour 1. Now let B be a block of G ; the block B is 
a terminal one, hence (if we suppose (i)) it is a circuit of a length divisible by 3. We 
colour its vertices subsequently by 1, 2, 3 ,1 , 2, 3 , . . . , starting at a. If we do this with 
each block of G, we obtain a domatic colouring by 3 colours and d(G) = 3. 

Now let k = k0 = 1 and suppose that the assertion is true for k = k0— 1. Choose 
a non-terminal block B0 of G and contract all its vertices (the obtained loops are 
omitted). We obtain a cactus G0 with k = k0— 1. The contraction of B0 does not 
change other blocks; thus if G satisfies (i), so does G0. Then there exists a domatic 
colouring of G0 by three colours satisfying (ii). Let w be the vertex of G0 obtained 
by contracting the block B 0 ; without loss of generality we may suppose that it is 
coloured by the colour 1. Suppose that B0 consists of one edge with its end vertices 
u, v. At least one of them, say w, is adjacent in G to a vertex coloured in the 
mentioned colouring of G0 by 2. Then u will be coloured by 1 and v by 3. All 
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vertices of G which are separated from v by u will have the same colours as in the 
colouring of G0. If v is adjacent to a vertex coloured by 3, then for all vertices 
separated from u by v the colours 1 and 2 are mutually interchanged and the 
colour 3 is preserved. In the opposite case the colour 2 is changed to 3, the colour 
1 to 2 and the colour 3 to 1. The obtained colouring is a domatic colouring of G by 
three colours. 

Now suppose that B0 is a circuit. Then either Sf(B0) contains at least one path of 
the length 1, or the number of paths of lengths non-divisible by 3 is different 
from 1. In the first case B0 contains two adjacent articulations u, v of G. Then we 
go along B0 starting at u and ending at v (omitting the edge uv) and colour the 
vertices of B0 subsequently by 1, 2, 3,1, 2, 3, .... In the second case we colour first 
all articulations in such a way that any two articulations connected by a path from 
Zf(B0) have equal (or different) colours if such a path has a length divisible (or 
non-divisible, respectively) by 3. The reader himself may verify that under the 
above mentioned condition this is possible. Further we colour all other vertices of 
B0. Let Petf(B0), let its vertices be u0, uu ..., um and edges utui+1 for 
i = 0, ..., m — 1. The vertices u0, um are articulations of G. If m is divisible by 3, 
then u0 and um have the same colour. The vertices of P will be coloured so that two 
vertices w,-, ty (O^i^m, 0 ^ / ^ m ) have the same colour if and only if i = 
/ (mod 3). If m is not divisible by 3, then u0 and um have different colours. The 
vertices of P will be coloured so that two vertices u,, Uj for 0^i = m — 1, 
0 ^ / ^ m — 1 have again the same colour if and only if i = j (mod 3) and further 
Um-! has another colour than um. Thus we obtain a colouring of B0 in which any 
vertex is adjacent to a vertex of another colour. 

Now let again w be the vertex of G0 obtained by contracting B0 and suppose that 
there exists a domatic partition of G0 satisfying (ii); without loss of generality let w 
have the colour 1 in it. Now let u be an articulation of G belonging to B0 and let i 
be its colour in the described colouring of B0. Then u is adjacent to a vertex of B0 

which has the colour /=£ i in this colouring. From the assertion (ii) for G0 it follows 
that w is adjacent to a vertex of the colour kJ= 1 in G0. If k=£/, then all vertices of G 
separated by u from other vertices of B0 will be coloured so that the colours 1 and k 
in the colouring of G0 are mutually interchanged. If k=j and i = l, then we 
interchange mutually the colour / and the colour / which is different from both / 
and i and if k=j and i=£l, then also i and 1 are interchanged. Thus a domatic 
colouring of G by three colours is obtained; the corresponding domatic partition 
satisfies (ii). 

(ii) ---> (i). Suppose that d(G) = 3 and consider a domatic colouring of G with 
three colours. Then each vertex of G of degree 2 must be adjacent to two vertlices 
whose colours are mutually different and different from its own colour. If 
a terminal block is a circuit, all of its vertices except one have degree 2 and thus its 
length must be divisible by 3. Similarly, the terminal vertices of a simple path of 
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a length at least 2 have the same colour if and only if the length of this path is 
divisible by 3 . Suppose that a circuit C of G which does not form a terminal block 
has the property that Zf(C) contains no path of the length 1 and exactly one path of 
a length non-divisible by 3 . Denote by au ..., am the articulations in C in such 
a way that the pairs ax, a,+, for / = 1, ..., m — 1 are connected by simple paths of 
lengths divisible by 3 and am, a0 are connected by a simple path of a length 
non-divisible by 3. Then according to the above mentioned assertion we obtain 
(inductively) that all the vertices a,, ..., am have the same colour, but on the other 
hand am and ax have different colours, which is a contradiction. Thus (i) must hold. 

A numerical invariant of a graph which is closely related to the domatic number 
is the idomatic number of G . An idomatic partition of G is a partition of V(G), 
each of whose classes is a set which is simultaneously dominating and independent 
in G . If there exists at least one idomatic partition of G, then the maximal number 
of classes of such a partition is called the idomatic number of G and denoted by 
id(G). If no idomatic partition of G exists, then we put id(G) = 0. 

Theorem 2. Let G be a finite non-trivial cactus. Then the following two 
assertions are equivalent: 

(i) Each terminal block of G is a circuit of a length divisible by 3 and for any 
circuit C in G not forming a terminal block the number of paths of S(C) with 
lengths non-divisible by 3 is different from 1. 

(ii) id(G) = 3. 
Proof. (i)=^>(ii). The domatic partition constructed in the first part of the 

proof of Theorem 1 without using the assumption that for a circuit C in G not 
forming a terminal block the set ^(C) contains at least one path of length 1 is in 
tact an idomatic partition. This implies the assertion. 

(ii) --> (i). If id(G) = 3, then evidently also d(G) = 3 and (ii) from Theorem 1 is 
satisfied. Hence (i) from Theorem 1 holds. If a circuit C in G not forming 
a terminal block has the property that in the set ^f(C) there exists exactly one path 
of a length non-divisible by 3, then this length must be 1. By the consideration from 
the end of the proof of Theorem 1 we prove that the terminal vertices of such 
a path must have the same colour in any domatic colouring of G with three colours 
and thus no domatic partition of G with three classes is idomatic. 

Theorem 3. Let G be a finite non-trivial cactus not satisfying the condition (i) 
from Theorem 2. Then id(G) = 2 if and only if G is bipartite; otherwise id(G) = 0. 

Proof is straightforward. 
Now we shall prove a theorem concerning the linear arboricity of cacti. The 

symbol ]x[ denotes the least integer greater than or equal to x and A(G) denotes 
the maximum degree of a vertex of G. In [1] it is proved that for every tree T the 
equality E(T) = ]\A(T)[ holds. Further evidently E(G)^]\A(G)[ for every 
graph G, because each linear forest of the required decomposition can contain at 
most two edges incident with a given vertex. In [1] it is conjectured that for 
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a regular graph G of the degree r the equality E(G) = ]\(r + 1)[ holds. As 
a non-regular cactus G can be embedded into a regular graph of the degree A(G), 
the following result is related to this conjecture. 

Theorem 4. Let G be a finite non-trivial cactus, let A(G) be the maximum 
degree of a vertex of G. Then 

S(G) = )\A(G)[. 

Proof. We shall carry out the proof by induction according to the number b(G) 
of blocks of G; as G is a non-trivial cactus, we have b(G)^2. Let b(G) = 2. Then 
G consists of two blocks. If both these blocks are edges with their end vertices, then 
A(G) = 2 and G is a path, hence E(G) = 1=\A(G). If at least one of the blocks is 
a circuit, then G is the union of two edge-disjoint paths and E(G) = 2, while 
A(G) = 3 or ,4(G) = 4. Now let b(G) = k^3 and suppose that the assertion is true 
for b(G) = fc — 1. Let G be decomposed into edge-disjoint linear forests and let u 
be a vertex of G of degree A(G). Each of the forests of the decomposition can 
contain at most two edges incident with u, hence u is contained in at least ]iZ\(G)[ 
such forests and E(G)^]\A(G)[. Let B0 be a terminal block of G, let a be the 
articulation of G contained in B0. Let G0 be the graph obtained from G by deleting 
all vertices of B0 except a ; then G0 is a finite non-trivial cactus and b(G0) = fc — 1. 
According to the induction hypothesis E(G0) = ]$A(G0)[. Let if be a decomposi
tion of Go into ]£Ll(Go)[ linear forests. First suppose that B0 consists of one edge e 
with its end vertices. If the degree of a in G is even, then in G0 it is odd and there 
exists at least one forest from ££ which contains exactly one edge adjacent to a. 
Then we add B0 to this forest and obtain a decomposition of G into ]i-4(G0)[ 
edge-disjoint linear forests and evidently ] 2 A(G0)[^k]\A(G)[. If the degree of a in 
G is odd, then in G0 it is even. Let 6(a) be the degree of a in G0. If there is no 
forest from L containing exactly one edge adjacent to u, then there are \b(a) 
forests from S£, each from which contains two edges adjacent to a. If b(a)<A(G0), 
then \b(a)<\\A(G0)[ and there exists at least one forest from $£ not containing a; 
we add B0 to this forest and again obtain a decomposition of G into ] £A(G0)[ linear 
forests. If 8(a) = A(G0), then A(G) = 8(a) + l = A(G0) + l. As 8(a) = A(G0) is 
even, we have ]2-_\(G)[ = ]M(G0)[ + 1 . To !£ we add B0 as a new forest and we 
obtain a decomposition of G into ]J.4(G)[ edge-disjoint linear forests. 

Now suppose that B0 is a circuit. If the degree of a in G is even, then it is even 
also in G0. If there are two forests F-, F2 from ££ such that a is incident at most with 
one edge from each of them, then we decompose B0 into two edge-disjoint paths, 
each of which has a terminal vertex a, and add one of them to Ft and the other to 
F2; we obtain a decomposition of G into ]i,A(G(,)[ edge-disjoint linear forests. If 
there is only one such forest F, then (as the degree of a is even) it contains no edge 
incident with a. Let Pi be the path whose edges are the two edges of B0 incident 
with a and let P2 be the path in B0 with the same terminal vertices as Pi and 
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edge-disjoint with P,. We add Pi to F and P2 to an arbitrary other forest from X 
and we obtain a decomposition of G into ]M(G0)[ edge-disjoint linear forests. If 
there is no forest with the required property, then L contains 2<5(a) forests and 
i<5(a) = ]izl(Go)[, which implies 6(a) = A(G0). The degree of a in G is 5(a) + 2 = 
A(G0) + 2 and evidently A(G) = A(G0) + 2, which implies ]$A(G)[=]iA(G0)[ 
+ 1. We use again the paths Pi and P2. The path P2 will be added to an arbitrary 
forest from !£ and the path Pi will form a new forest; thus a required decomposi
tion of G is obtained. If the degree of a in G is odd, then it is odd also in G. There 
exists at leasts one forest F from X which contains exactly one edge incident 
with a. If there is another forest F' from i£ which has at most one edge incident 
with a, we choose a vertex b£a of B0 and take two edge-disjoint paths P, P' both 
connecting a with b. We add P to F and P' to F' and obtain a required 
decomposition of G. If there is no such forest F', then there are 2(6(a) — 1) forests 
of cS? having two edges incident with a and the forest F and hence E(G0) = 
]M(G0)[ = i(6(a) + 1). Then A(G0) = d(a) or A(G0) = 6(a) + 1. The degree of a 
in G is 6(a)+ 2 and this is zl(G0) + 2 or .4(G0) + 1. Evidently also A(G) = 
6(a)+ 2. We have ]M(G)[ = i(6(a) + 3) = H(G0) + 1. We add P to F and P' will 
be a new forest; thus a required decomposition of G is constructed. • 

Remark . The assertion of Theorem 4 does not hold for trivial cacti which are 
circuits; for such a cactus G we have A (G) = 2 and 3(G) = 2. For other trivial cacti 
the assertion is true. 
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ДОМАТИЧЕСКОЕ ЧИСЛО И ЛИНЕЙНАЯ ДРЕВЕСНОСТЬ КАКТУСОВ 

Вопс1ап ХеПпка 

Р е з ю м е 

Кактус есть связный неориентированный граф С по меншей мере с двумя вершинами, 
обладающий тем свойством, что каждое ребро из С содержится по большей мере в одном 
контуре графа С. В статье исследованы доматическое число, идоматическое число и линейная 
древесность кактусов. 
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