Michal Zajac Hyperinvariant subspace lattice of weak contractions

Mathematica Slovaca, Vol. 33 (1983), No. 1, 75--80

Persistent URL: http://dml.cz/dmlcz/130446

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

HYPERINVARIANT SUBSPACE LATTICE OF WEAK CONTRACTIONS

MICHAL ZAJAC

1. Introduction

The present paper is a continuation of our preceding work [6]. We follow the notation of [6]. Recall that for the Hilbert space $\mathfrak{H}, \mathscr{G}(\mathfrak{H})$ denotes the lattice of all (closed) subspaces of \mathfrak{H} . If T is a bounded linear operator on \mathfrak{H} , lat(T) and hyperlat(T) will denote the invariant and the hyperinvariant subspace lattice of T, respectively.

Let $\{T\}'$ and $\{T\}''$ denote the commutant and the double commutant of T, respectively. Obviously for every $S \in \{T\}''$ ker S and rng S are from hyperlat(T). In [6] we studied which contractions have the following property:

(L) hyperlat(T) is the smallest complete sublattice of $\mathcal{G}(\mathfrak{H})$ which contains all

subspaces that are of the form ker u(T) or $\overline{\operatorname{rng}} v(T)$ for u and v from H^{∞} . Here we shall study a more general property of T:

There we shall study a more general property of T.

(L') hyperlat(T) is the smallest complete sublattice of $\mathscr{G}(\mathfrak{H})$ which contains all

subspaces of the form ker S or rng V for S, V from $\{T\}''$.

Obviously $(L) \Rightarrow (L')$.

Let E_n be the *n*-dimensional Euclidian space and let L_n^2 and H_n^2 denote the standard Lebesgue and Hardy spaces of E_n -valued functions defined on the unit circle C ($1 \le n \le \infty$). Instead of e^u we use t to denote the argument of a function defined on C. A statement involving t is said to be true if it holds for almost all t with respect to the Lebesgue measure. If F_1 and F_2 are Borel subsets of C, then $F_1 \subset F_2$ means that their difference $F_1 \setminus F_2$ is of the Lebesgue measure zero, $F_1 = F_2$ means that their symmetric difference has the measure zero.

2. C₁₁ weak contractions

Let T be a completely non-unitary (c.n.u.) C_{11} weak contraction. As was shown in [1, chap. VIII] its defect indices are equal $(d_T = d_{T*})$ and its characteristic function Θ_T admits a scalar multiple. We shall consider the functional model of such contraction defined on

$$H = [H_n^2 \bigoplus \overline{\Delta L_n^2}] \bigoplus \{\Theta_T w \bigoplus \Delta w \colon w \in H_n^2\}$$

by

$$T(f \oplus g) = P(e^{it}f \oplus e^{it}g) \quad \text{for} \quad f \oplus g \in H,$$

where

$$\Delta(t) = (I - \Theta_T(t)^* \Theta_T(t))^{1/2}$$

and P denotes the orthogonal projection onto H, $n = d_T = d_{T*}$.

There is a one-to-one correspondence between the invariant subspaces of T and the regular factorizations of Θ_T [1, theorem VII.1.1]. Moreover, the invariant subspace K corresponding to the regular factorization $\Theta_T = \Theta_2 \Theta_1$ has the representation

$$K = \{ \Theta_2 u \bigoplus Z^{-1}(\Delta_2 u \bigoplus v) \colon u \in H^2_m, v \in \overline{\Delta_1 L^2_n} \} \bigoplus \{ \Theta_T w \bigoplus \Delta w \colon w \in H^2_n \},$$

where $\Delta_j(t) = (I - \Theta_j(t)^* \Theta_j(t))^{1/2}$, j = 1, 2, m is the dimension of the intermediate space of this factorization and Z denotes the unitary operator from $\overline{\Delta L_n^2}$ onto $\overline{\Delta_2 L_m^2}$

 $\bigoplus \overline{\Delta_1 L_n^2}$ for which $Z(\Delta v) = \Delta_2 \Theta_1 v \bigoplus \Delta_1 v$ for $v \in L_n^2$.

For c.n.u. C_{11} contractions Sz.-Nagy and Foias [1, chap. VII.5] developed a spectral decomposition. Let H_F be the spectral subspace associated with the Borel subset F of C. Note that H_F is the (unique) invariant subspace corresponding to the regular factorization $\Theta_T = \Theta_2 \Theta_1$ satisfying:

(i) Θ_1 is outer.

(ii) $\Theta_1(t)$ is isometric (hence unitary) for $t \in F'$, the complement of F.

(iii) $\Theta_2(t)$ is isometric for $t \in F$.

Recall that

$$H_F = H_{F \cap E},\tag{2.1}$$

where $E = \{t: \Theta_T(t) \text{ is not isometric}\}.$

Radu I. Teodorescu [3] showed that hyperlat(T) consists of all H_F . For any Borel subset $F \subset C$ let

$$K_F = \{ f \bigoplus g \in H: -\Delta * f + \Theta_T g = 0 \text{ on } F' \},\$$

where $\Delta * = (I - \Theta_T \Theta_T^*)^{1/2}$. We shall show that $K_F = H_F$.

First we shall prove the following additional properties of the factorization corresponding to H_F .

Lemma 2.1. Let T be a c.n.u. weak C_{11} contraction and let F be a Borel subset of C. Let $\Theta_T = \Theta_2 \Theta_1$ be the regular factorization corresponding to H_F . Then (iv) For $t \in C$ there exist $\Theta_T(t)^{-1}$, $\Theta_1(t)^{-1}$, $\Theta_2(t)^{-1}$.

- (v) For $t \in F \Theta_2(t)$ is a unitary operator.
- (vi) The intermediate space of this factorization is of the dimension $n = d_T = d_{T^*}$.

Proof. As already mentioned Θ_T admits a scalar multiple $\delta(\neq 0)$. In the proof of [1, theorem VII.6.2] it was shown that Θ_1 admits the scalar multiple δ too. According to [1, proposition V.6.4] δ is a scalar multiple of Θ_2 too. Moreover, since Θ_T is outer we may suppose that δ is outer and then Θ_1 and Θ_2 are both outer [1, theorem V.6.2]. Let Ω be the contractive analytic function such that $\Theta_T \Omega =$ $\Omega \Theta_T = \delta I$. Then $\Theta_T(t)^{-1} = \frac{1}{\delta(t)} \Omega(t)$. Similarly also $\Theta_1(t)^{-1}$ and $\Theta_2(t)^{-1}$ do exist.

This proves both (*iv*) and (*vi*). Since Θ_2 is outer, $\overline{\Theta_2(t)H_n^2} = H_n^2$. For $t \in F \Theta_2(t)$ is isometry, hence unitary. And so (*v*) is also proved.

Now we shall show that the proof of the equality $H_F = K_F$ in [4, §3], where only C_{11} contractions with finite defect indices were considered, applies to c.n.u. weak contractions (with not necessarily finite defect indices) with only a few changes.

Lemma 2.2. For any Borel subset $F \subset C$

(a) $K_F \in \operatorname{lat}(T)$

 $(b) K_{F \cap E} = K_F$

(c) If $\{F_m\}$ is a sequence of Borel subsets of C and $F = \bigcap_{m} F_m$, then $K_F = \bigcap_{m} K_{F_m}$.

Proof. The proof of [4, lemmas 3.1 and 3.2] applies to our case without any change.

Lemma 2.3. For any Borel subset $F \subset C$, $H_F \subset K_F$.

Proof. By lemma 2.2(b) and by (2.1) we may assume that $F \subset E$. Let $\Theta_T = \Theta_2 \Theta_1$ be the regular factorization corresponding to H_F . By lemma 2.1(vi) the intermediate space of this factorization has the dimension $n = d_T = d_{T^*}$. Hence

$$H_F = \{ \Theta_2 u \bigoplus Z^{-1}(\Delta_2 u \bigoplus v) : u \in H^2_n, v \in \overline{\Delta_1 L^2_n} \} \bigoplus \{ \Theta_T w \bigoplus \Delta w : w \in H^2_n \}.$$

Recall that by (ii) for $t \in F' \Theta_1(t)$ is unitary, hence $\Delta_1(t) = 0$. Let

 $\Theta_2 u \oplus Z^{-1}(\Delta_2 u \oplus v) \in H_F.$

Since on $F' Z^{-1}(\Delta_2 u \oplus v) = Z^{-1}(\Delta_2 u \oplus 0) = \Delta \Theta^*_1 u$ and $\Theta_T \Delta = \Delta * \Theta_T$ we have on F':

$$-\Delta * \Theta_2 u + \Theta_T Z^{-1} (\Delta_2 u \oplus v) = -\Delta * \Theta_2 u + \Theta_T \Delta \Theta^*_1 u =$$

= $-\Delta * \Theta_2 u + \Delta * \Theta_2 \Theta_1 \Theta^*_1 u = 0.$

This shows that $\Theta_2 u \oplus Z^{-1}(\Delta_2 u \oplus v) \in K_F$, and so $H_F \subset K_F$.

The proof of the following lemma is also the same as the proof of the corresponding lemma 3.4 of [4].

Lemma 2.4. Let $O_T - \Theta_2 O_1$ be the regular factorization corresponding to H_F . If there exists an M > 0 such that (for almost all t) $\| \Theta_2(t)^{-1} \| \leq M$, then $H_F = K_F$.

Theorem 2.5. Let T be a c.n.u. weak contraction. For any Borel subset $F \subset C$ let H_F and K_F be defined as before. Then $H_F = K_F$.

Proof. Let $O_T = \Theta_2 O_1$ be the regular factorization corresponding to H_F . For each positive integer *m* let

$$F_m = \{t: \|O_2(t)^{-1}\| > m\} \cup F$$

Then $\bigcap_m F_m = F$. According to [1, theorem VII.6.2] $\bigcap_m H_{F_m} = H_F$ and by lemma 2.2(c) we have $\bigcap_m K_{F_m} = K_F$. Thus to complete the proof it suffices to show that $H_{F_m} = K_{F_m}$ for all m.

Let $\Theta_T = O_{2m}\Theta_{1m}$ be the regular factorization corresponding to H_{F_m} . Since $F \subset F_m$, $H_F \subset H_{F_m}$. Hence there exist a contractive analytic function Ω_m such that $\Theta_{1m} = \Omega_m O_1$ [1, proposition VII.2.4]. Hence $\Theta_T = O_{2m}\Omega_m \Theta_1 = \Theta_2 \Theta_1$, since Θ_1 is outer, then $\Theta_2 = O_{2m}\Omega_m$ By lemma 2.1(*iv*) both $O_2(t)$ and $\Theta_{2m}(t)$ are invertible (for almost all t) We h ve

$$\|O_{2m}(t)^{-1}\| - \|\Omega_m(t)\Omega_2(t)^{-1}\| \le \|\Theta_2(t)^{-1}\| \le m$$

for $t \in F'_m$. By lemma 2.1(v) for $t \in F_m O_{2m}(t)$ is unitary and so $||\Theta_{2m}(t)|^1|| = 1$. Hence (for almost all t) $||O_{2m}(t)|^1|| \le m$. Applying lemma 2.4 we have $H_{F_m} = K_{F_m}$ and consequently $H_F - K_F$.

Theorem 2.6. Let T be a c.n u. weak contraction of the class C_{11} defined on

$$H = [H_n^2 \bigoplus \Delta L_n^2] \bigoplus [\Theta_T w \bigoplus \Delta w: w \in H_n^2].$$

Let $K \in \mathcal{G}(H)$. Then the following are equivalent to each other

- (1) $K \in \text{hyperlat}(T)$
- (2) $K = \ker S$ for some $S \in \{T\}^n$
- (3) $K \overline{\operatorname{rng}} V$ for some $V \in \{T\}'$,
- hence T has property (L').

We have jut proved that $H_F = K_F$. Every hyperinvariant sub pace for T is of the form H_F [3, proposition 3]. And so the proof of this theorem in the case of finite defect indices [4, theor m 3.6] applies to our case too.

3. G neral c.n u. weak c ntraction

P.Y. WU showed [5, theorem 8] that every c n.u. weak contraction with finite defect indices has the property (L'). Using the results of §2 and of [6] it will now be easy to show that all c n u weak contractions have the property (L').

For a c.n.u. weak contraction T on \mathfrak{H} we can consider its $C_0 - C_{11}$ decomposition [1, chap. VIII.2]. Let \mathfrak{H}_0 , \mathfrak{H}_1 be the invariant subspaces for T such that $T_0 = T | \mathfrak{H}_0$ and $T_1 = T | \mathfrak{H}_1$ are the C_0 and the C_{11} parts of T, respectively. \mathfrak{H}_0 and \mathfrak{H}_1 are even hyperinvariant for T and

$$\mathfrak{H}_0 \vee \mathfrak{H}_1 = \mathfrak{H}, \quad \mathfrak{H}_0 \cap \mathfrak{H}_1 = \{0\}. \tag{3.1}$$

Moreover by [1, proposition VIII.2.4]

$$\mathfrak{H}_0 = \ker m(T), \quad \mathfrak{H}_1 = \operatorname{rng} m(T), \quad (3.2)$$

where *m* is the minimal function of T_0 . Note that $m(T) \in \{T\}^n$. By [5, theorem 1] there exists also $S \in \{T\}^n$ such that

$$\mathfrak{H}_0 = \operatorname{rng} S \quad \mathfrak{H}_1 = \ker S \tag{3.3}$$

Lemma 3.1. Let $\mathfrak{F}_0, \mathfrak{F}_1 \in \mathscr{S}(\mathfrak{F})$ be such that $T_0 = T | \mathfrak{F}_0$ and $T_1 = T | \mathfrak{F}_1$ are the C_0 and the C_{11} parts of T, respectively, let $S \in \{T\}^n$ be such that (3.3) holds and let m be the minimal function of T_0 .

If $S_0 \in \{T_0\}^n$, $S_1 \in \{T_1\}^n$, then $S_0 S \in \{T\}^n$, $S_1 m(T) \in \{T\}^n$ and

(i) ker $S_0 = \ker S_0 S \cap \overline{\operatorname{rng}} S$, $\overline{\operatorname{rng}} S_0 = \overline{\operatorname{rng}} S_0 S$

(ii) ker $S_1 = \ker S_1 m(T) \cap \operatorname{rng} m(T)$, $\operatorname{rng} S_1 = \operatorname{rng} S_1 m(T)$

Proof. Let $V \in \{T\}'$, since $\tilde{\mathfrak{P}}_0$, $\tilde{\mathfrak{P}}_1$ are from hyperlat(T), $V \tilde{\mathfrak{P}}_0 \subset \tilde{\mathfrak{P}}_0$, $V \tilde{\mathfrak{P}}_1 \subset \tilde{\mathfrak{P}}_1$. Let $V_0 = V | \tilde{\mathfrak{P}}_0$, $V_1 = V | \tilde{\mathfrak{P}}_1$, obviously

 $V_0 T_0 = T_0 V_0, \quad V_1 T_1 = T_1 V_1$

and so

 $S_0 V_0 = V_0 S_0, \quad S_1 V_1 = V_1 S_1.$

For $h_0 \in \mathfrak{H}_0$ we have then

$$S_0SVh_0 = S_0VSh_0 = S_0V_0Sh_0 = V_0S_0Sh_0 = VS_0Sh_0$$

and similarly for $h_1 \in \mathcal{G}_1$ $S_0 SVh_1 = VS_0 Sh_1$. This shows that $S_0 S \in \{T\}^n$; $S_1 m(T) \in \{T\}^n$ can be shown in the same way.

 $S \in \{T\}'' \subset \{T\}'$. It follows that $S|\tilde{\mathfrak{G}}_0 \in \{T_0\}'$, $S|\tilde{\mathfrak{G}}_1 \in \{T_1\}'$. Let $h_0 \in \ker S_0$. Then $S_0Sh_0 = S_0(S|\tilde{\mathfrak{G}}_0)h_0 = (S|\tilde{\mathfrak{G}}_0)S_0h_0 = 0$, together with (3.3) this shows that ker $S_0 \subset \ker S_0S \cap \operatorname{rng} S$. Let $h_0 \in \ker S_0S \cap \operatorname{rng} S$; then $S_0Sh_0 = SS_0h_0 = 0$ and by (3.1) and (3.3) $S_0h_0 = 0$.

rng $S_0 = \overline{S_0 S_0} = \overline{S_0 S_0} = \overline{S_0 S_0}$ and so (i) is proved. Using (3.1) and (3.2) (ii) can be proved in the same way.

79

Theorem 3.2. Every c.n.u. weak contraction has the property (L').

Proof. Let \mathfrak{H}_0 , \mathfrak{H}_1 , T_0 , T_1 , S and m be as in the preceding lemma. Let $K \in \text{hyperlat}(T)$. If z does not belong to the spectrum of T, then $(z - T)^{-1}$ commutes with T, it follows that $(z - T)^{-1}|K = (z - T|K)^{-1}$. This shows that T|K is also a c.n.u. weak contraction and we may consider its C_0 — part $T|K_0$ and its C_{11} — part $T|K_1$. According to [1, proposition VIII.2.2] $K_0 = K \cap \mathfrak{H}_0$, $K_1 = K \cap \mathfrak{H}_1$. As was shown in the proof of [5, theorem 3] $K_0 \in \text{hyperlat}(T_0)$, $K_1 \in \text{hyperlat}(T_1)$. It follows by theorem 2.6, by [6, corollary 3.4] and by lemma 3.1 that T has the property (L').

REFERENCES

- Sz.-NAGY, B. and FOIA\$, C.: Harmonic analysis of operators on Hilbert space. Akadémiai kiadó, Budapest, 1970.
- [2] Sz.-NAGY, B. and FOIA\$, C.: On the structure of intertwining operators, Acta Sci. Math. 35, 1973, 225-254.
- [3] TEODORESCU, R. I.: Factorisations régulières et sousespaces hyperinvariants, Acta Sci. Math. 40, 1978, 389–396.
- WU, P. Y.: Hyperinvariant subspaces of C₁₁ contractions II, Indiana University Math. J. 27, 1978, 805-812.
- [5] WU, P. Y.: Hyperinvariant subspaces of weak contractions. Acta Sci. Math. 41, 1979, 259-266.
- [6] ZAJAC, M.: Hyperinvariant subspace lattice of some C_0 contractions, Math. Slovaca, 31, 1981, 397-404.

Received June 2, 1981

Matematický ústav SAV Obrancov mieru 49 814 73 Bratislava

РЕШЕТКА ГИПЕРИНВАРИАНТНЫХ ПОДПРОСТРАНСТВ СЛАБЫХ СЖАТИЙ

Michal Zajac

Резюме

Рассматриваются решетки гиперинвариантных подпространств для вполне неунитарных слабых сжатий *Т*. Показано, что решетка гиперинвариантных подпространств такого оператора порождена замыканиями областей значений и ядрами операторов из бикоммутанта *T*. Это обобщает результат By [5] (для сжатий с конечными дефектными индексами).