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ON LEXICO EXTENSIONS
OF LATTICE ORDERED GROUPS

JAN JAKUBIK

This note was inspired by Conrad’s paper [1], namely by the main theorem of
the paper, concerning the structure of lattice ordered groups G having the property
that each orthogonal subset of G is finite. (Cf. Theorem (A) below.) While the ‘if’
part of this theorem is obvious, by proving the ‘only if’ part several non-trivial steps
and auxiliary results were used (cf. also Conrad [3] and Fuchs [4]).

By searching for a more simple and self-contained version of the proof of the
‘only if’ part of this theorem it turned out that for obtaining a good basis enabling
one to perform some rather simple induction steps we have at first to generalize the
theorem under consideration.

The case of lattice ordered groups G such that each upper-bounded orthogonal
subset of G is finite (cf. [2]) will not be investigated in the present note.

1. Preliminaries

For the terminology and denotations cf. Fuchs [4] and Conrad [3]. The group
operation in a lattice ordered group will be written additively. Let us recall the
following notions.

Let G be a lattice ordered group. A subset X of G will be said to be orthogonal if
0=x for each x € X, and x; A x, =0 for each pair of distinct elements x;, x, € X. For
Y < G we put

Y’={geG: |g|a|y|=0 foreach ye Y};

Y? is a polar of G. Instead of g€ Y’ we also write g1Y.

An element g € G with g>0 is called a non-unit if {g}°+ {0}.

Let H+ {0} be a convex /-subgroup of G and let g € G. If h<g is valid for each
h € H, then we say that g exceeds H. If from the relations 0< g, € G\H it follows
that g, exceeds H, then we write G = (H); in such a case G is said to be a lexico
extension of H; if, moreover, H# G, then G is called a proper lexico extension
(of H). If G=(H) and H is normal in G, then G is called a normal lexico
extension of H.

81



The following theorem is the main result of [1]:

(A) Let G be a Iattice ordered group. Each orthogonal subset of G is finite if and
only if G can be obtained from a finite number of linearly ordered groups by the
operations of direct product and normal lexico extension.

Since in the case of G ={0} our investigations would be trivial, we shall always
assume that G# {0}. Let us consider the following conditions for G:

(F1) Each orthogonal subset of G is finite.

(F:) There are elements 0<e € G (i=1, 2, ..., n) such that each interval [0, &]
is a chain and {e;, e, ..., €,} is a maximal orthogonal set of non-zero elements of
G.

(Fs) There are convex /-subgroups A, ..., A, of G with A;# {0} such that (i)
{A1UAzU...UA,}° ={0}, and (ii) A,, ..., A, are mutually orthogonal and linearly
ordered.

We have obviously (F;)<>(F;), and (Fs) > (F,). Let (F;) be valid; since the
convex [-subgroup of G generated by e is linearly ordered, we infer that
(Fz) = (Fs); thus (Fy), (F2) and (Fs) are mutually equivalent.

Again, let H be a convex /-subgroup of G, 0<xe€ G. If the set {he H: h=x}
has a greatest element Ao, then we denote ho=x(H); ho will be called the
component of x in H. We shall say that H is an el-subgroup of G if for each
positive element x of G not exceeding H the component x(H) does exist.

If H, G are as above and H=(K), K+ H, then H is an el-subgroup of G
(cf. [2]). In fact, let 0< x € G such that x does not exceed H. Then there is y € H\K
such that y is incomparable with x; it is easy to verify that 2y Ax = x(H). Also,
each non-zero linearly ordered group is a proper lexico extension. If A is a convex
I-subgroup of G and if A is linearly ordered, then A% is linearly ordered as well.
Hence and in view of the equivalence (F)<>(F;) the following theorem is
a generalization of the ‘only if’ part of (A):

(B) Let A4, A, ..., A, be pairwise orthogonal el-subgroups of a lattice ordered
group G such that {A;UAU...UA,}°={0}. Then (i) G can be constructed from
the system {A., ..., A,} by means of the operations of direct product and lexico
extension, and (ii) G can be constructed from the system {A?%’, ..., A%’} by means
of the operations of direct product and normal lexico extension.

2. Proof of theorem (B)

Without loss of generality we can assume that all A; are non-zero. If 0<ge G
and if g(A)) exists, then g —g(A;) is orthogonal to A; (in fact, if 0<a € A,
a=g—49g(A), then g(A)<a + g(A)eA: and a+g(A)=g, which is
impossible).

Letie{1,2, ..., n}, Bi= A®.1f 0<ye B; and if y does not exceed A, then y is
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orthogonal to each A; with j# i, hence so is y' =y — y(A:), and, moreover, y' is
orthogonal.to A;; therefore y’ =0, implying y € Ai. We have shown that either
B: = A, or B; is a proper lexico extension of A;. In both cases B; is an el-subgroup
of G. The lattice ordered groups B4, ..., B, are clearly mutually orthogonal. We
have also verified that the assertion of the lemma is valid for n =1. Assume this
assertion to be valid for each m<n.

Let M be the set of all 0<g e G such that g exceeds at least one B;. Let us
distinguish two cases. At first suppose that M is empty. Let 0<g € G. Then g(B:)
does exist for each ie{1,...,n} and we have 0=g'=g—-3Xg(B;), g'LB: for
i=1,2,...,n, hence g' LA, for i=1,2, ..., n and therefore g’ =0, g == g(B)).
From this we infer that G=B; X B; X ... X B, is valid.

Now assume that M is non-empty. For g € M we put fi(g) =1 if g exceeds A,
and fi(g) =0 otherwise ; next we put f(g)=(f1(9), ..., f+(9)), F={f(9): ge M}.
The set M is partially ordered coordinate-wise. Since F is finite, there exists g e M
such that f(g) is a minimal element in F. Without loss of generality we can assume
that there is a positive integer k=n such that f(g) =1 for i=k and fi(g) =0 for
k<i=n. We must have k=2; in fact, if k=1, then for g’'=g—-2g(B)
(i=2, ..., n) we would have g’ L B; for i=2, ..., n, hence g’ € B, and therefore for
each g"e B; with g">g' we would have gZg”, which is a contradiction. Put
C= (BIUBzu...UBk)Gé.

Since Bi, B,, ..., Bx are mutually orthogonal, the convex /-subgroup of G
generated by the set B;u B,uU...U B is a direct product B; X B, X ... X B.. We have
g'eC; if g'eB;XB;X...X By, then g does not exceed B; for i=1,2, ..., k,
which is impossible. Thus g’ ¢ By X ... X B, and therefore ‘
C\(B:XB: X ...XB,)=0.

Let 0<x€ C\(B; X B;X...X By). Hence x(B;))=0for j=k+1,...,n. If x¢ M,
then x(B;) exists for each ie {1, ..., n}, thus for x'=x -2 x(B;) (i=1, ..., n) we
have x'LB; for i=1, ..., n implying x'=0 and so x=2Zx(B) (i=1,2, ..., k),
hence x € B; X ... X By, which is a contradiction. Thus x € M. We want to verify that
x exceeds B X...X Bi. By way of contradiction, assume that x does not exceed
By X...x Bx. Then thereis i€ {1, 2, ..., k} such that x does not exceed B:. Without
loss of generality we can take i =1. Thus x(B,) does exist; put y = x — x(B:). The
relation y ¢ M would imply x ¢ M; therefore y e M. We have y € C, hence f;(y) =0
for j=k+1, ..., n; moreover, fi(y) =0. Hence f(y)<f(g), which is a contradic-
tion with the minimality of f(g). Therefore C is a proper lexico extension of
B X By X... X Bx.

Moreover, C is a normal lexico extension of B X ... X B, = G,. In fact, because
B, X ... X B, is a non-trivial direct product, it is generated by non-units of C. From
C=(G,) it follows that all non-units of C belong to G;. Next, if c is a non-unit of
C and ¢, € C, then clearly —c; + ¢+ ¢; is a non-unit of C. Hence G, is a normal
subgroup of C.
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To finish the proof it suffices to apply the induction assumption to the system
{C, By., ..., B.}

which has less than » elements (notice that each element of this system is a polar of
G).

Corollary. Let A, A, ..., A, be convex I-subgroups of a lattice ordered group
G such that (i) all A; are proper lexico extensions; (ii) they are mutually
orthogonal, and (iii) (U A;)® ={0}. Then (a) G can be constructed from the system
A, ..., A, by the operations of direct product and lexico extension, and (b) G can
be constructed from the system A, ..., A%’ by the operations of direct product
and normal lexico extension.

REFERENCES

[1] CONRAD, P.: The structure of a lattice ordered group with a finite number of disjoint elements.
Michigan Math. J. 7, 1960, 171—180.

[2] CONRAD, P.: Some structure theorems for lattice ordered groups. Trans. Amer. Math. Soc. 99,
1961, 212—240.

[3] CONRAD, P.: Lattice ordered groups. Tulane University 1968.

[4] FUCHS, L.: Partially ordered algebraic systems. Oxford 1963.

Received June 10, 1981
Katedra matematiky
Strojnickej fakulty VST
Svermova 9
041 87 Kosice
O JIEKCUKO-PACHIUPEHUSAX PEIIETOYHO YITOPAOOYEHHLBIX I'PYIIIT
Jan Jakubik
Pesome
B 370i1 3aMeTKe OMUcaHa CTPYKTypa pelleTOYHO ynopsinodeHHoi rpynnbl G npH ycnoBuH, 4to B G

CYLLECTBYIOT BbIYKIbIE [-OArpynns! Ay, ..., A, Takue, 4T0 a) cucteMa {A,, ..., A,} — OpTOroHanb-
Hasl; 6) Kaxnoe A, ABnseTcs cOGCTBEHHBIM JIeKCUKOpaciMpeueM, # B) (U A;)® ={0}.
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