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ON LEXICO EXTENSIONS 
OF LATTICE ORDERED GROUPS 

JAN JAKUBlK 

This note was inspired by Conrad's paper [1], namely by the main theorem of 
the paper, concerning the structure of lattice ordered groups G having the property 
that each orthogonal subset of G is finite. (Cf. Theorem (A) below.) While the 'if 
part of this theorem is obvious, by proving the 'only if part several non-trivial steps 
and auxiliary results were used (cf. also Conrad [3] and Fuchs [4]). 

By searching for a more simple and self-contained version of the proof of the 
'only if part of this theorem it turned out that for obtaining a good basis enabling 
one to perform some rather simple induction steps we have at first to generalize the 
theorem under consideration. 

The case of lattice ordered groups G such that each upper-bounded orthogonal 
subset of G is finite (cf. [2]) will not be investigated in the present note. 

1. Preliminaries 

For the terminology and denotations cf. Fuchs [4] and Conrad [3]. The group 
operation in a lattice ordered group will be written additively. Let us recall the 
following notions. 

Let G be a lattice ordered group. A subset X of G will be said to be orthogonal if 
OS* for each x e X, and X\ AX2 = 0 for each pair of distinct elements xux2e X. For 
Ya G we put 

Y6 = {geG:\g\A\y\=0 foreach yeY}; 

Y6 is a polar of G. Instead of g e Y6 we also write g±Y. 
An element ge G with g>0 is called a non-unit if {g}3^ {0}. 
Let H± {0} be a convex /-subgroup of G and let geG. If h<g is valid for each 

heHy then we say that g exceeds H. If from the relations 0<gi e G\H it follows 
that g\ exceeds H, then we write G = (H); in such a case G is said to be a lexico 
extension of H; if, moreover, H£ G, then G is called a proper lexico extension 
(of H). If G=(H) and H is normal in G, then G is called a normal lexico 
extension of H. 
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The following theorem is the main result of [1]: 
(A) Let Gbea lattice ordered group. Each orthogonal subset of G is finite if and 

only if G can be obtained from a finite number of linearly ordered groups by the 
operations of direct product and normal lexico extension. 

Since in the case of G = {0} our investigations would be trivial, we shall always 
assume that G£{0}. Let us consider the following conditions for G: 

(Fi) Each orthogonal subset of G is finite. 
(F2) There are elements 0 < d e G (i = 1,2, ..., n) such that each interval [0, ei\ 

is a chain and {eu e2, ..., en} is a maximal orthogonal set of non-zero elements of 
G. 

(F3) There are convex /-subgroups Ai, ..., A„ of G with A,-=£ {0} such that (i) 
{AiuA 2 u . . . uA„} 6 = {0}, and (ii) Ai, ..., A„ are mutually orthogonal and linearly 
ordered. 

We have obviously (F i )o(F 2 ) , and (F3)=>(F2). Let (F2) be valid; since the 
convex /-subgroup of G generated by et is linearly ordered, we infer that 
(F2) --> (F3); thus (Fi), (F2) and (F3) are mutually equivalent. 

Again, let H be a convex /-subgroup of G, 0 < * e G. If the set {h e H: h^x} 
has a greatest element h0, then we denote h0 = x(H); h0 will be called the 
component of x in H. We shall say that H is an eI-subgroup of G if for each 
positive element x of G not exceeding H the component x(H) does exist. 

If H, G are as above and H=(K), K+H, then H is an eI-subgroup of G 
(cf. [2]). In fact, let 0<x e G such that x does not exceed H. Then there is y e H\K 
such that y is incomparable with x; it is easy to verify that 2y/\x = x(H). Also, 
each non-zero linearly ordered group is a proper lexico extension. If A is a convex 
/-subgroup of G and if A is linearly ordered, then A68 is linearly ordered as well. 
Hence and in view of the equivalence (F i )o(F 3 ) the following theorem is 
a generalization of the 'only if part of (A): 

(B) Let Ai, A2, ..., An be pairwise orthogonal el-subgroups of a lattice ordered 
group G such that {A iuA 2 u . . . uA n } d = {0}. Then (i) G can be constructed from 
the system {Au ..., A„} by means of the operations of direct product and lexico 
extension, and (ii) G can be constructed from the system {A86, ..., A88} by means 
of the operations of direct product and normal lexico extension. 

2. Proof of theorem (B) 

Without loss of generality we can assume that all A, are non-zero. Ii 0<g eG 
and if g(A() exists, then g-g(At) is orthogonal to A, (in fact, if 0 < a f e A . , 
ai^g-g(Ai), then g(Ai)<a{ + g(Ai)eAt and at + g(Ai)^g, which is 
impossible). 

Let 16 {1, 2, ..., n}, Bt = Af. If 0<y e Bt and if y does not exceed A,-, then y is 
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orthogonal to each Aj with y-j-= i, hence so is y' = y-y(A), and, moreover, y' is 
orthogonal.to A,; therefore y'=0, implying yeAi. We have shown that either 
Bi=Ai or 2.?, is a proper lexico extension of At. In both cases J5, is an e/-subgroup 
of G. The lattice ordered groups Bu ..., -B„ are clearly mutually orthogonal. We 
have also verified that the assertion of the lemma is valid for n = 1. Assume this 
assertion to be valid for each m<n. 

Let M be the set of all 0<geG such that g exceeds at least one Bt. Let us 
distinguish two cases. At first suppose that M i s empty. Let 0<geG. Then g(Bt) 
does exist for each i e { l , ..., n} and we have O^g' = g—Xg(Bi), g'±Bi for 
i = l , 2 , . . . , « , hence g'-LA for i = l, 2, ..., /i and therefore g' = 0, g = Hg(Bi). 
From this we infer that G = Bi x B2 x ... x Bn is valid. 

Now assume that M i s non-empty. For geMwe put /)(#) = 1 if g exceeds A , 
and fi(g) = 0 otherwise; next we put f(g) = (fi(g), ..., /«(#)), F={f(g): geM}. 
The set Mis partially ordered coordinate-wise. Since Fis finite, there exists geM 
such that f(g) is a minimal element in F. Without loss of generality we can assume 
that there is a positive integer k^n such that fi(g) = 1 for / § k and fi(g) = 0 for 
k<i^n. We must have k^2; in fact, if fc=l, then for g'=g-"Lg(Bi) 
( i = 2 , ..., n) we would have #'.12*. for i = 2, ..., n, hence g' eBi and therefore for 
each g"eBx with g">g' we would have #$#", which is a contradiction. Put 
C = CBiuB2u...u£*)*5. 

Since Bu B2, ..., £fc are mutually orthogonal, the convex /-subgroup of G 
generated by the set BivB2u...vBk is a direct product BiX B2x ...x Bk. We have 
g'eC; if g'eBiXB2x ...xBk, then # does not exceed 2*. for i = l , 2 , ..., k, 
which is impossible. Thus ^ '^ .BiX. . .xB k and therefore 
C\(BxxB2x ...xBk) = $. 

Let 0 < * e C\(Bi xB2x ... x B*). Hence x(Bj) = 0 for / = fc + 1, ..., w. If * ^ M , 
then *(£.) exists for each i e { l , ..., n}, thus for JC' =x — Xx(Bt) (i = l, ..., AX) we 
have .*'-L£. for i = l, ..., n implying x' = 0 and so x = Xx(Bi) (i = l, 2, ..., k), 
hence JC G 5 I X ... x Bk, which is a contradiction. Thus JCGM. We want to verify that 
x exceeds B\ x ... x Bk. By way of contradiction, assume that x does not exceed 
B\ x ... x Bk. Then there is / e {1, 2, ..., £} such that * does not exceed fl. Without 
loss of generality we can take / = 1. Thus x(Bt) does exist; put y = x — x(Bi). The 
relation y^Mwould imply x^M; therefore yeM. We have yeC, hence/(>>) = 0 
for y = fc + 1, ..., n; moreover, /i(y) = 0. Hence f(y)<f(g), which is a contradic
tion with the minimality of f(g). Therefore C is a proper lexico extension of 
B\ X B2 X ... X Bk. 

Moreover, C is a normal lexico extension of B\ x ... x Bn = &. In fact, because 
Bi x ... x Bn is a non-trivial direct product, it is generated by non-units of C. From 
C=(Gi) it follows that all non-units of Cbelong to G\. Next, if c is a non-unit of 
C and Ci e C, then clearly — Ci + c + Ci is a non-unit of C. Hence d is a normal 
subgroup of C. 
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To finish the proof it suffices to apply the induction assumption to the system 

{C, Bk+i, ..., Bn} 

which has less than n elements (notice that each element of this system is a polar of 

G). 

Corollary. Let Au A , ..., An be convex I-subgroups of a lattice ordered group 

G such that (i) all A are proper lexico extensions; (ii) they are mutually 

orthogonal, and (iii) ( u A ) J = {0}. Then (a) Gcan be constructed from the system 

A , ..., A . by the operations of direct product and lexico extension, and (b) G can 

be constructed from the system A66, ..., A66 by the operations of direct product 

and normal lexico extension. 
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O ЛEKCИKO-PACШИPEHИЯX PEШETOЧHO УПOPЯДOЧEHHЫX ГPУПП 

Ján Jakubík 

Peзюмe 

B этoй зaмeткe oпиcaнa cтpyктypa peшeтoчнo yпopядoчeннoй фyппы G пpи ycлoвии, чтo в G 
cyщecтвyют вьmyклыe l-пoдфyппы A, ..., An тaкиe, чтo a) cиcтeмa {A, ..., A } — opтoroнaль-
нaя; б) кaждoe Д, являeтcя coбcтвeнным лeкcикopacшиpeниeм, и в) (uД)* = {0}. 
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