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ARROWS IN T H E "FINITE P R O D U C T T H E O R E M 
F O R CERTAIN E P I R E F L E C T I O N S " OF 

R. F R I C AND D. C. K E N T 

MARK S C H R O D E R 

(Communicated by Julius Korbas) 

A B S T R A C T . T h e t-envelope, a kind of completion for ^-embedded convergence 
spaces devised by D. C K e n t and G. D. R i c h a r d s o n , has its origins in 
J. N o v a k 's sequential envelope. Recently, R. F r i c and D. C K e n t found 
t h a t t h e ^-envelope preserves finite Cartesian products, under a rather technical 
condition. By placing their ideas in a categorial framework, we clarify their work, 
improve and extend t h e entire theory, and discover the meaning of their technical 
condition: it makes their ^-embedded spaces form a Cartesian-closed category 

§0. In t roduc t ion 

In 1979, F r i c , K. M c K e n n o n and R i c h a r d s o n [FMR] used 
sequential continuous convergence to construct another sequential envelope, 
equivalent to N o v a k ' s one [iVi], [N2]. In the same year, K e n t and 
R i c h a r d s o n [KR] devised their ^-envelopes, starting with a hereditary 
coreflector (in their terms, an HlU-modifier) d on the category of filter con
vergence spaces. Then in 1986, F r i c derived the product theorem for the 
sequential envelope, and finally in 1988, F r i c and K e n t found the prod
uct theorem for the ^-envelope [FK; Theorem 3.10]: Assume that products of 
t-embedded spaces are ^-spaces. Then [the t-envelope] Et is finitely productive. 

Like E. B i n z ' s theory of c-embedded spaces [B], the t-theory of [KR] 
and [FK] relies on continuous convergence and real-valued functions. However, 
neither theory needs all these limitations. To show this, we build a theory for 
any coreflector around almost any space at all, expressing it in the language of 
[KR] and [FK], and deriving the same results (often, more simply). 

In §1, we recall some significant features of continuous convergence, and in 
§2, we do the same for convergence in general, and for coreflectors. In §3, we 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 54A20, 54B30, 18B30. 
K e y w o r d s : Epireflector, Filter convergence space, t-envelope, t-embedded, t-complete, 

Cartesian-closed. 
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introduce the main ideas of ^-embedded and ^-complete spaces. This leads us to 
^-envelopes and the completion theory for ^-embedded spaces described in §4. 
We review the product theorem in §5 and work on Cartesian-closedness in §6. 

Throughout, we compare our theory with earlier ones, applying it to familiar 
examples. None of our techniques requires deep results from recondite sources: 
[B; §0] covers the basic ideas of filter convergence, as distinct from topology 
or sequential convergence; and categorially, we seldom go beyond the universal 
properties of subspaces and products . 

§1. Background — c o n t i n u o u s conve rgence 

Let us summarize some key features of continuous convergence, mainly to 
display our notation - for details and definitions, see [B], [BK] or many other 
sources. To exploit the common properties of several familiar classes of conver
gence spaces, we assume only what we need in order to get results. In particular, 
the categories of filter convergence spaces ^ , of limit spaces (under the axioms 
given in [B]), of Choquet spaces, and of c-embedded spaces [B] all satisfy our 
assumptions, marked [ass]. 

For any spaces W, X and Y in the category cvk of convergence spaces 
(in that symbol, the k acts as a reminder of Kent's axioms), continuous con
vergence transforms the set C(X,Y) of all arrows2) from X to Y into the 
space CC(X, Y). By definition, CC(X, Y) carries the coarsest convergence mak
ing the evaluation map cO from C(X, Y) x X to Y continuous - as usual, 
W : / X X H f(x). 

For any full subcategory cv of cvk, one calls W a natural exponential object 
in cv if CC(Z,W) G cv for all Z E c v . Obviously, cvk itself consists entirely 
of natural exponential objects; so do all the other categories mentioned above. 
Now let us state some of our basic assumptions: 

[ass] cv is a full subcategory of cvk; it contains the finite discrete spaces; 
it inherits its subspaces from cvk; it is closed under finite Cartesian prod
ucts and under homeomorphisms; it consists entirely of natural exponential 
objects - in short, cv is Cartesian-closed [AHS]. 

We emphasize: though most of the results in this section were first established 
for limit spaces, they remain true for cv. So from now on, all our spaces belong 
to cv. 

x) These spaces fulfil Kent ' s axioms: 

(1) point ultrafilters converge to their base point; and 

(2) if a filter converges to some point, then all finer filters converge to the same point. 

2) We often refer to arrows instead of continuous maps. 
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Each map g: W —> C(X, Y) defines the map g = u o (g x id): Wx X -*Y. 
This construction leads to the universal property that characterizes continuous 
convergence: 

1.1. A map g: W —» CC(X,Y) is continuous if and only if g: W x X —> Y is 
continuous. 

Dually, each arrow / : W x X —> Y defines an arrow / : W —> CC(X,Y). 
These procedures (often known as conversion) invert one another. 

1.2. T H E C O N V E R S I O N T H E O R E M . For all spaces W, X and Y, the rules 

of conversion g i—> g and / •—> / establish a homeomorphism between the spaces 
CC(W,CC(X,Y)) and CC(W x~X,Y). 

1.3. For x in X and f G C(X,Y), the formula @(x) = x: f i—> / (x ) defines 
@ as a continuous map3"* from X to CC(CC(X, Y), Y) . 

For x in X and y G Y, the formula k(y)(x) — y defines k as a continuous 
map4) from y to CC(X,Y). In fact, since @(x) o fc = idy for all x G X , 

1.4. y is a retract o/ CC(X, y ) . 

In Hausdorff topology, retracts behave nicely; they behave just as well in 
convergence theory too. 

1.5. Let S be a retract of a Hausdorff space T, defined by a section j : S —> T. 
Then j embeds S onto a closed subset of T. 

Now, for all arrows e: W -+ X, f: X —> Y and g: Y —> Z in cv, let 
f*(g) = g o / and /*(e) — f o e. This sets up the familiar functorial behaviour: 

1.6. /* : CC(Y, Z) -> CC(X, Z) and /* : CC(W, X) -> CC(W, Y) are both contin
uous. 

1.7. THE C C - E ] V I B E D D I N G THEOREM. Let j embed W in Z. Then for all 
spaces y . 

(a) j * embeds CC(Y,W) in CC(Y,Z), and 
(b) j*(C(Y,W)) is closed in CC(Y,Z) if Z is Hausdorff and j(W) is 

closed in Z. 

P r o o f . If I knew a reference to this, I would omit the proof. We use the 
universal property of subspaces. Let h: H —> C(Y,W) be a map such that 
j * o h: H —> CC(Y,Z) is an arrow in cv. On conversion, we get the arrow 

3 ) T o verify its continuity, convert it: @: X x CC(X,Y) —> Y is continuous, being the 
transpose of LJ . 

4 ; T o verify its continuity, jus t convert it - k is the projection from X X Y onto Y. 
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j o h: H x Y —> Z. Thus /&: FT x Y —• W in cv, and on converting again, 
/i: H -> C c(y, W ) , as desired. 

Part (b) follows directly from an obvious counterpart of (a) for pointwise 
convergence. For all spaces Y and Z , let CS(Y,Z) denote the set C(F, Z ) , 
equipped with pointwise convergence: then j * embeds CS(Y,W) in CS(Y,Z) 
for all spaces F . Now let j(^0 be closed in Z , let IT = j * (C(Y, W)) , and let g 
belong to the closure of K in CS(Y, Z). Then for some filter i\) on C(F, W ) , the 
image 0 = J*(V0 —> 5 £ CS(Y,Z). Now by definition of pointwise convergence, 
£(0) "^ #(y) i n Z , for all y G F , while y(0) = j(y(ip)), a filter on j(W). Thus 
5(y) £ J(W) for all y G y , since j ( W ) i s closed. This means that one can regard 
g as an arrow from Y to W . More precisely, 3 = j o / , an equation that not 
only defines / : Y —> W , but also establishes its continuity. So, g = j*(f) G If. 
In short, If is closed in C3(Y,Z), and in CC(Y,Z) too. • 

1.8. PROPOSITION. For all spaces V and W, if W is topologically Haus-
dorffV then so are CS(V,W) and CC(V,W). 

P r o o f . Let W be topologically Hausdorff, and suppose / / g E C( V, W ) . 
Choose v G V such that f(v) 7-= p(v), and find disjoint open sets F and C in W 
containing f(v) and g(v) respectively. Now let U and V be the inverse images 
of F and C under v. Then under pointwise convergence, U and V are disjoint 
open sets with / G t7 and g G V . Thus CS(V, W) is topologically Hausdorff. So 
is CC(V, W ) , because continuous convergence is finer than pointwise convergence. 

• 

§2. Background — coreflection 

Now we can state and emphasize another basic assumption: 

[ass] $ is a coreflector or more correctly, a coreflective modifier, on cv. 

This means: 1? is a functor from cv to cv, such that for all spaces Z G cv and 
all arrows / : X —> Y in cv, 

(M) Z and $Z overlie the same set, and / — 1?/, 
(C) tfZ> Z , and MZ = $Z. 

Here and elsewhere, we write A > B when A C 5 , as sets, and the inclusion 
j : A —> B is continuous. Let tcv denote the class of all ^-spaces - namely, 
those such that Z = dZ. Under these assumptions, tcv forms a full coreflec-

5I The open subsets of a space W form a topology, and its topological modification TW 
carries tha t topology. The topological closure of a subset of W is its closure in TW . One calls 
W topologically Hausdorff if it has at least two points and TW is Hausdorff. 
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tive subcategory of cv. The original work in [KR] and [FK] requires an extra 
assumption, that $ is hereditary too:6) 

(H) if X <--» Y, then fiX <—> fiY, both subspaces taken in cv. 

Some simple coreflectors based on set-theoretic constructions are hereditary. 
Examples include 

• the identity modifier *,, 
• the discrete modifier <5, which assigns to each space Z , the space 8Z 

in which £ —> z if and only if (" is the ultrafilter over z, 
• the sequential modifier T/J, which assigns to each space Z , the space 

i\)Z in which £ —» z if and only if ( D 0, where 0 —> z in Z and 0 is 
the Frechet filter of some sequence, and 

• the antisequential modifier w, which assigns to each space Z , the 
P-space zuZ in which ( -+ z if and only if (" D (/>, where (j) —> z in Z 
and <f> is closed under countable intersections. 

• However, the local compactifier K is a coreflector, but not hereditary: 
it assigns to each Hausdorff space Z, the convergence inductive limit 
of its compact Hausdorff subobjects. 

Most of these have received some attention. N o v a k , F r i c and others deal 
with ifr and its envelopes, while £, K and w appeared in [KR; §4], together with 
the L- and tu-envelopes. 

2 . 1 . For each coreflector $ and all spaces I , 7 G c v , 

(a) C(X, Y) C C(dX, W) C C(i/X, Y), and 
(b) C(X,Y) = C(X,$Y) if X is a ti-space. 

We adopt the notation of [KR] and [FK]: let Ct(X,Y) = i9Cc(X,F) for all 
spaces I , F G C V . This preserves the functorial behaviour noted in 1.6 - for all 
W, Z G c v and each arrow / : X —• Y, 

2.2. f*:Ct(Y,Z)->Ct{X,Z) and f*: Ct(W,X)-+Ct(W,Y) are arrows in cv 
and in tcv . 

Several difficulties that [FK] strove to overcome lie in a simple fact - subspaces 
and products in tcv need not coincide with those in cv. Heredity disposed of 
their subspace problem, but they often assumed . . . that products of t-embedded 
spaces are fl-spaces ... After some experiment with hybrid theories, in which 
certain key features (subspaces, products, and the ^-constructs described below) 
are tied to cv or cvk, we took a categorially cleaner approach: we work within 
tcv , and then we look for the links to cv. 

6I They used the te rm HlU-modifier instead of hereditary coreflector; our (C) combines 
their axioms (I) and (U), letters which stand for idempotent and upward, I believe. 
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This means: we use universal properties to define embeddings and products 

in tcv . So, an arrow j : S —» T in t c v embeds S in T if and only if for each 

W G t c v , a map / from W to S is continuous if the composite j o / : W —> T 

is an arrow in tcv . This gives us a form of heredity at no cost - embeddings lift 

from cv to. tcv , and sections work better still. 

2.3. J / 5 , T E CV and j embeds S in T in c v ; then j embeds $S in fiT in t c v . 

2.4. If j : S —» T is a section in cv and T G t c v , then S G t c v too. 

So, to obtain subspaces in tcv , simply form the subspace in cv, then apply 

i? to it. Because the next two facts rely more on universal properties than on 

details of convergence, they apply equally to cv and to tcv . 

2.5. T H E EMBEDDING LEMMA. Take arrows v: S -> V and p: V —> U. 

Let u = pov and suppose that u embeds S in U. Then v embeds S in V. 

P r o o f . Take any map q from a space Z to S that makes voq continuous. 

Then povoq = uoq:Z—> U. So q: Z —> S, as u: S <—+ U. Hence v embeds 

5 in V, as desired. • 

2.6. T H E EXTREMAL LEMMA. Take embeddings u and v, with u = p o v 

as above. Suppose that u(S) is closed in U and that V is Hausdorff. Then v(S) 

is closed in V. 

P r o o f . Let H = u(S) and let K be the closure of the set v(S) in V. 

Consider this diagram. 

s^т^н^+u 

The inclusions e: H <—> U and rj: K c—> V make H and K subspaces of U 

and V; they also define arrows u: S —> H and v: S —> K such that u = e o u 

and v = rj o v. Now as a map, u: S —+ H has an inverse, h. Obviously, h is 

continuous,7) since u is an embedding and u o h = e. 

By continuity, p(K) C H, as H is closed. This enables us to define a map 

q: K —> H such that e o q = p o 77, and because of this, q is continuous. Let 

k = v oh. Now eoqok=porjok=povoh = e. Hence qok = id//, as s is 

monic In other words, k is a section. Now as V is Hausdorff and k(H) = v(S), 

the set v(S) is both closed and dense in K, by 1.5. In short, K = v(S), as 

desired. • 

7) So, every embedding in tcv is a product of a homeomorphism and an inclusion. 
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Thus in categorial language, closed embeddings in Hausdorff spaces or Haus-
dorff tf-spaces are extremal monomorphisms, just as in topology (even though 
in tcv, we no longer use the usual idea of embedding). Compare this with 1.5: 
sections are extremal monomorphisms. 

Deal with products in much the same way: for clarity, let x and l~l stand 
for the product operators in cv and in tcv respectively. Let T be the product 
in cv of a non-trivial collection T of cv-spaces: T = x T . Then the family 
{ $ y ; Y E T} has a product in tcv, namely, dT. 

2.7. If T £ t c v , then each member of T belongs to tcv too, and if each member 
of T belongs to tcv, then t/T = !~1T. 

P r o o f . Choose S E T , and let p: T —> S be the projection. For every 
other R E T , choose qn E R. Use these choices to define the section q: S —* T 
such that ids = p o q. Now suppose T E tcv . Then by 2.4, S is a $-space. We 
leave the rest as an exercise. • 

Let ev: Sv —> Tv be arrows in tcv, for all v in an index set T , let S and T 
denote their products in tcv , and let e: S —• T be the usual product map which 
commutes with the projections pv and qv (in other words, qv o e = ev opv, as 
in the diagram below). 

2.8. In this situation, 

(a) e is an arrow in tcv, 
(b) if each ev is an embedding, then so is e, and 
(c) if each image set ev(Sv) is closed in Tv, then e(S) is closed in T. 

P r o o f . The commutation rules and the universal property of T as a prod
uct ensure the continuity of e. Next, let W E tcv, and take a map w: W —• S 
making e o w continuous: 

W - - - 5 ^ — T 

Pv 
\ 

Uv 

Now consider the arrows qvoeow = evopvow: since each ev is an embedding, the 
maps pvow are all continuous. So by the universal property of S as a product, 
w is continuous. Finally, as e(S) is the intersection of the inverse images under 
qv of the closed sets ev(Sv), it is closed too. • 
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§3. E m b e d d e d a n d c o m p l e t e spaces 

The real line R, with its usual topology, plays an integral part in N o v a k ' s 
work on the sequential envelope, in B i n z 's work on continuous convergence 
and c-embeddedness, and in recent work on more general envelopes. Obviously, 
LR = i/)R = rcR, but R is neither a P-space nor discrete. 

However, R has more properties than we need. To clarify this, choose any 
space B £ t c v whatsoever, call it the base, and let B take the place of R in 
the theory. Now we can state and emphasize the last of our basic assumptions: 

[ass] the base B is a topologically Hausdorff i9-space. 

Without this axiom, some easier parts of the theory remain, but the envelopes 

lose their nicer properties. 

As in the usual theory based on R, the base stays out of sight - in other 
words, C(Z) stands for C(Z,B) for all spaces Z. This makes it easy for us to 
survey the results of [KR] and [FK] on ^-embedded and t-complete spaces, and 
to present them for all bases, not just R. 

Having chosen the base B, we call the rule @ = @z : z i-» z, the carrier of Z. 
Let Z denote its image, the set @(Z). When B = R and d — i, the carrier @z 
of each space Z is continuous and Z is closed in CC(CC(Z)) [B; Theorem 17]. 
More generally, the point evaluations @(z): Ct(Z) —> B are always continuous. 
However, the carrier @: Z —> Ct(Ct(Z)) may be discontinuous and Z need not 
be closed, even when B — R. Most modifiers exhibit this behaviour to some 
extent: under the discrete modifier 6, the carrier is continuous only for discrete 
spaces, but its image is always closed; under the sequential modifier X/J , both 
possibilities can occur independently [1V2] • 

We deal with discontinuous carriers by definition: we call a space t-admissible 
if its carrier is continuous. 

3 . 1 . THEOREM. All 'd-spaces are t-admissible. 

P r o o f . Let us see conversion in action, line-by-line. For any i/-space Z , let 
q be the transpose of the evaluation map, under which q(z, f) = f(z). Then 

q: Z x CC(Z) -> B in cv, because Z x CC(Z) <—• CC(Z) x Z , 
q: Z x Ct(Z) -* 5 , because Ct(Z) > CC(Z), 
q: Z —• Cc(Ct(Z),B) = Cc(Ct(Z)), under conversion in cv, 
q: Z —> Ct(Ct(Z)) , because Z is a L9-space. 

Finally, simply verify that q = @. • 

Given a i9-space Z , we call it t-embedded if its carrier @z is an embedding 
in tcv; we call it t-complete if, in addition, Z is closed in Ct(Ct(Z)). These 
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spaces 8) form the categories tern and t c m respectively, full subcategories of cv 
and of tcv. By assumption, the base B is topologically Hausdorff, and by 1.8, 
many other spaces share this property. 

3.2. Every t-embedded space is topologically Hausdorff. 

B i n z 's original c-theory forms a special case, in which the coreflector is the 
identifier, t. A space is i-embedded in our sense if and only if it is c-embedded 
[B], and because Z is always closed in CC(CC(Z)), each i-embedded space is 
z-complete. In the c-theory, the function spaces CC(Z) are c-embedded, com
pletely regular topological spaces are c-embedded, and in particular, the base R. 
is c-embedded. In our t-theory, we have to work harder for less information. 

3.3. THEOREM. Let Z be t-admissible, and let C = Ct(Z). Then 

(a) @ z * o @ c = i d c , 
(b) Ct(Z) is t-complete, and 
(c) the base B is t-complete. 

P r o o f . To prove (a), check that @z* o @ c ( / ) = / , for all / e C. To do 
this, take z G Z and calculate: 

@z* o @c(f)(z) = @c(f)(@z(z)) = @z(z)(f) = f(z). 

By (a), Ct(Z) is a retract of Ct(Ct(C)), and the latter is Hausdorff, by 3.2. So 
by 1.5, @c embeds C as a closed subspace of Ct(Ct(C)). Thus C =-= Ct(Z) is 
^-complete. Now to prove (c), take a singleton space Z. Clearly, B and CC(Z) 
are homeomorphic Thus B = i)B <—• Ct(Z). Being discrete, Z is a i/-space. 
So by (b), Ct(Z) and B are both t-complete. • 

3.4. Let i: Z —> I and j : I —> Ct(Ct(Z)) in cv. Suppose @ = j o i and 
i* : C(I) —» C(Z) is infective. Then i*: Ct(I) —> Ct(Z) is a homeomorphism. 

P r o o f . Because @ = j o i: Z —> Ct (Ct(Z)), the space Z is ^admissible. 
By contravariance, (j o i)* = i* o j * and, by 3.3, @z* o @ c = idc- Now i* is 
injective and i* o j * o @ c = idc- Thus i* has an inverse,9) j * o @c is that 
inverse and further, the inverse is continuous. • 

F r i c and K e n t [FK] discussed the permanence properties of tern and of 
tcm . We obtain similar results in our more general situation: ours look nicer (and 

8) Guided by [FK], one might call a space ^-embedded if its carrier were an embedding in 
cv. The two definitions agree, for hereditary coreflectors. In other cases, t-embedded spaces 
might not be ^-spaces. For example, consider the case of the local compactifier K: though all 
k-complete spaces would be locally compact, as desired, most k-embedded ones would not be 
locally compact . 

9) An injective map I: A —• B with a right inverse J: B —» A has an inverse, J. 
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have an easier proof) because we work in tcv , but they have a drawback: they 
do not apply to ordinary subspaces or Cartesian products unless these objects 
actually belong to tcv . (The need to check this appears explicitly in their results 
about products, but not in those about subspaces - recall their assumption of 
heredity.) 

To derive all this, we need several facts, some from §2. Take an arrow / : 
X —> Y in cv, and let /** denote'the map from CC(CC(X)) to CC(CC(Y)) or 
from Ct(Ct(X)) to Ct(Ct(Y)) . In both cases, /** is continuous, even though 
the commutation law below does not imply the continuity of the carriers: 

3.5. @ y o / = / * * o @ x . 

Next, we assign to each ^-admissible space Z its t-modification At(Z), the 
set Z as a tcv-subspace of Ct(Ct(Z))\ we call At the t-embedder. Further, 
let az'> Z —> At(Z); z t—> 2\ Clearly, az is continuous; and by Embedding 
Lemma 2.5, it is a homeomorphism in t c v if and only if Z is ^-embedded. 

3.6. For each 'd-space Z and each arrow f: X —> Y in tcv . 

(a) the arrow az*: Ct(At(Z)) —> Ct(Z) is a homeomorphism, and 
(b) exactly one arrow At(f): At(X) —• At(Y) makes At(f)oax — f°ay . 

P r o o f . Take a $-space Z. Since az is surjective, az* is injective. So by 
3.4, az* is a homeomorphism. The second claim follows directly from 3.5. • 

3.7. THEOREM. The t-embedder At reflects t c v onto tern. 

P r o o f . Take a t?-space Z, a ^-embedded space E, and an arrow / : Z —• E. 
By the previous result, the space At(Z) is ^-embedded. Let h: At(E) —+ E 
be the inverse of the homeomorphism aE: E —+ At(E), and let a(f) = 
h o At(f): At(Z) -> E. Since aE o / = At(f) o a z , by 3.6, / = a(f) o az. 
Because a^ is surjective, there is exactly one such arrow. In short, ^4t has the 
universal property of a reflector. • 

3.8. C O R O L L A R Y - T H E F R I C - K E N T P E R M A N E N C E T H E O R E M . Under 

our definitions, 

(a) tern is hereditary and productive, in tcv, 
(b) t c m is closed-hereditary and productive, in tcv . 

P r o o f . Since tern is reflective in tcv , it is closed under products taken in 
tcv . Next, suppose that T G tern and that j embeds S in T , in tcv . By the 
reflective property, j = a(j) o as. Hence @s embeds S in Ct(Ct(S)), by 2.5. 

Now suppose that T is t-complete and S is a closed subspace of T . We 
use the Extremal Lemma 2.6, with u = @ T o j : 5 ^ T ^ > Ct(Ct(T)). Then 
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u embeds S in Ct(Ct(T)) as a closed subspace and j * * o @s = u. So by 2.6, 

S = @S(S) is closed in Ct(Ct(S)). In short, S is t-complete. 
To obtain the rest of (b), we could rely on 4.4, that t c m is reflective in tcv, 

and hence, productive. Alternatively, we use 2.8: for each v in an index set T , 
let Sv be t-complete, let Tv = Ct(Ct(Sv)) , and let @v: Sv <--* Tv be the carrier. 
Next, let pv: S —> Sv and qv: T —> Tv denote the projections. As usual, the 
commutation laws @v o pv = qv o e = pv** o @s hold, for all v. Now as the 
diagram 

Ct(Ct(S)) 

commutes, the universal property of the product T provides the arrow I such 
that qv o I — p^**, for all v. So qv o I o @s — pv** o @s = qv o e, for all v. 
Hence10) e = I o @s. By part (a) - and by the Embedding Lemma 2.5 as well 
- @s embeds S into Ct(Ct(S)). So by 2.8, 3.2, and the Extremal Lemma 2.6, 
as the image of S is closed in T , it is closed in Ct(Ct(S)) as well. In short, S 
is t-complete. • 

The Cartesian version of the Fric-Kent Permanence Theorem in [FK] follows 
directly from this. In our context, as $ need not be hereditary, we must take 
care with subspaces: 

• a subspace or product in cv of ^-embedded spaces is i-embedded if and 
only if it is a ?/-space, and 

• a closed subspace or product in cv of t-complete spaces is t-complete 
if and only if it is a t/-space. 

Note: two of the results in this section (3.1 and 3.5) are always true; 3.3 (a), 3.6, 
3.7 and 3.8 (a) are true even if the base B is just a i/-space; and the other parts 
of 3.3 and 3.8 are true if the base is a Hausdorff $-space. 

§4. Ex tens ions a n d envelopes 

For any i?-space .Z, we define its t-envelope Et(Z) to be the topological 
closure11^ of Z in Ct(Ct(Z)). Working in tcv, we regard Et(Z) as a subspace 
of Ct(Ct(Z)) . As before, we obtain the arrow ez' Z —> Et(Z) by factoring the 

1 0 ' O n e can "cancel the projections" qv collectively, as they form a mono-source [AHS]. 
n ) Though the topological modifier r reflects c v k onto the category of topological spaces, 
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carrier @: Z —• Ct(Ct(Z)) through Et(Z). Clearly, Z is /-complete if and only 
if ez makes Z and Et(Z) homeomorphic, while Et(Z) is /-complete for all 
Z G t c v , as a closed subspace of the /-complete space Ct(Ct(Z)). 

For the base R, the results in [FK] may establish the /-enveloper Et as a 
completion functor. We confirm this below, for all our bases. Our discussion 
includes extensions of maps as well as spaces. Take a subcategory sb of cv. We 
call an arrow i: Z —> / in cv epic over sb if for any space W G sb and any 
arrows p, q: I —» W, if poi = qo i, then p = q. 

4 . 1 . Let i: Z —> I in tcv . Then 

(a) i is epic over sb if and only if i* : (7(7, W) —» C(Z, W) is infective, 
for all H ^ G s b , and 

(b) i is epic over t e m if and only if it is epic over t c m . 

P r o o f . 

(a) Let Ŵ  E s b , and let p, q G C(I,W). By definition, i*(p) = poi and 
i*(q) = q°i- Suppose i* is injective. Then poi = qoi implies i*(p) = i*(q), and 
in turn, this implies p = q. So i is epic over sb . The converse is just as easy. 

(b) One direction is trivial. So, suppose i is epic over tcm. Take a /-embedded 
space W and arrows p,q: I —* W such that poi = qoi. Then ew°P and ew°q 
are both arrows from I to the /-complete space Et(W), and ew°p°i = ew°q°i-
So ew °P = e>w ° 9- So p = q, as e^y is injective - after all, @vV embeds W in 
C*(Ct(W0) # i n short, i is epic over t e m . • 

So, we call an arrow t-epic if it is epic over t e m (or equivalently, over t c m ) . 
Further, we call it weakly epic if its image is topologically dense. 

4 .2. Each weakly epic arrow is t-epic. For each t-epic arrow i: Z —> I, the map 
i*: C(I) —» C(Z) is injective. For each $-space Z . the arrow ez is weakly epic 
and e*z: Ct(Et(Z)) —* Ct(Z) is a homeomorphism. 

P r o o f . First, let i(Z) be dense in r i , let W be /-embedded, and let 
poi = qoi: Z -^ I —> W. In topology, each arrow with dense image is epic over 
the category of Hausdorff spaces. So, apply the topological modifier, note that 
TW is Hausdorff, by 3.2, and conclude: p = q. 

The second claim follows from 4.1. Finally, take a $-space Z. Since Z is 
topologically dense in Et(Z), the arrow ez is /-epic and ez* is injective, by 
4.1. So by 3.4, ez* is a homeomorphism. • 

it is not a hereditary reflector. However, if X is open or closed in Y, then TX is a subspace 
of TY. In particular, Z is topologically dense in Et(Z): to prove this, take X = Et(Z) and 
Y = Ct(Ct(Z)). 
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4.3. T H E F R I C - K E N T E X T E N S I O N T H E O R E M . Each arrow f: X -> Y 
in cv induces exactly one arrow Et(f): Et(X) —> Et(Y) such that ey o f = 
Et(f)oex. 

P r o o f . We follow the proof in [FK]. By 3.5, the outer trapezium commutes. 

ex 

'* / Et(X)^lEt(Y) 

Ct{Ct(X)) 
f" 

Ct{Ct(Y)) 

Because /**: TCt(Ct(X)) —» TCt(Ct(Y)) is continuous, it maps Et(X) into 
Et(Y). Thus the restriction of /** to Et(X) is an arrow Et(f) making the 
inner square commute. It is unique, because ex is weakly epic. • 

4.4. THEOREM. The t-enveloper Et reflects tcv onto tcm. 

P r o o f . Take a $-space Z, a t-complete space C, and an arrow / : Z —> C. 
As we noted above, Et(Z) is t-complete. By assumption, ec' C —> Et(C) is a 
homeomorphism. Let h be its inverse, and let e(f) = h o Et(f). Then / = 
£( / ) ° ez , because by 4.3, ec o / = Et(f) o ez. Because ez is weakly epic, there 
is exactly one such arrow. In short, Et has the universal property of a reflector. 

• 
Given arrows i: Z —> I and j : Z —> J , we call i and j equivalent if j = h o i 

for some homeomorphism h: I —> J , and we write z -< j ii j — h o i for some 
arrow h: I —> J. Obviously, 

(a) if i -< j and j -< k, then i <k, and 
(b) if z and j are equivalent, then i -< j and i y j . 

Sometimes, we can do better. 

4 .5 . Le£ I and J be t-embedded, and let i: Z —> I and j : Z —> J be t-epic. 
Then i and j are equivalent if and only if' i -< j and i >- j . 

P r o o f . Suppose i -< j and i y j . Choose j : I —• J and 1: J —> I such 
that j = joi and i = zo j . Let p = zoj and r/ = id/ . Now poi = loj = i = r/oi. 
Hence zoJ = id/ , because z is t-epic. Similarly, j o z = i d j . In short, z makes z 
and j equivalent. • 

Next, given a i?-space Z and an arrow z: z i—>• @(z) from Z to a subspace 7 
of Et(Z), we call z a standard extension of Z if it is t-epic. Clearly, a^ and e# 

183 



MARK SCHRODER 

are standard extensions of Z , but there may be others. More generally, we call 
an arrow i from Z to a ^-embedded space J a t-extension of Z if it is i-epic 
and i -< ez. In fact, this extra generality is more apparent than real, as each 
t-extension i has a standard counterpart 2 - see 4.7 (iv) below. Meanwhile, we 
record the universal description. 

4.6. An arrow i: Z —> J in t c v is a t-extension if and only if for each t-complete 
space C and each arrow g: Z —» C, exactly one arrow g: I —» C makes g = goi. 

P r o o f . Suppose i: Z —• J is a t-extension, with ez — hoi. Take a 
t-complete space C , an arrow g: Z —> C in cv, and its universal extension 
e(g):Et(Z)-+C. 

Put 9 = 5(9) o /i, and calculate: g o i = e(g) o ez = 9, as desired. Uniqueness 
follows, because i is t-epic. 

Conversely, let i have the given property. Then ez: Z —> Et(Z) has an 
extension h = ~ez: I —> Et(Z) such that ez — hoi. Thus i -< e^ . Next, take 
a ^-embedded space VV and arrows p, 9: J —> W, such that p o i — qo i = f ̂  
say. Let 9 = epy o / : Z —* £^(VV), a i-complete space. Then there is exactly 
one arrow g: I —> Et(W) making 9 = 9 o i. Now e\y ° P also has this property: 
9 = evV opoi. So 9 = evV ° p , and similarly, 9 = ew ° 9- So p = 9, as desired, 
because e ^ is injective. • 

4.7. FACTS. For any d-space Z and any t-extension i: Z —> J , 

(i) a^ -< i (and by definition, i -< ez), 
(ii) i*: Ct(I) —> Ct(Z) is a homeomorphism, 

(hi) Et(Z) and Et(I) are homeomorphic, 
(iv) i is equivalent to a standard extension 1: Z —* Ei, 
(v) J5U

 c—> JSV i/ and on/y ifu^v, for all t-extensions u and v of Z, 
(vi) i is minimal under -< i/ and on/y i/ J?; = At(Z), and 

(vii) i is maximal under -< if and only if I is t-complete, if and only if 
Ei = Et(Z). 

P r o o f . 

(i) By the universal property 3.7, i — a(i) o az, and so az •< i-
(ii) By 4.1, i*: Ct(I) —* Ct(Z) is injective. As i -< ez, there is an arrow 

h: I —> Et(Z) o ch that (a) ez = hoi. As i is i-epic, there is exactly one such 

184 



ARROWS IN THE "FINITE PRODUCT THEOREM FOR CERTAIN EPIREFLECTIONS" . . . 

arrow - call it hi. Combine hi with the inclusion Et(Z) —> Ct(Ct(Z)) to form 
the arrow j : I -> Ct (Ct(Z)) . Clearly, @ = j o i. So by 3.4, i*: Ct(I) -> Ct(Z) 
is a homeomorphism. 

(iii) By the universal property 4.4, the arrow h = hi of (ii) induces the arrow 
e(h) from Et(I) to the 1-complete space Et(Z) such that (b) h = e(h)oei. On 
the other hand, consider the commuting diagram 

Et(Z)^Et(I) 

and note that Et(i) o h o i = Et(i) o ez = ej o i. Thus (c) Et(i) o h = e j , as i is 
t-epic Put (b) and (c) together: ej = Et(i) o e(h) o e / . So as ej is weakly epic, 
Et(i) o e(h) is the identity on Et(I). Similarly, e(h) o I?t(z) is the identity on 
Et(Z), because by (a) in part (ii) above, 

e(h) o Et(i) o ez — e(h) o ei oi = hoi = ez 

and ez is weakly epic. In short, as e(h) and Et(i) invert one another, they make 
Et(Z) and Et(I) homeomorphic 

(iv) With the same data, hi = h = e(h)oei = (Et(i)) oeL, say. This formula 
does three things: it emphasizes the unique dependence of h on i; it displays 
h: I —> Et(Z) as an embedding; and it shows the existence and uniqueness of 
the standard extension i equivalent to i (namely, i: Z —> E{ = h{(I) °-> Et(Z)). 

(v) Clearly, if Eu C Ev, then u -< v. Conversely, let v = kou: Z —> V. Form 
the embeddings hu and hv as above. Then hv o k = hu, because hv o k o u = 
hvov = ez ~huou and u is £-epic So Eu = hu(U) = hv(k(U)) C hv(V) = Ev. 

(vi) Clearly, At(Z) is the smallest standard extension. Suppose i is minimal 
among ^-extensions. Then so is its standard counterpart ^ , by (v). On the 
other hand, as At(Z) C E{ in all cases, At(Z) = Ei. 

(vii) Trivially, i -< et o i. So, if i is maximal, then by 4.5, there is a homeo
morphism h: I —> Et(I) such that ei o i = ho i. Now cancel the arrow i, as it 
is i-epic So as et is a homeomorphism, / is t-complete. 

Next, suppose I is i-complete. Consider the arrow discussed in (ii) and (iii), 
h = e(h) o ei. Because e(h) and eL are both homeomorphisms, Ei = h(I) = 
e(h)(Et(I)) = Et(Z). Finally, if E{ = Et(Z), then i is maximal, by (v). • 

One can extend 4.7(h): first, i*: C(7, W) —> C(Z,W) is bijective, for each 
^-extension i and each ^-complete space VV, by 4.1 and 4.6. Later, under mild 
conditions on t/, we find that i*: Ct(I,W) —• Ct(Z,W) is a homeomorphism. 
Next, we show that 4.7 (ii) characterizes t-extensions among weakly epic arrows. 
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4.8 . Take a t-space Z, a t-embedded space I, and a weakly epic arrow i: Z —> I 
such that z* is a homeomorphism. Then i is a t-extension. 

P r o o f . By 4.2, i is t-epic. Clearly, z**: Ct(Ct(Z)) -> Ct(Ct(I)) is a home
omorphism. Let g be the inverse of z** , and let J = i(Z). By 3.5, @z = go@joi. 
Since g o @j is continuous and I = J, the closure of J in r / , 

go@I(I)=go@I(j)cgo@I (i(Z)) = @Z(Z) = E(Z), 

the closure of @Z(Z) in rCt(Ct(Z)) . Similarly, 

g(E(I)) = g(@I(I) )cgo @t(I) c E(Z) = E(Z), 

because E(Z) is closed. So, Et(i): Et(Z) —> £^(7) is a homeomorphism. Let 50 
stand for its inverse. Now, ez = 3 o ° e / o i , since Et(i) o ez = ej o i by 4.3. In 
other words, i -< ez • • 

§5. The F r ic -Ken t P r o d u c t T h e o r e m 

Here we prove this theorem without relying on the minute calculations in 
[FK]. In doing so, we use only the usual Cartesian product x : the product VI 
in t c v does not appear again until the next section. As before, we write S >T 
when the inclusion from S to T is continuous. 

5 .1 . Let Ct(Z,W) x Z be a ti-space. Then Ct(Z^W) = Ct(Z,W). 

P r o o f. As Z is a tf-space, by 2.7, C(Z, $W) = C(Z, W), by 2.1. Clearly, 

(a) Ct(Z,dW)>Ct(Z,W). 

Conversely, $ lifts the evaluation arrow cO: CC(Z, W) x Z —> W from cv to tcv; 
in other words, u: $(CC(Z,W) x Z) -> $W in t cv . Now d{Cc(Z,W) x Z) = 
Ct(Z, W) x Z , as the latter is a #-space. In short, cO: Ct(Z, W) x Z —> LW is con
tinuous. So by definition of continuous convergence, id: Ct(Z,W) —> CC(Z^W) 
in cv. Hence 

(b) Ot(Z,W)>Ot(Z,tfW). 

Together, (a) and (b) complete the proof. • 

5.2. Suppose X is a d-space, i: X —> / is a t-extension, and Ct(Y,Cc(X)) xY 
is a 'd-space. Then (i x idy)*: Ct(I x Y) —> C t (X x 7 ) Z5 a homeomorphism. 
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P r o o f . Consider the diagram sketched below: 

Ct(IxY) j±-^Ct(XxY) 

Ct(Y,Cc(I)) -2^Ct(Y,Cc(X)) 
A A 

idi id2 

Ct(Y,Ct(I)) -Jl+Ct(Y,Ct(X)) 

In the top half, the vertical arrows are conversions and as such, they are home-
omorphisms (both before and after coreflection), while ji = (i x idy)* and 
J2 = (^*)* are both continuous. Moreover, the top half commutes. The bottom 
half commutes too, because the vertical arrows are identity maps and because 
J2 = ( O * = J3- Now 

id2 is a homeomorphism, by 5.1, 
i*: Ct(I) —> Ct(X) is a homeomorphism, by 4.7, and hence 
js is a homeomorphism. 

As a result, idi and J2 are both homeomorphisms. Thus, back in the top half, 
ji is a homeomorphism, as desired. • 

Our version of the Fric-Kent Product Theorem improves the original one 
in three ways: it applies to weakly epic ^-extensions as well as ^-envelopes (a 
minor matter, as the proof shows), the base may be any topologically Hausdorff 
i9-space, and heredity is not needed at all. However, we still need some kind 
of productivity: we call $ finitely productive on a subcategory sb of cv if the 
Cartesian product dX x $Y is a i/-space, for all spaces X and Y in sb. By 2.7, 
d is finitely productive on t c v if and only if t cv is closed under finite Cartesian 
products; by the Fric-Kent Permanence Theorem, $ is finitely productive on 
te rn (or on t c m ) if t e m (or t c m ) is closed under finite Cartesian products. 

The identifier i is productive on cvk; the discrete modifier <5, the sequential 
modifier ?/>, the antisequential modifier w, and the local compactifier K are 
finitely productive too. 

5.3. THEOREM. Let d be finitely productive on t e m , and let X,Y e t e m . Let 
i: X —> I and j : Y —> J be weakly epic t-extensions. Then ixj: X xY —> Ix J 
is a weakly epic t-extension. 

P r o o f . Clearly, i x j -< ex x ey , since i < ex a n d j -< ey . Next, ixj 
is weakly epic, as the image of X x Y is topologically dense12) in I x J. To 

1 2 IThis innocent fact deserves some comment. The topological modifier r is not finitely 
productive - in other words, T(U X V) can have a strictly finer topology than TU x TV . Despite 
this, the closure of any box A x B in T(U x V) coincides with its closure in TU x TV. 
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conclude, we must show that i x j -< ez, where Z = X x Y. We do better, we 
show that ex x e y ^ ( e ^ . 

By 4.7 (iv), we can work with standard extensions. So, we assume I = Et(X) 
and i = ex, and J = Et(Y) and j = ey . Let K = I x J, and k = i x j . 
Together, finite productivity and the Permanence Theorem 3.8 ensure that Z is 
^-embedded and that K is t-complete. We aim to show k*: Ct(K) <—> Ct(Z) 
and then, to compare k with ez. 

Under conversion, CC(Z) = CC(X x Y) <—• CC(X,CC(Y)). By 3.3, Ct(Z) 
is ^-complete, because Z is a t/-space. Hence Ct(X, CC(Y)) is also t-complete. 
This makes Ct (X, CC(Y)) x X a ^-embedded space. So by a mirror version of 5.2, 
( id x x j ) * : Ct(X xJ)<—> Ct(X x Y), and (i x idj)* : Ct(I x J) <—• C t (X x J ) , 
by 5.2 itself. As the composite of these homeomorphisms, fc* makes Ct(I x J) 
and Ct(X x Y) homeomorphic 

So by 4.8, k: Z —> K is a ^-extension, and in particular, k -< e^ . Now as 
7 and J are ^-complete, so is their Cartesian product K = I x J. By 4.4, 
k: Z —+ K has an extension e(k): Et(Z) —> K such that k = e(k) o e^ , and 
this equation ensures ez -< k. So by 4.5, e^ and fc are equivalent. (We really do 
not need 4.5, because we can give a more explicit formula: the homeomorphism 
e(k) = ( e ^ ) - 1 o Et(k) makes ez and k equivalent.) • 

5.4. COROLLARY - THE FRIC-KENT PRODUCT THEOREM. Let ti be 
finitely productive on tern. Then the t-enveloper Et is finitely productive on 
tern too - more precisely, the universal extension of the embedding ex x ey from 
XxY into Et(X)xEt(Y) makes Et(XxY) and Et(X)xEt(Y) homeomorphic. 

§6. C losu re 

The assumptions in the previous section seem quite artificial - and one might 
suspect that they only betray mathematical incompetence. However, they do 
have some significance: they help make tcv , t e m and t c m Cartesian closed. 

6 . 1 . THEOREM. For any coreflector ft, the following are equivalent: 

(i) d is finitely productive on tcv . 
(ii) t c v is closed under finite Cartesian products. 

(iii) Ct(X, Y)xX Gtcv, for all X, Y G t c v . 
(iv) Ct(—,—) makes t c v Cartesian-closed. 

P r o o f . We noted some of this earlier: by 2.7, (ii) =-> (i). Trivially, 
(i) => (ii) -=--> (iii). To close the cycle, (iii) => (ii), since Y x X is a 
retract of Ct(X,Y) xX. 

Next, recall the two distinct products, l~l in t c v and x in cv. Conversion 
offers a clean proof of (ii) => (iv). For all W, X, Y in t cv , 

g:W-+Ct(X,Y) in tcv , 
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£: W->Cc(X,Y) incv, 
g: W x X —» Y in cv, after conversion, 

g:W\lX^Y in tcv. 

This half of the conversion law is free: for the other half, 

/ : WHX^Y i n t c v , 
/ : W x X -* Y in cv because, by (ii), WnX = WxX, 
f_:W—> CC(X,Y) in cv, after conversion, 
/ : W -* C7t(-X",y) in t cv , because VV E t c v . 

In short, t c v upholds conversion. Finally, consider (iv) ==--> (ii). For all X, Y, 
Z in t cv , 

h: XHY ~> Z in t cv , 
fc: X -* Ct(Y, Z) in t cv , by (iv), 
h: X -+CC(Y,Z) i n c v , 
/ i : I x F ^ Z i n c v . 

In particular, the choice Z = XUY and h = i&z implies id^: X xY -^ Xr\Y 
in cv. Hence (ii) holds: XnY = X xY. D 

The function space CC(X, Y) inherits c-embeddedness from Y: let us inves
tigate this more generally, for ^-embedded and ^-complete spaces. Suppose i? is 
finitely productive on t cv . In this situation, we could use [AHS; Theorem 27.9]: 
the reflective subcategories t e rn and t c m of t c v would inherit its Cartesian-
closedness if the reflectors At and Et were finitely productive too. However, I 
can see no way of using the finite productivity of i? to establish finite produc
tivity for At or Et (indeed, I have my doubts, except perhaps when the base 
is the real line R) . This leaves us little choice: we must find out when te rn and 
t c m are Cartesian-closed directly. The key to this is a ^-counterpart of 1.7. 

6.2. THE C t-EMBEDDING THEOREM. Let j embed W in Z in t cv . 

(a) Suppose t c v is closed under finite Cartesian products. Then j * embeds 
Ct(Y,W) in Ct(Y,Z), for all $-spaces Y. 

(b) Suppose Z is t-embedded, and t e m is closed under finite Cartesian 
products. Then j * embeds Ct(Y,W) in Ct(Y,Z), for all Y G t e m . 

P r o o f . We deal with (b), the case of interest here, but one can derive (a) 
in much the same way. As before, we use the universal property of subspaces. 
Take t-embedded spaces H and Y, and a map h: H —> C(Y,W) such that 
j+ o h = k: H —* Ct(Y, Z) is continuous. Then just as in 1.7, h: H x Y —> W is 
continuous, since k = j o h. Now HxY = HnY, by assumption. Hence as in 
the proof of 6.1, h: H —> Ct(Y, W) is continuous. In short, J* is an embedding 
in t e m (and in t c v too), as claimed. D 
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6.3. THEOREM. The coreflector ft is finitely productive on tern if and only 
if t e m is closed under finite Cartesian products, if and only if Ct(~ , —) makes 
t e m Cartesian-closed. 

P r o o f . As the proof of 6.1 shows, if t e m is Cartesian-closed, then the 
products in t e m and in cv coincide: in other words, t e m is closed under finite 
Cartesian products. Conversely, suppose t e m is closed under finite Cartesian 
products. Then one deduces the conversion laws as in 6.1, but they do not imply 
that the function space is ^-embedded. 

To prove this, take ^-embedded spaces X and Y, and let T be the t-complete 
space Ct(Y). Then by 3.3, Ct(X x T) is ^-complete, a s I x T G t e m . Similarly, 
Ct(XxT)xX is ^-embedded. So on conversion, Ct(X, CC(T)) x l G t c v . Thus 
by 5.1, Ct(X,Ct(T)) <—> Ct(X,Cc(T)) <—• Ct(X xT). Now let j = @Y : Y <-• 
Ct(T). By 6.2, j * embeds Ct(X,Y) in Ct(X,Ct(T)) in tcv . In short, Ct(X,Y) 
is t-embedded. • 

This theorem almost applies to ^-completeness. Suppose the coreflector i? is 
finitely productive on t em. Then by the Fric-Kent Product Theorem, the reflec
tor Et is finitely productive on t em, up to homeomorphism. This differs from 
the finite productivity required in [AHS; Theorem 27.9], but one could probably 
extend that theorem to cover the situation. If so, then we could conclude that 
Ct(— , —) makes t e m Cartesian-closed. However, we can get a better result by 
repeating the proof of 6.2, using both parts of 1.7. 

6.4. THEOREM. The coreflector d is finitely productive on t e m if and only 
if t e m is closed under finite Cartesian products, if and only if Ct(— , —) makes 
t e m Cartesian-closed. 

In short, the conditions for the product theorem in [FK] are exactly those that 
determine when t e m and t e m are Cartesian-closed. Several questions remain: 

• are our results about weakly epic ^-extensions true, without this side 
condition; can one find a t-epic arrow that is not weakly epic; 

• can one find a (hereditary) coreflector that is not finitely productive; 
if so, are t c v and/or t e m Cartesian-closed; and 

• do the main results of [FK] follow from Cartesian-closure? 

The point is simple: if t c v is Cartesian-closed (with its own products and sub-
spaces), then its function spaces might carry a coarser convergence than the one 
handled here. This would make it harder to link the theory with the familiar 
c-theory. 
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