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A NOTE ON CATEGORIES OF
PARTIAL ALGEBRAS

IVAN ZEMBERY

Throughout the paper we shall consider partial algebras of a certain type t. Four
kinds of homomorphisms of partial algebras are defined in [2]:

Firstly, a homomorphism ¢: 2A— B between partial algebras U and 9B is a map
@: A — B such that, if f* (ay, ..., a,) is defined in %, then

@) ® (a9, ..., a.@) is defined in B;

Gi) " (@i, ... @)@ =f2 (a1@, ..., a.Q).

Here f* and f® denote the corresponding partial operations in 2 and B,
respectively. If f is a nullary operation then we interpret this as follows: If f(@) is
defined, so is f°(@), and (f*(9))p =f(9).

Secondly, a full homomorphism is a homomorphism @: %— B such that f*(a,,
..., @,@) = a@ implies that there exist b, by, ..., b, € A with f*(b,, ..., b,)=b and
bp=ag, .., bp=a.p, bp=ap.

Thirdly, a p-morphism (partial morphism) ¢: A—B is a partial function @:
A — B (not necessarily defined on the whole A) such that if f®(a,@, ..., a,@) is
defined, then

(i) a=f"(ay, ..., a,) is defined;
(ii) aeD(p);

(iii) (a9, ..., a.@)=ap.

Here D(g) is the domain of ¢. For nullary partial operations we interpret the
above to mean that if f° is defined, so is ™ and (f*(@))@ =f2(0).

Finally, a strong homomorphism is a map which is both a homomorphism and
a p-morphism.

Therefore the following four kinds of categories of partial algebras can be
considered: All partial algebras of type 7 together with all homomorphisms, full
, homomorphisms, strong homomorphisms or p-morphisms form the category 2,
the full category %, the strong category & and the p-category, respectively, of all
partial algebras of type .

The category % obviously has some nice properties: it is complete and
cocomplete, the monomorphisms coincide with the injective morphisms. Moreov-
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er, on any set there is a free algebra. The behaviour of the others in this respect may
be of some interest. Here is a report on some observations:

In the categories &% and & every morphism is a monomorphism if and only if it is
injective. In the p-category every monomorphism is injective but not every
injective p-morphism is a monomorphism. In the & and p-categories every
morphism is an epimorphism if and only if it is surjective. In the category & every
morphism @: A— B is an epimorphism if and only if 8 = Im*@, where Im*@ is the
smallest subalgebra of B containing Im¢.

The categories &, & and the p-category are closed with respect to products and
contain free algebras on arbitrary sets if and only if the type t is the empty
sequence. The category & is closed with respect to coproducts if and only if the
type t is the empty sequence or T = (0). The category & is closed with respect to
coproducts if and only if there are just unary operations or the type t is the empty
sequence and the p-category is closed with respect to coproducts if and only if there
are no nullary operations.
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3AMETKA O KATETOPUSAX YACTHUYHBIX AJITEBP
HBan XKembGepbl
Pesome
B craTbe npuBENEHbI HEKOTOPblE OCHOBHbIE CBOWCTBA YETLIPEX COPTOB KAaTErOPHMA HaCTHYHBIX
anre6p COOTBETCTBYIOLIMX YETBIPEM COPTaM rOMOMOPN(H3IMOB YaCTHYHBIX anre6p. ITH CBOHCTBA

KacaloTcsl CYLECTBOBAHMIA CBOOOAHBIX anre6p, MpsAMbIX M CBOGOJHBIX NMPOM3BENCHUH U OCHOBHBIX
CBOWCTB MOHOMOP(H3MOB H 3MHMOP(PHU3MOB.
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