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INTEGRAL EQUIVALENCE BETWEEN 
A NONLINEAR SYSTEM AND ITS 

NONLINEAR PERTURBATION 

ALEXANDER HA§CAK 

In the present paper we consider differential systems of the forms 

(a) jc' = A( t , jc ) + B( t , JC) 

(b) y' = A( t ,y), 

where JC, y, A, B, are real-valued n-vectors, and the functions A(t, JC), B(t, x) are 
defined and continuous on IxRn, 1 = (t0, <»), t0^0, Rn is the space of all real 
n-vectors. The paper [3] deals with the property of L2-boundedness for solutions of 
ordinary differential equations. More specifically: there are determined some 
conditions under which all solutions of a perturbed linear differential equation 
belong to L2(0, +<») assuming the fact that all solutions of the unperturbed 
equation posses the same property. Our objective here is to give a more general 
concept. The problem we deal with in this paper is the integral equivalence of two 
systems (a) and (b). It is easy to see that if the two systems (a) and (b) are 
(1, p)-integrally equivalent (see Definition 1.) and some solution y(t) of (b) is 
Lp-bounded, then the corresponding solution jc(t) of (a) is also Lp-bounded, and 
conversely. On the other hand, two systems (a) and (b) may be (1, p)-integrally 
equivalent although no solution of either of them is Lp-bounded. 

Definition 1. Let \p(t) be a positive continuous function on the interval 
(to, +00) and let p>0. We say that the systems (a) and (b) are (i//, pyintegrally 
equivalent iff to each solution x(t) of (a) there exists a solution y(t) of (b) such that 

(c) tp-l(t)\x(t)-y(t)\eL'(t0,+«>), 

and conversely, to each solution y(t) of (b) there exists a solution x(t) of (a) such 
that (c) holds. 

In [2] this problem is considered for special systems 

A ( t , Jc) = A( t) jc. 

This problem is solved here for general nonlinear systems (a) and (b), although the 
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case A(t, x) = Ax where A is a constant nXn matrix is not contained in our 
results, due to the fact that our hypotheses always require some kind of smallness of 
the vector A(t, JC) or A(t, y + v ) - A(t, y). 

All functions considered throughout the paper will be continuous on their 
domains and the function A(t, JC) smooth enough to guarantee the existence of 
a solution y(f), t 6 Iy of (b) which, unless otherwise stated, will be fixed. Let B(a) 
be the Banach space of all bounded and continuous Rn-valued functions on 
(a, +00) with the norm |/|u=sup |/(t)| where, for xeRn, |jc|=sup |*i|. 

<L3*a 

Definition 2. The sequence fneB(a) q-converges to feB(a) if lim | /„( t)-
n—>oo 

f(t)\ =0 for every te(a, +00). This will be denoted by /„->/. 

Definition 3. A set MczB(a) is said to be uniformly bounded if \f\B^K for 
every feM, where K is some positive constant 

Definition 4. A set MciB(a) is said to be equicontinuous if for every e>0 
there exists d(e)>0 such that / e M , t', t"^a and | t ' - t"|<<5(e) imply 
\f(t')-f(t")\<e. 

We shall need the following results in our considerations: 

Lemma 1. Let g(t)^Qbea continuous function on 0 ^ t < + 00 and such that 

I slg(s) d s < + oo, p ^ l . 
Then Jo 

c °° 

g(s)dseLp(0,+co), p'&p. f 
Proof. Let 0i(f)>O be a continuous function on (0, +00) such that 

9(t)^Qi(t) and f s'gt(s) ds<+<*>, pSsl. 
Jo 

It is sufficient to prove that 

J gl(s)dscLp(0, +00), p'^p. 

For p ^ l we have 

1 J si'1di(s)dsdt=jo £sl-lgl(s)dtds=rsl>g1(s)ds<+<*>. (1) 
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oo. 

l im-~ — is finite. 

We have to prove that 

1 (i Oi(s)ds^dt< + 

In view of (1) it suffices to show that 

(2) 

(J°V(*)ds) 

'~*°° J si'1 gx(s) ds 

The function 

J sp'1 gt(s) ds 

is non-negative non-increasing and by (1) 

lim I s*~l gi(s) ds=0. 
f—oo Jt 

We can use l'Hospital's rule 

(r9l(s)ds)p 

O ^ l i m - ^ - - = 
»— I sJ-i fll(s) ^ 

-P0i(O( | 0i(«)ds) f - .„ - ! 

= lim H'-i / A =limp(tH 0i(*)ds) 

^limpM s'gfi(s)ds) =0 , 

J g,(s)ds€Lp(0,+oo). 

J 0i(s)ds-»O for *->•«>, 

there exists T > 0 such that 

f 0 i (s )ds<l for t>T. 

thus 

Since 
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Then for pf>p we have 

( J ffi(s)ds) < ( J Si(5)d5)P for t>T9 

which completes the proof. 
If p = 1, the present Lemma 1 reduces to Lemma 2 in [2]. 

Theorem 1. (M. Svec [1]) Suppose that NczB(a) is a non-void convex, 
q 

q-closed set and T: N-+B(a) a q-continuous operator (fm -» / , fm9fe N imply that 

lim \Tfm - T/|B =0) such that TNis a uniformly bounded and equicontinuous set 
m—*<» 

with TNczN. Then T has at least on fixed point in N. 
For r > 0 and aely we give two conditions: 
Condition G(/ , r, a). The vector D(t9 u) satisfies Condition G(/ , r, a) if there 

exists a non-negative function l(t) such that te(a9+<*) and \u\^r imply 
\D(t9u + y)\^l(t)9 yeRn 

and 

I tl'l(t)dt <+<*>. 

Condition C2(/, g9 r, a). The vector D(t9 u) satisfies condition C2(l9 g9 r, a) if 
there exist non-negative functions /, g such that 

t^a9 \u\^r9 \v\^r 
imply 

\D(t9u + y)-D(t9v + y)\^l(t)g(\u-v\)9 yeRn 

and 

[ t'/(t)dr<+oo. 

It is evident that Condition G implies Condition C2. The converse is true if 

t>\D(t9 y)\ dt<+oo for some y€JR\ 

Now we are able to prove 

г 
Theorem 2. Suppose that the vectors A(t9 u)9 B(t9 u) satisfy Condition 

G(/i, g, r, ty)9 or G(/ 2 , r, ty)9 respectively. Then for each solution y(t) of the 
system (b) there exists a solution x(t) of (a) such that 

\x(t)-y(t)\eLp(ty9+<»). 
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Proof. Let tt^ty be such that 

f"(KI,(0 + i2(0) dt^r, K= sup g(\u\). 
Jt\ |u|<2r 

Then the operator 
T: Sr^B(t1)(Sr^{feB(t1): \f\B^r) 

defined by 

(Tf)(t)=-j\A(s,f(s) + y(s))-A(s,y(s)))ds-

-j' B(s,f(s) + y(s))ds 

is well defined because of 

J"°° |A(s9 f(s) + y(s)) - A(s9 y(s))\ ds + J" \B(s9 f(s) + y(s)\ ds 

^T (Kh(t) + l2(t))dt^r<+oo. 
)t\ 

By the standard method it is easy to show that all hypotheses of Theorem 1 are 
satisfied. Thus T has at least one fixed point in Sr. This fixed point v(t) has the 
property that the function 

x(t) = v(t) + y(t) 

satisfies (a). Therefore we have to prove that 
(3) \v(t)\eL'(tl9+co). 

Using Minkowski's inequality we obtain 

£ KOI" dtf** 

*Kf (f,A(*' v^+y^~ A(°> y(j))i d*)'d')' 
+ ( f (f |B(*' v ( s ) + y ( s ) ) i ds)"dtY^ 

^([(j'h(s)g(\v(s)\)dsydtf+ 

+([(j;i2(s)ds)pdtf* 

397 



(í(f ,* ) d s)' d ,) i-+ 
\jti 

By the assumptions of the theorem and Lemma 1 we get (3). The proof of the 
theorem is complete. 

Theorem 3. Suppose the functions A(t9 u)9 B(t9 u) satisfy Condition 
C2(l\9 i9 r, ty)9 C2(/2, i, r, ty)9 where i is the identity function on R+ = (0, + 0 0 ) , 
respectively. Moreover, assume that 

ľ|в(í>y(0l 
Jtv 

d t< + °°. 

Then the solution whose existence is ensured by Theorem 2 is unique. 
Proof. It is easy to verify that the operator T in this case is a strict contraction 

mapping. 

Theorem 4. Suppose that x(t)9 telx = (tX9 +°°) is a fixed solution of (a) and 
that A(t9u) satisfies Condition C2(h9 flf- r9 tx) with y(t) replaced by x(t) 
throughout. Moreover, assume that 

{~ txp\B(t9x(t))\dt< + «>. 

Then there exists a solution y(t) of (b) such that 

\x(t)-y(t)\eLp(tX9+°o). 

Proof. We consider now the operator T: Sr-»B(ti) such that 

(Tf)(t) = -J~ (A(s 9 f(s) + x(s)) - A(s9 x(s))) ds 

- [ B(s9 x(s)ds 

and the proof follows as in Theorem 2. 
Previous Theorems imply the following theorem and corollary: 

Theorem 5. Assume that 

!A(^«) -A(^t l ) |^ l , ( l ) |u - t ; | , |M|, !„!<+«, and f€<t , ,+«) 
|B(t, u)-B(t,v)\^l2(t)\u-v\ 
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where 
* 00 m 00 

I t*/,(t)dt<+«>, tl>l2(t)dt<+°°, 
Jto Jto 

\ t-|B(t,0)|df<+oo. 
Jto 

Then between the set of bounded solutions of the system (a) and that of (b) there is 
a (1, p)-integral equivalence. 

Corollary 1. Consider the system 

(a2) jc' = B ( t , j c ) + Q ( t ) , 

where Q(t) is a continuous vector-valued function defined on I and B(t, u) 
satisfies Condition G(/i, r, to) for every function 

y(t) = d+ľ Q(s)ds, 
JtO 

where d is an n-vector. Then for every n-vector d there exists a solution x(t) of (a2) 
such that 

c(t)-(d + ľ Q(s)ds}\єLp(t0, +oo). 

Consider now the following n-th order equations 

(a3) x(n> = A(t, x, x',..., rf-") + B(t, x, x',..., x(a~l)) 

(b3) y™ = A(t,y,y', ...,y<-1>) 

where A, B are real-valued functions defined and continuous on IxR", 7= 
(to, + » ) , f02*0. 

Theorem 6. Suppose that the function A(t, u) satisfies the Lipschitz-like 
condition 

\A(t, xt,x2,..., xn)-A(t, yu y2,..., yn)\ 

*s£MO0.(l*-y|) , 

for any x,yeR" with \x — y| s£r (r is some positive constant), where 

f " t" - 1 + ^( r )d t<+oo for i = 1,2,...,«. 
Jto 
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Assume also that for any solution y(t) of (p>\ any vector v e Rn with \v\ *S r and 
any tely we have 

\B(t,y + Vl,y' + V2,...,f
n-l) + vn)\^L(t), 

r tn-i+i>L(t) &<+<*>. 
Jly 

Then for every solution y(t) of (b3) there is a solution x(t) of (a3) with the property 

\xw(t)-yii\t)\eLp'(t0, +00), i = 0, l,...,n-l; 

p'^p. 

Proof. Let 

.j, _*(*-!>(,) _ y (*-D(,) for k = l,..., n 

and 

B0(t,v(t)) = 

= A(t,y + Vl(t), ...,y(n-» + vn(t))-A(t, y,..., yCn~1}) + 

+ B(t,y + Vl(t), ...,y("-n + vn(t)). 

Then it suffices to prove that the system 

Vl=~[((n-)l)\Bo(Sf V(S)) ds = Bl(t> V) 

V 2 = ~ [ ((n~-2)T Bo(s' V($)) dS = B2(t' w)-

vn = - f B0(s, v(s)) ds«- Bn(t, v) 

has a solution v(t)eLp'(t09 + « ) . 
Theorems 2—4 can be extendedd to n-th order systems if all of the integral 

conditions considered are replaced by those having integrands multiplied by 

f-i+x>. 

In this case one would have to replace B(d) by Banach space Bn^(a) of all 
(n - l)-times continuously differentiable functions with bounded derivatives and 
with the norm 

l/U....- mąx sup{ |Г(0 | } . 
0 « i < n — 1 # _ . я 
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We shall give some results for 2nd-order systems 

(a4) x" = A(t)x + F(t,x) 

(M y" = A(t)y 

with nxn matrix A(t) and the n-vector function F(t, x). 

Theorem 7. Let A(t) and F(t, x) satisfy the conditions 

where 

r t'iB(oi dt<+oo, r ti+i>\c(t)A(t)\ dt<+oo, 
Jty Jty 

r ť+i>Ht)dt<+o°, 
Ji, 

B(t) = f" A(s)ds 

(assumed to converge) 

C(t)=T B(s)ds 

and 
\F(t,v + y(s))\^k(t) for any veRn with \v\^r 

and for fixed solution y(t), tely = (ty, +00) of (b4). Then there exists a solution 
x(t) of the system (su) such that 

\x(t)-y(t)\eL*'(t0,+<»), p'^p. -

Proof. If we put 

v(t) = x(t)-y(t), 
then we have 

v"(t) = A(t)v(t) + F(t,v(t) + y(t)). 

Thus, we only have to prove the existence of a solution 

(4) v(t)€L"(ty,+co) 

of this equation. This can be done by considering the operator 

(Tf)(t)= - C(t)f(t) + 2f~B(s)f(s) ds 

+ f~(s-t)C(s)A(s)f(s)ds 

+ f"(s-t)(E-C(s))F(s,f(s) + y(s))ds 
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defined on the ball of bounded functions in Bi(a) with the norm ^ r for t^U (h 
some suitable number, h ̂  ty). It is easy to show that T has at least one fixed point 
v(t) in 

Sr^{feB1(tl): \fU*Zr}. 

Now we have to show (4). Since 

| C ( 0 l ^ f |B(s) |ds->0 as t-* + 00 

there exists t0 such that | C ( 0 | ^ 1 for f3st0. 
Then 

([\v(0\p dtf*Z3r([([\B(s)\ ds)'dí): 

+ r([([s\C(s)A(s)\dsydtf 

,([([sX(s)ds)Pdt) + 2(1 II sX(s)ds\Pdt\'<+<» 

according to Lemma 1. The proof of the theorem is completed. 

Theorem 8. Suppose that y(t), tely is a solution of the system 

y"=Q(t). 

Let A(t) and F(t, JC) satisfy the conditions 

[tHy(t)B(t)\ dt<+co, r.%(0C(0A(0l dí-
Jty Jty 

fV'A(0 
Jty 

. t<+oo 
Jty " ' Jty 

and 
Ґ °° 

dґ< + oo. 

Then there exists a solution of the system 

x" = A(t)x + F(t9x) + Q(t) 

for which we have 

\x(t)- y(t)\ eL*'(max (tx, ty\ +oo), p' ^p. 

Proof. In this case it suffices to show that the integral equation 

v(t) = -C(t)v(t) + 2[в(s)v(s)ds 
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+ f (s-t)C(s)v(s)ds 

+ JT (S - t)(J5 + C(s))(A(5)y(s) + F(s, v(s) + y(s)) ds 

has a solution v(t) which belongs to Lp'(max (tx, ty), +00), p'^p. 
Theorems 7, 8 guarantee the existence of a unique solution jc(t) if F(t, M) 

satisfies a Lipschitz condition of the form 

|F(t, u)-F(t, v)|^Ai(t)|w-i;|, u,veRn 

where 

ґ'1 + iмo dt<+oo. 

The following result deals with second order scalar equations of the forms 

(as) x" = a(t)x 
and 
(b5) y"=(a(t)+p(t))y. 
Let 

b(t) = I 0(5) ds (assumed to converge) 

and 

c(0=f b(s)ds. 

Theorem 9. Let the functions a, b, c, p satisfy the conditions 

\" t\b(t)\dt<+«>, f t1+1*\a(t)c(t)\dt<+«>, 
Jty Jh 

r ti+i'\p(t)\dt<+oo, 

where Iy = (ty, +°°) is the domain of a fixed solution y(t) of the equation (b5) such 
that 

y(t)eL"(ty, +oo). 

Then there exists a unique solution x(t) of (a5) such that 

x(t)eL"(tx,+<*>). 

Proof. Let 

(5) u(t) = x(t)-y(t) 
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be the unique solution of the differential equation 

u" = a(t)u(t)-p(t)y(t) 

such that 

u(t)eLp(max (tX9 ty), +°o). 

Now the assertion of the theorem is obtained from (5) and the Minkowski 
Inequality. 
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ИНТЕГРАЛЬНАЯ ЭКВИВАЛЕНТНОСТЬ НЕЛИНЕЙНОЙ СИСТЕМЫ 
И СИСТЕМЫ, ПОЛУЧЕННОЙ ВОЗМУЩЕНИЕМ ЕЕ 

А1ехаш1ег На§сйк 

Резюме 

В статье даются достаточные условия для (чр, р)-интегральной эквивалентности нелинейной 
системы дифференциальных уравнений и возмущенной нелинейной системы. 
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