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DECOMPOSITION THEOREMS IN MEASURE THEORY
| PETER CAPEK

In [1] T. Neubrunn suggested to formulate and prove some theorems of measure
theory in terms of ‘“‘null sets’ without using the concept of a measure.

In the present paper we study decomposition theorems from this point of view. It
appears to be a unifying approach concerning various decompositions.

The paper consists of two chapters. In the first one decomposition theorems are
formulated and proved abstractly while in the second their consequences are
presented.

Throughout the paper (X, &) will denote a measurable space with a g-ring & of
subsets of X. A subset A of X will be called locally measurable if AnE € & for all
E € &. The family of all locally measurable sets will be denoted by %,. We have:
Fc; S is a o-algebra [3, p. 35].

Let & be a family of subsets of X. In what follows the symbol “&C”’ is used in the
Ficker’s sense ([10]) and means that every family of pairwise disjoint elements
from & is at most countable (therefore ¢ &). If A =X, then we use the symbol
A | € in the Hahn’s sense ([12])i.e. A |€={E € &: EcA}. The symbol A* stands
for X — A, N denotes the set of positive integers and R, R, denote the sets of real
and rational numbers, respectively.

Some parts in the first chapter (i.e. sections 1—4) can be read independently, to read them it is
sufficient to know preliminaries. To read the sections in the second chapter (i.e. sections 5—9) it is

necessary to know preliminaries to the second chapter and then the order of possible reading is as
follows: [1, 5] (i.e. section 5 can be studied immediately after section 1) [2, 6], [3, 7], [4, 8, 9].

In June 1976 during my study stay in Brest at Prof. M™ Godet-Thobie I have reported in a seminar
most of the results appearing in the present ?aper. See [5], [6].
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I. Abstract formulation of decomposition theorems

Preliminaries

First we list some properties of a family /#f =¥ we shall work with:

) MFD
(ii) EeM, Fe¥, > EnFe
(iii) E,, E,eM > E,UE,eM

(iv) Eiedl, keN=> JEced

(v) E,, E,e M, E,ﬁE‘;==l¢ > E\UE,e M

(vi) E.edM, ke N, where E, are pairwise disjoint = CJ E.eM

(vii)) Qe .
Definition 1. A subfamily M of a o-ring & is called:

G4) hereditary in & if it satisfies (ii)

(jj)  an ideal if it satisfies (i), (ii), (iii)

(jii) a o-ideal if it satisties (i), (ii), (iv)

(jw) a generalized ideal (briefly g-ideal) if it satisfies (v), (vii)

(w)  a generalized o-ideal (briefly g-o-ideal) if it satisfies (vi), (vii)

Example 1. Let u be a measure or an outer measure on & and v a signed
measure on &, then putting £ ={Ee¥: u(E)=0}, N={Ee¥: v(E)=0}, No=
{(Ee¥: v(F)=0forall Fe E|¥} we obtain o-ideals ./, N,in & and a g-o-ideal ¥
in . '

Definition 2. Let N be a subfamily of a o-ring & and E € %,. Then the family
Ne={A €% EnA eN} is called “the contraction of the family N by E”.

Remark 1. If ¥ is hereditary then /x >N (Lemma 1) and the term “‘contrac-
tion” seems to be inconvenient. But the notation was motivated by that of the
contraction of a measure by E. For if v is a positive measure defined on & and
Ee %, then putting N={Ge¥: v(G)=0} we obtain N:={GeZ:
v(EnG)=0}.

Definition 3. Let # be a subfamily of a o-ring . Then the subfamily M,=
(EeP: E|P<M)} is called a subfamily derived from the family M.

Lemma 1. Let M, N be subfamilies of ¥ and E, Fe %,.
We have:

(a) (-/VE )F =Nenr
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(c) Na=WN
(d (M—-NC > (Mr—Ne)C

If N is a g-ideal, then we have:

(C) Nw=y
(f) Ne=N D> Ner=F
(8) Ee(¥-N), FEE|N > E-F¢N

If N is hereditary, then we have:

(k)  Ng is hereditary
) No=N

If N is an ideal, we obtain:

(m) NEUF=.NEH.N.F
(n)  Ng is an ideal
(0) FeND Ne=F o Npi=N

We omit the straightforward proof of the above Lemma. For the rest of the paper
the letters (a)—(o) will be reserved for the above stated properties.

Definition 4. Let M, N be subfamilies of ¥. Then N is said to be M-singular
(denoted N L M) if there exists A.€ My such that Nar=<.

Remark 2. It can be easily checked that if #, AN are o-ideals and & is
a o-algebra, then definition 4 agrees with Ficker’s definition of singularity of
o-ideals given in [8], (def. 15) and in [9].

1. The Lebesgue decomposition theorem

Lemma 2. Let M be a o-ideal, e N= M and (M — N)C. Then there exists
FeM with Ner= M.

Proof. If # =/ it is sufficient to put F=0. If #+ N then # —N+0 and
according to Zorn’s lemma, there exists a maximal family (F;); . of pairwise disjoint
sets from (4 —N). Since (M —N)C, (F.)ic; is at most countable and by (iv)
F = JF; € # which by (o) implies # ¢+ = /. It remains to show that . = Ng+, but

iel
with respect to (b), it sufficies to show that . = Nx-. If this were not true, there
would exist a G € (Me+— Nrt). Then we would have GNF* e (/M —N), which
contradicts the maximality of (F,);c.
Applications of this lemma and the following theorem are presented in Section 5.

Theorem 1. (The Lebesgue decomposition theorem) Let ./ be a o-ideal, de N
and let (M — N)C. Then there exists F € M such that Ng+> M and Ne L M.
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Proof. Since M — MnN =M —N and (M — N)C it follows from lemma 2 that
there exists F € # with (M NN): = M. Hence by using (b), we obtain Nz > . On
the other hand N L # because F € # = M, and by (a) and () we have (Ng)r: = &,

2. Decomposition of an ideal into atomless
and totally atomic parts and its relation to the Lebesgue theorem

The proof of the main result of this section has been inspired by Remark 3.1 in
Traynor’s paper [20].

Definition 5. For Nc ¥ we denote A(N) = (V(NeUNg:)—N. Then any

Fe?
element of (N is called an N-atom.
We remark that this concept is equivalent with the concept of an atom in [18].
The proof of the following lemma follows directly from the definition on an atom.

Lemma3. Let Nc ¥, Fe%, Ge¥. Then G e d(Ny) iff GNF € s{(N).

Lemma 4. Let N be a hereditary subfamily of ¥ and Fe ¥, Then (N)c
A(Ne)UN:. Moreover if N is an ideal and s (N) = Ng-, then A(N) = A(NF).

Proof. Let Be «(X), then B € NgUNE: for all E € ¥. Because of (h) A c N
we get from (b) that Be(N:)sU(Nr)e:. Hence we have that if B¢ Ny, then
B e (NF).

Let & be an ideal and A € A(N)=Ne:. Then A e Nen N =Nevr = Ne=N
due to (m), (c) which is a contradiction. Thus A ¢ Nr and by the first part of the
lemma A € o(Nr).

Lemma 5. Let N be an ideal and M e N. Then: A € {(N) < AUM € i (N).

Proof. Let A € 4(X), then A ¢/ and from the heredity of &, AUM¢EWN.
Since A € Nz UNg: and since by (h) M € Nz nANg: from (n) we get that for all E € &,
AUM e NgUNg:.

Conversely. Let AuM e A{N), then AUM ¢ N. Since (M — A) e N, then from
(g A=(AUM)— (M- A)¢N. Since AUM e NgUNg+ and by (kK), N UNg: is
hereditary, we get that for all E€ &, A e NeUNg:. Hence A € A(N).

Notation. Let us denote by £(N)° a family of all E € & which can be expressed

in the form E =\ JA; where (A.):: is an at most countable subfamily of s{(A). Let
iel
us denote by s{(N)* the o-ideal generated by the family sd(N').
Remark 2. Obviously if #(N)=@, then A(N)" =0 and o(V)*={@)}. If
A(N)#0, then {(N)* consists of all B e for which there exists an at most

countable subfamily (A:)ier of &(N) such that B | JA.,.

iel
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Definition 6. A subfamily N of a o-ring & is called

(1) atomless if A(N)=0,

(2) atomic if A(N)+0,

(3) totally atomic if for all E € & there exists A€ A(N)’ such that E— A €N,

(4) uniformly totally atomic if there exists A € s{(N)° such that for all E € &, there
hold E—A e WN.

Lemma 6. Let N be an atomic ideal, then A (N)* > N. Moreover if N is
a o-ideal, then A(N)° = A(N)*—N.

Proof. Let & be an ideal. If A € (&), then by Lemma 5, for all M e N we
have AUM € A(N) = s (N)*. Hence from heredity of o/ (N)* we get N < A(N)*.

Let & be a o-ideal and B € /(N)* —N. Then by Remark 2 there exists an at

most countable family (B, ).« of elements sZ(AN) such that B < | B.. We denote

nekK

J={neK:B,eNg}, I={neK: B,eNg:}. By definition of an atom IuJ=K.
Since W is a o-ideal, C=|J(B.nB)e . If we had I =0, then we would have

nel

B =J(B.nB)= CeWN, which contradicts the hypothesis.

nelJ

Thus I+ @, Since B, =(B.nB)u(B, — B) and for n € I (B, — B) € ;' we get from
Lemma S that for all nel, (B.nB)ed(N). We choose n,el. Then
{[(B,,nB)UC]}u{(B.NnB): ne(I—{n,})} is a countable subfamily of .«/(N), the
union of which is B.

Lemma 7. Let N be an ideal and F e ¥,. Then Nr is atomless iff A(N)c Nk.

Proof. Let Nr> A(N) and assume that there is G € «/(Ng). Then I emma 3
implies GNF € A(N). Since A(N)c=Nr, GNFeNe. Hence G € N wh'ch is in
contradiction with G € s£(Nr). The converse implication follows from the first part
of Lemma 4. :

Lemma 8. Let N be an atomic ideal and Fe%,. Let Ng:> d(N) and
Ne LA(N)*, then Ne is uniformly totally atomic. Conversely, if Ny is uniformly
totally atomic, then N Ls{(N).

Proof. If Nz L(N)*, then there exists B € sZ(N)* such that for all E€ ¥ we

have E — B € Nx. Then B | A, where (A:).; is a nonempty at most countdble

el

subfamily of /(X). Since Np: > (KN), according to Lemma 4 (A,),.,c A (N5).
Then Jic;A € (Nr)” and for all Eesf one has E—|JA, e Vs, thus Ny is
iel
uniformly totally atomic.
Proof of the converse inclusion is analogous.

Lemma 9. Let N be a o-ideal. Then (4(N)* -- N)C holds iff s{(N)C.
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Proof. Sufficiency is evident from the inclusion A(AN) c A(N)* — N. Necessity

follows by Lemma 6, according to which for all B e (A(N)* —A) there exists
A e B|A(N).

Theorem 2. (Theorem on the decomposition of an ideal into totally atomic and
atomless parts).

Let N be an atomic ideal such that one of the following two conditions holds : (a)
(AN)* = N)C or (b) N is a g-ideal satisfying A(N)C.

Then there exists F € A (N')* such that Nr+ is atomless and N is uniformly totally
atomic.

Proof. We apply Theorem 1 to the ideal N and o-ideal /= (N)*. By
Lemma 9 in case (b) the assumption (/ — X)) C is satisfied too. Thus by Theorem 1
there exists F € S{(N)* such that Nr: o A(N)* and N LA (N)*. Then Ner o A(N)
and by Lemma 7 N is atomless and by Lemma 8 W5 is uniformly totally atomic.

Lemma 10. Let (N,):-, be a sequence of subfamilies of &. Then d(ﬁ Nk) c
o k 1
U A (WN).
k=1 o o
Proof. Let Ae &i(ﬂ Nk). Then A ¢ (ﬂ Nk). Thus there exists g € N such that
k=1 k=1

A ¢ N,, we put N, = M. From the inclusions (ﬂNk> U (ﬁ Nk) < Me U Mg it
k=1 E k=1 E*

follows that for all E €% we have A € MzUMe+; which proves that A € Sf(N,).

Theorem 3. Let N, be a sequence of subfamilies of & and let N be a o-ideal such

that ﬁNk c N and let (N — N,)C for all k e N. Then there exists F € N such that
(A=F:Aed() = UdW).

Proof. It holds & — kfjJVk = Q(N—Nk). Hence by using the assumptions
(N = N:)C we get that (JV~ éNk)C is satisfied. By Lemma 2 there exists Fe N

such that (ﬁm> = . Then by Lemma 3 {A — F: A e sd(N)} < ﬂ(ﬁ N).
k=1 k 1

FJ.
3. The Hahn decomposition theorem

Lemma 11. Let X be a g-o-ideal in &. Then the family N, derived from N is
a o-ideal in &.

In the rest of this section P, ¥ will be g-o-ideals in & such that
(vili) PUN=Z
(ix) (W—=2)C and [N|(2 - N)]C for all Ne (¥ —P)
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Lemma 12. If E € (¥ — P) then there exists Eqe E | (N, — P).

Proof. Let Ee (N — ). If E| ¥ < W, itis sufficient to put E,= E. Otherwise by
Zorn Lemma there is a maximal family (F;);.,; of pairwise disjoint elements of
E|(2 - X). In view of (ix) (F,):c, is countable and hence by (vi) F=|JF, € 2.

iel
Put E,=E — F. Since E ¢ 2, Fe E | ? it follows from (g) that E, ¢ 2. It remains
to show that E,e No. In fact if G € E,| ¥ then G is disjoint with each element of
(F)icr and since (F,);<; is maximal we have G ¢ (2 — X). Now by (viii) we obtain
G e N and thus E e N,.

Theorem 4. (The Hahn decomposition theorem) Let P, N be g-o-ideals satis-
fying (viii), (ix). Then there exists A € ¥ such that A |¥<N and A*|¥ < P.

Proof. If (N—P)=0, then A =0. Suppose therefore that &' P+ . Then by
Lemma 12 &, — 2+ 0 and by Zorn Lemma there exists a maximal family (A,); ., of
pairwise disjoint elements of (N,— ). Since (¥ —P)C, the family (Ai)ic, is
countable and by Lemma 11 A ={ JA; € N,. We have proved A |FcN.

iel

It remains to be proved that A*|¥<®. In the opposite case we have by

Lemma 12 that there exists E € A* | (N, — %) in contradiction to the maximality of

(Ai)ie I

4. The Hahn-Herer decomposition for measures with values
in a topological group

If we have a signed measure u defined on & and M = {E € &¥: u(E) =0}, then
the Hahn decomposition gives two significant sets A, X-A € %, having the
following property:

(P) Be[(A|M)u(X—-A|M)] > B|Fc .

As it has been shown by Herer in [14] in the case of group-valuéd measures the
decomposition satisfying (P) in general need not consist of two elements. In this
section we give a generalization of Herer’s results concerning such a decom-
position.

Lemma 13. Let M ¥, then (¥—M)C > (¥ — Mo)C.

The proof is obvious because for all A € (¥ — ) there exists Be A | (¥ — M).
Troughout this section / will be a g-o-ideal (then ., will be a g-ideal). Put:
M¥={Ae(P—M): A|lMcM,).

Definition 7. Let K be a nonempty finite initial segment of the set of positive
integers. Let B,o B, > ... be a finite (or infinite) chain with the indices in K such
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that B, € (¥ —At) for n even and B, € M for n odd. Then we say that (By)icx is
a finite (infinite) decreasing alternating chain and the set B, is called its beginning.

Definition 8. We say that a g-o-ideal M is pathological if there exists
A €(¥— M) such that each set Be A |(¥— M) is the beginning of some infinite
alternating chain.

Lemma 14. Let/ be a g-o-ideal in . Then M is not pathological iff A | #M* #
for all A e (¥— ).

Proof. Let . not be pathological and let A €(¥— ). Then there exists
B € A | (¥ — M) such that B is not the beginning of any infinite alternating chain. If
B|.M < My, then B € #* and thus A | #* + 0. If B |4 is not a subfamily of ./, then
there exists B,, B; such that B,e M, B;e (¥~ M), B=B,> B, > B;. If B;| M c M,,
then B, € * and thus A | #* # 0. If B, |/ is not a subfamily of .#(,, we may proceed
in the construction of the chain. Since B is not the beginning of any infinite
decreasing alternating chain, the construction is finished after a finite number of
steps, i.e., there exists a finite sequence (Bi)x-i, such that B=B, > B, o B,
> ... o B,, where B, € (¥ — M) for k odd and B, € / for k even. According to the
method of construction we get that n is odd and thus B, € (¥ — ) and that the
chain (Bi)%-: is maximal in the following sense: there do not exist B’, B" with
B,>B'B", B'e M and B"e (¥ —M). Hence B, € M*.

Let us suppose now that AlM*+0 for all
A e(¥-M). Then for all A e(¥— M) there exists Be A [(¥—N) such that
B | = M,. We can easily see that B is not the beginning of any infinite decreasing
alternating chain.

Lemma 15. Let M be a g-o-ideal on S such that (¥ — M)C. Then M is not
pathological.

Proof. According to Lemma 14 it is sufficient to show that for all Fe (¥ — ()
we have F|M*+0. Let Fe(¥—M). If F| McM, F| M*#0 holds. If
F| (4 — M,)+ 0, then according to Zorn Lemma there exists a maximal family
(E)): _, of pairwise disjoint elements from F|(# — A,). According to Lemma 13,
the family (E:):; is at most countable and thus E=|JE;e /. From Fé¢.# and

iel
EeF |4 it follows by (g) that F— E ¢ (. From the maximality of (E;);.. it follows
that £ — E does not contain any element of 4 —.#, and thus (F— E)| M c M,, i.e.
F—EecM*

Theorem 5. (The Hakn—Herer decomposition theorem) Let # be a g-o-ideal
in &, et M be not pathological. Then there exists a family (A,),.+ of pairwise

disjojnt elements of & such that [U (A, Mt)] c Mo and (x - UA,) | P M.

teT teT
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Proof. If # = ¥, then the singleton { A } where A € & satisfies the conditions in
the conclusion of the theorem. Let (¥— #)+#@. Since # is not pathological,
M* # 0 by Lemma 14. Then by Zorn Lemma there exists a maximal family (A,),.r
of pairwise disjoint elements of #*. Since A, € M*, A, | M < M, holds for all te T
and thus [J (A.[M) = M.

teT

It remains to prove (X - UA,) | ¥ <. If this were not true, there would exist

teT

Be (X— U A,) €(¥—M). Then by Lemma 14 B |~ + () which contradicts the

teT
maximality of the family (A,),cr.

II. Applications and connections with other results

In the second chapter we shall ‘deal with applications of the results obtained in
sections 1 to 4. These applications will first concern set functions with values in an
Abelian semigroup with a neutral element. This includes, of course, vector spaces
as a special case.

The extended real numbers R = RU{®} are included as a range of our measure
too. It is sufficient to take the usual addition in R and to put r+o = o+ r
= 00+ 00 = 00, .

The results of the present paper can further be applied to multimeasures (see the
paper [24] by Christianne Godet—Thobie) and to submeasures (see e.g. the paper
[23] by Ivan Dobrakov)

Preliminaries
Let us now introduce definitions for all the remaining sections.

Definition 9. Let u be a set function defined on &. Then the system M =
{(Ee%: u(F)=0 for all Fe E|%) is called the null system of u.

Obviously “0” from the definition 9 indicates the neutral element of the
semigroup which contains the values of the set function u. According to definition
9 we can easily verify that the null system will be hereditary. Note that in the rest of
the paper only such set functions u for which u(#)=0 are considered.

Definition 10. Let u, v be set functions defined on & and M, N be their null
systems. Then we say that u is v-singular (we denote u Lv) iff M LN.

We say that u is dominated by a set function v (we denote u <v) iff M >N

We say that u is equivalent to v (we denote u=v) iff M =N.

Remark 3. If u is a set function and F a locally measurable set, then we can
define the contraction of u by F in the following way: us(E)= u(FnE) for all
Ee¥.
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The following proposition plays an important role in the proofs of the corollaries
in Chapter I1. It is significant because with its help the applications of abstract
results to set functions are rather straighforward. The proof of the proposition is
not difficult.

Proposition 1. Let / be the null system of a set function u, then Mg is the null
system of ur i.e. Mr={Ge%: u-(E)=0 for all Ee G|¥}.

Definition 11. Let u be a set function defined on & and M be its null system.
Then we say that u satisfies CCC (i.e. the countable chain condition, see for
example [19]) if it satisfies (¥ — #)C.

5. Applications of the Lebesgue decomposition theorem

Applications of abstract formulations will begin with some corollaries of
Lemma 2.

Corollary 1. Let u, v be set functions defined on & and let M, N be their null
systems, let u be additive, M be a o-1deal such that N'< M and let (M — N')C hold.
Then there exists F e M such that ve =u and u — g .

Corollary 2. Let v be an additive set function defined on & satisfying CCC. Then
there exists Fe & such that v = ve.

The proof of the Corollary 1 follows from Lemma 2 and Proposition 1. Accord-
ing to Lemma 1, Fe/{ implies M=% and thus u-=0 (i.e. u=(E)=0 for all
E € &). Hence u = ur+ by additivity.

Corollary 2 follows from Lemma 2 for /# = ¥.

Corollary 3. Let u, v be set functions and M, N their null systems. Let M be
a o-ideal and let (M — N)C hold. Then there exists F e M such that ve: <u and
velu.

If moreover v is additive, then v = vg + vg-.

The proof is evident from Theorem 1 and Proposition 1. (Note that v(@) =0 as
was supposed at the beginning of the chapter)

The questions of the Lebesgue decomposition theorem and propositions con-
cerning it were discussed by many authors.

Omitting the most classical results, the standard formulations of the Lebesgue
decomposition theorem may be found e.g. in [13, Theorem 32.C], [3, Theorem
47.3]. Other proofs are in papers [4], [22]. Even the following very simple example
shows that our result is stronger than the results where totally o-finitness or
finiteness is required for v. (These assumptions are stronger than the assumption
that v satisfies CCC).

Let v be defined on ¥ = {0, X} where x# 0 in the following way: v(#) =0 and
v(X) =, and let u be an arbitrary measure. Then the hypotheses of Theorem 1
and of the Corollary 3 are satisfied, but v is not o-finite.
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Problems of the formulation of the Lebesgue theorem in terms of the null
systems were discussed by Ficker in [8], [9]. He uses the assumptions X € & and
(¥ —N)C. His result can be obtained directly from Theorem 1. The result of
Musiat [19; Theorem 9] which assumes v <y also follows from Theorem 1 and
Corrolary 3.

With the aim to compare the result mentioned above I give an example which
shows that the used assumption (# — N)C, is weaker than the assumption CCC.
This example shows that Theorem 1 is stronger than all formulations of the
Lebesgue theorem mentioned above.

It also shows that Ficker’s assumptions X €% and (¥—N)C and Musial’s
assumption v <y are not necessary.

Example 3. Let & be the o-ring of all countable subsets of R. Let (2%, A) be
the group of all subsets of the set R with symmetric difference as the group
operation. The convergence A, — A will be used in the usual sense (i.e. A, — A iff
A=UNa=NU Ak). We can easily see that (2%, A) with the convergence

n—=1 k=n n=1 k=n
topology introduced in such a way forms a Hausdorff topological group. Let v and
1 be measures defined on & as follows:

v(A)=AnRoand u(A)=AnI for A € ¥. Since @ is the neutral element in the
group (2%, A) we have N={AeP: AcI} and Mh={Ae¥: AcR,}. We can
easily verify that the assumption (/4 — ) C of the Theorem 1 is fulfilled and that
the required decomposition exists, but the measure v with values in the group
(2%, A) does not satisfy CCC.

I also call your attention to Lipecki’s paper [18], where he for the first time
mention the applications of abstract formulations for measures in a topological
semigroup. ‘

Corollary 1 includes results [3, Theorem 47.3], and [20, Lemma] as special
cases, Corollary 2 involves results dealing with exhaustion [16, Theorem 3.1], [13,
excercise 17.3]. For a further generalization of the last two mentioned results see
Neubrunn’s principle of the exhaustion in [2].

As to the applications of our Theorem 1 (or further results in this paper) I call
your attention to the fact that if u is a measure with values in a metrizable
topological group, then p satisfies CCC. (see Kluvinek [16, Section 3] and also
more generally Lipecki’s proposition in [17])

6. Applications to decompositions into totally atomic
and atomless parts

Definition 12. Let v be a set function defined on & and N be its null system.
Then we say that A is an atom (more exactly a v-atom) if A € S{(N). The set of all
v-atoms will be denoted by (V).
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Definition 13. Lct v be a set function defined on a o-ring & and let N be its null
system. Then we say that:

(1) v is atomless (atomic) if sd(v)=0 (L(v)#0)
(2) vis totally atomic (resp uniformly totally atomic) if N is totally atomic (resp.
uniformly totally atomic).

Corellary 4. Let v be an atomic additive set function on & such that its null
system N satisfies (d(N)* —N)C. Then there exists A € sd(N)* such that ve: is
atomless and v: is umiformly totally atomic.

If N 1s a o 1deal then the condition (4 (N)* —N)C holds iff sl(N)C.

The proof s evident from Theorem 2 and Lemma 9.

Corollary 5. Letv, be set functions defined on & and N, be their null systems for
k=1, 2, ... Let v be a set function the null class of which 1s a o-ideal such that

£

N> Neandlet (N N, )C be satisfied for ail k € N. Then there exists F € N such

k—1
o

that {A—F: Aesd(v)} = A(v)

A1
The proof of the corollary is evident from Theorem 3. We point out that in the

NecHin Corollary 5 is
1

©

particular case if we put v= 2 vi, then the condition
k-1 k—

fuifilled

Thus if we suppose in Corollary 5 vi=v,=...=0and v=v,+ v, and L (N)) =
A(N,)=0, and if moreover we assume (N —WN,)C and (¥ — N,)C instead of
(= N)C and (- N,)C, we get the first part of the Hoffmann—Jaérgensen’s
Theorem 4 in [15] and also Statement 1 in [19] and Corollary 3 in [18].

7. Remarks on the Hahn decomposition theorem

Let v be a singed measure defincd on &, which does not attain the value — . If
we put N={Ec%:v(E)=0}, P={Eec¥ v(E)Z0} then P, N are g-o-ideals
such that PUN = &. It is well-known e.g. from [13] that 2, N satisfy the property
(ix). See also [7].

Theorem 3 is thus a generalization of the classical Hahn decomposition theorem.

An abstract formulation of the Hahn theorem which generalized the classical
version was introduced for the first time by Cervenansky and Dravecky in [7].
Their proposition will be denoted (CD). They consider sysicins 2, N, Z, which are
analogues of the systems {E € ¥: v(E) 20}, {E€ ¥: v(E)=0}, { € E¥: v(E)=0}.

P
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Among the hypotheses of the (CD) proposition there are the following assump-
tions:

a,) PeZcPnN,
a,) (P - %) satisfies (vi),
as) (@—%)C

It is possible to show that if 2, ¥, & satisfy the assumptions in (CD), then 2, ¥ are
o-ideals satisfying (viii), (ix) and thus Theorem 3 includes the (CD) proposition.
The following example shows that the (CD) proposition does not imply our
Theorem 3.

Example 4. Let ¥={A: AcR, A is at most countable} and I=R — R,.
Evidently & is a o-ring. Let us define the systems 2, N as follows: #=
{AeP  AcI}, N={AeZ: A is infinite} U {AeP: A is finite, ANR,#0} U
{@}. 1t is easily seen that P, N are g-o-ideals and that PUN=. Further
P—-N={A€eS: A isfinite, AcI} - {0}, N—P={AeP: AnR,#0}. As each
set from (N — %) contains at least one rational number we have (¥ — 2P)C.
Moreover as each set N € & is at most countable for all N € (¥ — 2) the condition
[N](2 —N)]C is satisfied. Thus we have shown that 2, A satisfy the axioms (vi),
(vii), (viii), (ix) and thus Theorem 4 can be successfully used.

We shall show that no system % exists for which the triple (2, N, Z) or
(N, P, &) satisfies a,), a,), a;). Suppose the contrary. As Zc PN then P — F =
P—PAN = P-N = {Ae¥: Acl, A is finite} — {@}. Due to a;) P—-Z >
{Ae¥: Acl}—{0}. Hence Z=P — (P — %) {0} and thus Z = {@}.

Then ¥ —=Z={A eZ: A is finite, ANR@} U {A € &: A is infinite}. It is easily
seen that neither the condition (# — Z)C nor (¥ — %)C holds true and thus the
triples (2, N, &), (N, P, Z) do not satisfy the assumption a;) in (CD).

8. Applications of the Hahn—Herer theorem

Definition 14. Let u be a set function. Then the system M = {E € ¥: u(E) =0}
will be called a null-valued system (more exactly a u-null-valued system).

Let us note that if u is a measure (i.e. a o-additive set function) with values in
a topological semigroup, then # is a g-o-ideal.

Corollary 6. Let & be a o-ring and u be a set function defined on &. Let the
null-valued system of u be a nonpathological g-o-ideal.

Then there exists a system (A,),r of pairwise disjoint members of (¥ — M) such
that if some set A is from A, | M for some t € T, then A is u-null and each set from
( U A,) | & is p-null.

teT

65



The proof of the corollary is evident from Theorem 5. Let us also note that
according to Lemma 15 a g-o-ideal satisfies (¥ — #)C, then . is not pathological.

Remark 4. Theorem 5 and Corollary 6 generalize Herer’s result in [14] and
<1.0 generalize Theorem 2 from Lipecki’s paper ([18]).

In [14] Herer introduces Example 3 to which it is not possible to apply
.Jccessfully the results mentioned in [18] and in [14]. But our Theorem 5 and
“orollary 6 can be used also for this example to prove the existence of
Hahn—Herer decomposition.

9. The Hahn decomposition theorem for measures with values
in a partially ordered semigroup

In this section we shall introduce the Hahn theorem for measures with values in
& partially ordered topological semigroup G. According to our agreement at the
| ~ginning the second chapter, G is an Abelian semigroup with the neutral
clement 0. ,

et us recall some definitions. A partially ordered semigroup is a triple
(G, +, =) where (G, +) is a semigroup, (G, =) is a partially ordered set and
raoreover the partial ordering and the operation of addition are related by the so
called monotonicity rule, which is in case of an Abelian semigroup as follows:

(M) a,beG,a=b > a+c=b+cforallceG.

If G is a partially ordered semigroup, then the system P={aeG: a=0}
(P ={ae G:a=0}) is called a positive cone (negative cone).

Lemma 16. Let G be a partially ordered semigroup. Then the positive and the
negative cone satisfy properties

(a) PnP ={0}
8) P+PcPand P +P cP

The proof of the property (a) follows from the antisymmetry of the partial
ordering. () follows from (M) and from the transitivity of the partial ordering.

Definition 15. Let G be a partially ordered semigroup with a positive (negative)
cone P (P7). Then we say that A is purely positive (more exactly purely
(u, P)-positive) if u(E)e P for all E€ A|¥. We say that A is purely negative
(more exactly (u, P~)-negative) if u(E)e P~ for all E€ A | ¥.

Lemma 17. Every Hahn decomposition of an additive set function u with values
in a partially ordered semigroup G is the two-element Hahn—Herer decom-
position.

Proof. Let {A, A*} be Hahn’s decomposition of an additive set function pu.
Thus A is (u, P™)-negative and A is (u, P)-positive where P, P~ are positive and
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negative cones of the partially ordered semigroup G. Let us put P =
{Ee¥: u(E)e P} and N={Ee¥: u(E)e P"}. We prove first that the following
property is satisfied:

(x) EePnN,F.€E|?P, F,eE|N > E-F,eN,E-F,e?.

Indeed let E e NN and F, € E|?. Then u(F,) + w(E—-F,) = u(E)=0. Then
from the inequality u(F;)=0 and using (M) we get u(F,) + u(E-F,) =
u(E — F,) and thus 0Zu(E - F,). Hence E — F, € . Similarly we can prove that
E—-F,e?.

We denote M ={Ee%: u(E)=0}. According to (a) we have M =PnAN. To
prove that {A, A*} form a Hahn—Herer’s decomposition it is sufficient to prove
that A |#M M, and A* | M Mo Let BEA|M and CeB|P. As Ce A|¥ and
A |P <N we have CeN. For the same reason also B— Ce . Since B e A and
B — Ce W, by (x) we obtain C € ? and thus C e .. We have proved that B| ¥ c
and thus A |# = #,. The inclusion A* |4 c M, can be proved analogously.

Theorem 6. Let G be a partially ordered Hausdorff topological semigroup and
be a measure with values in G. Let positive and negative cones of G satisfy:

(y) x.€P (or x,eP”) for allneN and Y x,e(PUP"), then >, x,€P
n=1 n=1

(or ix,. eP7)

(8) {u(E): E€¥}cPUP~
() {Ae& u(A)e(P -P))C
(&) ifu(E)e(P —P), then {A€E|¥: u(A)e(P—-P7))C.

Then there exists A € & such that A is purely (u, P™)-negative and A* is purely
(u, P)-positive.

Moreover {A, A"} is a two-element Hahn—Herer decomposition.

Proof. Let us put ?={Ee¥: u(E)eP} and N={Ee¥: u(E)eP}. Ac-
cording to (a) @€ PnN. Let E, € P for all n € N. Then u(E,) € P and according to

(6) u( D E,,) e PUP . Hence according to (y) we get that > u(E,)= u( CJ E,,) epP
n 1 n=1 n=1 :

and thus CJ E, € P. Analogically we could show that A satisfies (iii) and thus we

n=1
have proved that ?, ¥ are g-o-ideals.
. It is easily seen that P —N={Ee¥: u(E)e(P—P7)} and ¥ —P={Eec¥:
u(E)e (P~ —P)} and condition ({) means that for all Ee (N — %) one has
[E | (2 — N)]C and thus 2, A satisfy (ix). From (&) we get that P, A satisfy (viii).
According to Theorem 2 there exists A € # such that A | =N and A*|F = P
and thus A is purely (u, P7)-negative and A" is purely (u, P)-positive.
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The following example shows that the condition (y) is not fulfilled even in the
case when G is a partially ordered group.

Example 5. Let G be the additive group of real numbers and let us put
P={r—z-e:reR, r20,z=0, z is an integer} where e is the base of the natural
logarithm. Since G is a group, then P ={x e G: —x € P}. It is easy to verify that
the conditions PAnP~ ={0} and P+ Pc P are fulfilled and thus according to
Theorem I1.2. in [11], P defines a partial ordering.

But the condition (y) is not fulfilled because if we define x, = ' for all

_r
(n—-1)
neN, then x,eP for all neN, but > x,eP .

n 1
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TEOPEMBI O PA3JIOXEHHUW B TEOPHH MEPBI
ITerep LHanek

Pesiome

B nepsoii rnase paGoThl GbUIM MOJYYeHb! a0CTPaKTHbIE (DOPMYJIHPOBKH CIENYIOIMX TEOPEM
0 Pa3NoXEHUU B TEOPUH Mepbl : TeopeMbl Jlebera, TeopeMbl O Pa3noXeHUH MEPbl HA HEATOMHYECKYO
a BMOJIHE aTOMHYECKYIO YacTH, TeopeMbl XaHa, TeopeMbl XaHa—I epepa. 3ech TakxXe NPUBOAUTCS
abcTpakTHas popMynMpoBKa M 0606wenue TeopeMbl Xoddmann—Horencesa 0 cymme aByx Ge-
3aTOMHYECKMX Mep. Bo BTOpo# rnaBe npuBefeHO NPUMEHEHHE aGCTPaKTHBIX (hOPMYIHPOBOK
M CPaHEHHE MX C U3BECTHBIMHM POACTBEHHBIMU pe3ylbTaTaMu. B ieBATOM pasfeine AoKa3aHa TEOpEMbI
XaHa anst Mep O 3HAYCHUSIMH B YaCTHYHO YIOPSAAHOYEHHOM TONOJIOTMYECKOH NONYTpynne, U3 KOTOPOi
clleayeT KaK YacTHYHbIA Clyyai Kiacuyeckas TeopeMa XaHa.
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