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Mdth. Slovaca 31,1981, No. 1, 53—69 

DECOMPOSITION THEOREMS IN MEASURE THEORY 

PETER CAPEK 

In [1] T. Neubrunn suggested to formulate and prove some theorems of measure 
theory in terms of "null sets" without using the concept of a measure. 

In the present paper we study decomposition theorems from this point of view. It 
appears to be a unifying approach concerning various decompositions. 

The paper consists of two chapters. In the first one decomposition theorems are 
formulated and proved abstractly while in the second their consequences are 
presented. 

Throughout the paper (X, Sf) will denote a measurable space with a a-ring Sf of 
subsets of X. A subset A of X will be called locally measurable if A nE e Sf f or all 
EeSf. The family of all locally measurable sets will be denoted by Sfk. We have: 
SfczSfk; Sfk is a a-algebra [3, p. 35]. 

Let % be a family of subsets of X. In what follows the symbol "%C" is used in the 
Ficker's sense ([10]) and means that every family of pairwise disjoint elements 
from g is at most countable (therefore 0£ %). If A c X , then we use the symbol 
A | % in the Hahn's sense ([12]) i.e. A\%={Ee%\E<z\A). The symbol A x stands 
for X - A, N denotes the set of positive integers and R, R0 denote the sets of real 
and rational numbers, respectively. 

Some parts in the first chapter (i.e. sections 1—4) can be read independently, to read them it is 
sufficient to know preliminaries. To read the sections in the second chapter (i.e. sections 5—9) it is 
necessary to know preliminaries to the second chapter and then the order of possible reading is as 
follows: [1, 5] (i.e. section 5 can be studied immediately after section 1) [2, 6], [3, 7], [4, 8, 9]. 

In June 1976 during my study stay in Brest at Prof. Mme Godet-Thobie I have reported in a seminar 
most of the results appearing in the present paper. See [5], [6]. 
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I. Abstract formulation of decomposition theorems 

Preliminaries 

First we list some properties of a family M<^Sf we shall work with: 

(i) M±0 
(ii) EeM, FeSf, :-> EnFsM 
(iii) Ex, E2eM => ElvE2eM 

(iv) EkeM, keNd> \jEkeM 
k = \ -

(v) Ei,E2eM, ExnE2 = 0 --> ExuE2eM 

(vi) EkeM, keN, where E* are pairwise disjoint -->U EkeM 
k = \ 

(vii) 0e.7^ 

Definition 1. A subfamily M of a o-ring Sf is called: 

(j) hereditary in Sf if it satisfies (ii) 
(jj) an ideal if it satisfies (i), (ii), (iii) 
(jjj) a o-ideal if it satisfies (i), (ii), (iv) 
(jw) a generalized ideal (briefly g-ideal) if it satisfies (v), (vii) 
(w) a generalized o-ideal (briefly g-o-ideal) if it satisfies (vi), (vii) 

E x a m p l e 1. Let \i be a measure or an outer measure on Sf and v a signed 
measure on Sf, then putting M = {E e Sf: \i(E) = 0},Jf={Ee Sf: v(E) = 0},Jfo = 
{E e Sf: v(F) = 0 for all Fe E \ Sf} we obtain a-ideals M, Jf0 in Sf and a #-a-ideal Jf 
in Sf. 

Definition 2. Let Jf be a subfamily of a o-ring Sf and EeSfk. Then the family 
JfE = {A e Sf: EnA eJf} is called "the contraction of the family Jf by E". 

R e m a r k 1. IfjVis hereditary then JTEz>Jf (Lemma 1) and the term "contrac­
tion" seems to be inconvenient. But the notation was motivated by that of the 
contraction of a measure by E. For if v is a positive measure defined on Sf and 
EeSfx, then putting Jf= {GeSf: v(G) = 0} we obtain JfE = {GeSf: 
v(EnG) = 0}. 

Definition 3. Let M be a subfamily of a o-ring Sf. Then the subfamily M0 = 
{EeSf: E\SfdM} is called a subfamily derived from the family M. 

Lemma 1. Let M, Jf be subfamilies of Sf and E, FeSfk. 

We have: 

(a) (JfE)F = JfEr^F 

(b) JfaM ^ JfE^ME 
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(c) Jfx = Jf 

(d) (M - Jf)C => (MF - NF)C 

If Jf is a g-ideal, then we have: 

(e) Jf0 = y 
(f) JfE=Jfd>JfE, = y 

(g) Ee(tf-Jf), FeE\Jf^ E-FtJf 

If Jf is hereditary, then we have: 

(h) JfcJfB 

(k) JfE is hereditary 
(1) ^ 0 = ^ 
If Jf is an ideal, we obtain: 

(m) JfE^F=M'Er)JfF 

(n) NE is an ideal 
(o) FeJf=> JfF = 9>oJfF, = Jf 

We omit the straightforward proof of the above Lemma. For the rest of the paper 
the letters (a)—(o) will be reserved for the above stated properties. 

Definition 4. Let M, Jf be subfamilies of &*. Then Jf is said to be M-singular 
(denoted Jf±M) if there exists A.eM0 such that JW = Sf. 

Remark 2. It can be easily checked that if M, Jf are a-ideals and Sf is 
a a-algebra, then definition 4 agrees with Ficker's definition of singularity of 
a-ideals given in [8], (def. 15) and in [9]. 

1. The Lebesgue decomposition theorem 

Lemma 2. Let M be a o-ideal, 0eJfczM and (M — Jf)C. Then there exists 
FeM with JfF± = M. 

Proof. If M=Jf it is sufficient to put F=0. If M + Jf then M-Jf±0 and 
according to Zorn's lemma, there exists a maximal family (Pi), e/ of pairwise disjoint 
sets from (M-Jf). Since (M-Jf)C, (Fi)ieI is at most.countable and by (iv) 

F = UFi e M which by (o) implies MF± = M. It remains to show that MF± = .AF-S but 
iel 

with respect to (b), it sufficies to show that MF±czJfF±. If this were not true, there 
would exist a Ge(MF± — JfF±). Then we would have GnF± e(M — Jf), which 
contradicts the maximality of (F))ie/. 

Applications of this lemma and the following theorem are presented in Section 5. 

Theorem 1. (The Lebesgue decomposition theorem) Let M be a o-ideal, 0eJf 
and let (M-Jf)C. Then there exists FeM such that JfF±=>M and JfF±M. 
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Proof. Since M - MnX=M -X and (M-X)C it follows from lemma 2 that 
there exists FeM with (MnX)F± = M. Hence by using (b), we obtain XF±^>M. On 
the other hand XF±M because FeM = M0 and by (a) and (e) we have (XF)F+ = tf. 

2. Decomposition of an ideal into atomless 
and totally atomic parts and its relation to the Lebesgue theorem 

The proof of the main result of this section has been inspired by Remark 3.1 in 
Traynor's paper [20]. 

Definition5. For Xaif we denote srf(X) = H C ^ u - N ^ ) - X . Then any 
F e y 

element of <<d(X) is called an X-atom. 
We remark that this concept is equivalent with the concept of an atom in [18]. 

The proof of the following lemma follows directly from the definition on an atom. 

Lemma 3. Let Xa ,9, F e.%, G e <f. Then G e st(XF) iff GnFe sd(X). 

Lemma 4. Let X be a hereditary subfamily of ff and F e % Then si(X)a 
si(XF)uXF. Moreover if X is an ideal and sd(X)aXF±, then st(X)aM(XF). 

Proof. Let Bes4(X), then BeXEuXF^ for all EeSf. Because of (h) XaXF 

we get from (b) that B e(XF)Eu(XF)E±. Hence we have that if B£XF, then 
Bed(XF). 

Let X be an ideal and A es£(X)aXF^. Then A eXFnXF- = XFKJF = Xx = X 
due to (m), (c) which is a contradiction. Thus A &XF and by the first part of the 
lemma A es£(XF). 

Lemma 5. Let X be an ideal and MeX. Then: A e stf(X) <=> A uM e sd(X). 
Proof. Let A esd(X), then A &X and from the heredity of X, AuM£X. 

Since A e XE uN E i and since by (h) M e XE nXE± from (n) we get that for all Eeif, 
AuMeXEuXE^. 

Conversely. Let AuMesd(X), then AuM&N. Since (M- A)eX, then from 
(g) A=(AuM)-(M~A)tX. Since AuMeXEuXE- and by (k), XEuXE+ is 
hereditary, we get that for all Ee.9, A eXEuXE±. Hence A esd(X). 

Notation. Let us denote by sd(X)° a family of all Ee^f which can be expressed 

in the form E = {JA( where (At)ieIis an at most countable subfamily ofs&(X). Let 
iel 

us denote by si(X)* the o-ideal generated by the family si(X). 
R e m a r k 2. Obviously if s4(Jf) = 0J then s£(X)° = 0 and <rt(X)*={0}. If 

sd(X) =..-= 0, then s£(X)* consists of all Betf for which there exists an at most 

countable subfamily (A{)ieI of M(X) such that Bcz l jA, . 
iel 
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Definition 6. A subfamily M of a o-ring iP is called 

(1) atomless if si(Jf) = 0, 
(2) atomic if si(J*)±0, 
(3) totally atomic if for all Ee^ there exists A e s£(N)° such that E- AeJf, 
(4) uniformly totally atomic if there exists A e si(Jf)a such that for all E e ff, there 

hold E-AeJf. 

Lemma 6. Let Jf be an atomic ideal, then si(Jf)* nJf. Moreover if JV is 
a o-ideal, then si(X)a = st(JT)*-Jf. 

Proof. Let Jf be an ideal. If A es£(N), then by Lemma 5, for all MeN we 
have A u M e ,s£(N) cs4(N)*. Hence from heredity of si(X)* we get Jfa si(N)*. 

Let .JV be a tr-ideal and B e s$(N)* - N. Then by Remark 2 there exists an at 

most countable family (Bn)neKof elements sd(Jf) such that B e \jBn. We denote 
neK 

J= {neK: BneNB}, 1= {neK: BneJfB^}. By definition of an atom IuJ = K. 

Since Jf is a a-ideal, C= U(BnnB)eJf. If we had 1 = 0, then we would have 
neJ 

B = {J(BnnB) = CeJi, which contradicts the hypothesis. 
n eJ 

Thus /-£ 0, Since Bn = (B„nB)u(B„ - B) and for n e I (Bn - B) eJf we get from 
Lemma 5 that for all nel, (BnnB)es$(Jf). We choose n()el. Then 
{[ (B n o nB)uC]}u{(B n nB): n e (I- {«„})} is a countable subfamily of si(Jf), the 
union of which is B. 

Lemma 7. Let Jf be an ideal and FefA- Then NF is atomless iff .v4(Jf)czJfF. 
Proof. Let JfFz^s4(Jf) and assume that there is Ges£(NF). Then I emma 3 

implies Gc\Fes4(N). Since s£(Jf)cJ{F, GnFeXP. Hence GeJfF wh'ch is in 
contradiction with G e s4(JfF). The converse implication follows from the first part 
of Lemma 4. 

Lemma 8. Let N be an atomic ideal and Fe,%. Let NF±zDsA(J>f) and 
NFl.si(N)*, then NF is uniformly totally atomic. Conversely, if JVF is uniformly 
totally atomic, then NF±.si(Jf). 

Proof. If NF±.s4(N)*, then there exists Besi(K)* such that for all Eetf we 

have E- BeNF. Then B c I j A , , where (Af-),€/ is a nonempty at most countable 

subfamily of s£(N). Since NFJ-ZDS4(N), according to Lemma 4 (A,),F/crf(jVF). 

Then U'eiA. es£(NF)a and for all Eesi one has E - U A e.JVF, thus XF is 
iel 

uniformly totally atomic. 
Proof of the converse inclusion is analogous. 

Lemma 9. Let X be a o-ideal Then (si(N)* -Jf)C holds iff ,<d(N)C. 
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Proof . Sufficiency is evident from the inclusion s4(Jf)<^M(N)* - JV\ Necessity 
follows by Lemma 6, according to which for all B e (s£(N)* -X) there exists 
AeB\si(X). 

Theorem 2. (Theorem on the decomposition of an ideal into totally atomic and 
atomless parts). 

Let M be an atomic ideal such that one of the following two conditions holds: (a) 
(sd(X)*-X)C or (b) Jfis a o-ideal satisfying sd(N)C. 

Then there exists F e sd(N)* such thatNF± is atomless andNF is uniformly totally 
atomic. 

Proof . We apply Theorem 1 to the ideal JV and a-ideal M = si(Jf)*. By 
Lemma 9 in case (b) the assumption (M -M)Cis satisfied too. Thus by Theorem 1 
there exists Fe s£(N)* such that NF± => s4(N)* and JfF±s£(Jf)*. Then JfF± z> s£(N) 
and by Lemma 7 .JVF^ is atomless and by Lemma 8 JfF is uniformly totally atomic. 

Lemma 10. Let (Nk)T=l be a sequence of subfamilies of Sf. Then sd(f) .JV^cz 
\k \ J 

Us4(Xk). 

Proof . Let A e si( f] ^ V Then A <k ( f] Jf\ Thus there exists q e N such that 

A £ Nq, we put Xq=M. From the inclusions ( f l Jfk) u ( f] Jfk\ <z ME u ME± it 
\k=\ /E \k=\ / E x 

follows that for all EeiP we have A eME\jME±\ which proves that A esd(Jfq). 

Theorem 3. Let Mk be a sequence of subfamilies of tf and let M be a o-ideal such 

that f l Nk c JV and let (N-Nk)C for all keN. Then there exists FeN such that 
k~\ 

{A-F:Aest(A)} c \Js4(Jfk). 
k = \ 

Proof. It holds N- {~}Jfk = [J(N-Nk). Hence by using the assumptions 
k=\ k=\ 

(JV*-Nk)C we get that yN — f^\Nk]C is satisfied. By Lemma 2 there exists FeN 

such that (r\Jfk\ =<f. Then by Lemma 3 {A-F:Ae sd(N)} c sd( f] «N*) • 

3. The Hahn decomposition theorem 

Lemma 11. Let X be a g-o-ideal in &>. Then the family jV*0 derived from Jf is 
a o-ideal in 9>. 

In the rest of this section SP, Jf will be g-a-ideals in 9* such that 

(viii) 5PuJf=y 
(ix) (Jf-9>)C and [N\(9>-X)]C for all Ne(Jf-&) 
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Lemma 12. If Ez(N-SP) then there exists E0eE\(N0- <3>). 

Proof. Let E e CjV- SP). If E |tfczN, it is sufficient to put Bo = E. Otherwise by 
Zorn Lemma there is a maximal family (Ft)ieI of pairwise disjoint elements of 

E\(SP-Jf). In view of (ix) (F()ieI is countable and hence by (vi) F=\^Ft£SP. 
iel 

Put E0 = E-F. Since E £ SP, F e E \ SP it follows from (g) that E0 £ SP. It remains 
to show that E0eN0. In fact if GeE0\9

> then G is disjoint with each element of 
(F,)ieI and since (F,)je/ is maximal we have G £. (SJP -M). Now by (viii) we obtain 
GeJf and thus E0eN0. 

Theorem 4. (The Hahn decomposition theorem) Let SP, Jf be g-o-ideals satis­
fying (viii), (ix). Then there exists A eif such that A \tfczjf and A±\¥c=SP. 

Proof. If (X- 3>) = 0, then A = 0. Suppose therefore that N-SP±0. Then by 
Lemma 12 .vV« - SP± 0 and by Zorn Lemma there exists a maximal family (At)ieI of 
pairwise disjoint elements of ( J V O - ^ ) . Since (N-SP)C, the family (A,) je/ is 

countable and by Lemma 11 A = UAteJ{0. We have proved A\¥czJf. 
iel 

It remains to be proved that A±\^czSP. In the opposite case we have by 
Lemma 12 that there exists EeA±\ (N0 - ^ ) in contradiction to the maximality of 
(Ai)ieI. 

4. The Hahn-Herer decomposition for measures with values 
in a topological group 

If we have a signed measure \i defined on &* and M = {Ee&?\ \i(E) = 0}, then 
the Hahn decomposition gives two significant sets A, X-A e £fk having the 
following property: 

(P) Be[(A\M)u(X-A\M)] => B\9><zM. 

As it has been shown by Herer in [14] in the case of group-valued measures the 
decomposition satisfying (P) in general need not consist of two elements. In this 
section we give a generalization of Herer's results concerning such a decom­
position. 

Lemma 13. LetMatf, then (¥-M)C =-> (<f-M0)C. 

The proof is obvious because for all Ae(£f- M0) there exists BeA\(9? — M). 
Troughout this section M will be a g-a-ideal (then M0 will be a a-ideal). Put: 

M* = {Ae(S>-M): A\MczM0}. 

Definition 7. Let K be a nonempty finite initial segment of the set of positive 
integers. Let B{ => B2 =>... be a finite (or infinite) chain with the indices in K such 
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that Bn e(Sf -M) for n even and BneM for n odd. Then we say that (Bk)keK is 
a finite (infinite) decreasing alternating chain and the set Bx is called its beginning. 

Definition 8. We say that a g-o-ideal M is pathological if there exists 
Ae(Sf—M) such that each set B eA\(Sf — M) is the beginning of some infinite 
alternating chain. 

Lemma 14. LetM be a g-o-ideal in Sf. ThenM is not pathological iff A \M*i=0 
for all Ae(Sf-M). 

Proof. Let M not be pathological and let Ae(Sf-M). Then there exists 
BeA\(Sf-M) such that B is not the beginning of any infinite alternating chain. If 
B\Mci M0, then BeM* and thus A \M* + 0. If B \ M is not a subfamily of M0, then 
there exists B2, B3 such that B2eM, B3 e (Sf-M), B = BXZDB2ZZ> B3. If B3\MczM0, 
then B3 e * and thus A \ M* + 0. If B2 \ M is not a subfamily of M0, we may proceed 
in the construction of the chain. Since B is not the beginning of any infinite 
decreasing alternating chain, the construction is finished after a finite number of 
steps, i.e., there exists a finite sequence (Bfc)*=t, s u c h that B = BX ZD B2 ZD B3 

ZD ... D B „ , where Bke(Sf- M) for k odd and BkeM for k even. According to the 
method of construction we get that n is odd and thus Bne(Sf -M) and that the 
chain (Bk)

n

k=\ is maximal in the following sense: there do not exist B', B" with 
BnzDBrB\ B'eM and B"e(Sf-M). Hence BneM*. 

Let us suppose now that A\M* + 0 for all 
A e (Sf-M). Then for all Ae(Sf-M) there exists BeA\(Sf-X) such that 
B | M cz Mo. Wc can easily see that B is not the beginning of any infinite decreasing 
alternating chain. 

Lemma 15. Let M be a g-o-ideal on S such that (Sf-M)C. Then M is not 
pathological. 

Proof. According to Lemma 14 it is sufficient to show that for all Fe(Sf -M) 
we have F\M* + 0. Let Fe(Sf-M). If F\MczM0, F\M*J=0 holds. If 
F\(M — Mo)i=0, then according to Zorn Lemma there exists a maximal family 
(Ei)i e j of pairwise disjoint elements from F\(M-M0). According to Lemma 13, 

the family (£.)<e/ is at most countable and thus E = [jEieM. From F&M and 
iel 

&£F\M'tt follows by (g) that F-EiM. From the maximality of (E,) z e / it follows 
that F-E does not contain any element of M—M0 and thus (F-E)\MczM0, i.e. 

ł * 

Theorem 5. (The Hahn—Herer decomposition theorem) Let M be a g-o-ideal 
*n &' Let M be not pathological. Then there exists a family (A,)teT of pairwise 

disjoint elements of Sf such that \ (J (A, | M)] cz M0 and (x - I J A,) | Sfcz M. 
LteT J \ teT J 
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Proof. If M = Sf, then the singleton {A} where AeSf satisfies the conditions in 
the conclusion of the theorem. Let (Sf- M) + 0. Since M is not pathological, 
M* =£0by Lemma 14. Then by Zorn Lemma there exists a maximal family (At)teT 

of pairwise disjoint elements of M*. Since AteM*, At\MaM0 holds for all te T 

and thus U(At\M)ci^iio. 
t e T 

It remains to prove [X- ijAt) \SfczM,. If this were not true, there would exist 

Be(x-\jAt\e(9?-M). Then by Lemma 14 B\M*±0 which contradicts the 

maximality of the family (At)teT. 

II. Applications and connections with other results 

In the second chapter we shall deal with applications of the results obtained in 
sections 1 to 4. These applications will first concern set functions with values in an 
Abelian semigroup with a neutral element. This includes, of course, vector spaces 
as a special case. 

The extended real numbers R = R u{oo} are included as a range of our measure 
too. It is sufficient to take the usual addition in R and to put r + oo = oo + r 
= 00 + 00 = 00. 

The results of the present paper can further be applied to multimeasures (see the 
paper [24] by Christianne Godet—Thobie) and to submeasures (see e.g. the paper 
[23] by Ivan Dobrakov) 

Preliminaries 

Let us now introduce definitions for all the remaining sections. 

Definition 9. Let \i be a set function defined on Sf. Then the system M = 
{EeSf: fi(F) = 0 for all FeE\Sf} is called the null system ofy,. 

Obviously " 0 " from the definition 9 indicates the neutral element of the 
semigroup which contains the values of the set function fi. According to definition 
9 we can easily verify that the null system will be hereditary. Note that in the rest of 
the paper only such set functions \i for which /i(0) = O are considered. 

Definition 10. Let \i,v be set functions defined on Sf and M, X be their null 
systems. Then we say that \i is v-singular (we denote JU_LV) iff MLK. 

We say that \i is dominated by a set function v (we denote ii<v) iff MZDN. 

We say that \i is equivalent to v (we denote ii = v) iff M=Jf. 
R e m a r k 3. If /J is a set function and F a locally measurable set, then we can 

define the contraction of \x by F in the following way: \iF(E) = \i(Fc\E) for all 
EeSf. 
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The following proposition plays an important role in the proofs of the corollaries 
in Chapter II. It is significant because with its help the applications of abstract 
results to set functions are rather straighforward. The proof of the proposition is 
not difficult. 

Proposition 1. Let M be the null system of a set function [i, then MF is the null 
system of [iF i.e. MF={Ge&): \iF(E) = 0 for all E e G \ tf). 

Definition 11. Let \x be a set function defined on £f and M be its null system. 
Then we say that \i satisfies CCC (i.e. the countable chain condition, see for 
example [\9]) if it satisfies (<f-M)C. 

5. Applications of the Lebesgue decomposition theorem 

Applications of abstract formulations will begin with some corollaries of 
Lemma 2. 

Corollary 1. Let [i, v be set functions defined on 9> and let M, X be their null 
systems, let \i be additive, M be a o-ideal such thatJfciM and let (M - N)C hold. 
Then there exists FeM such that vF =fi and \x — \iF. 

Corollary 2. Let v be an additive set function defined on Sfsa tisfying CCC. Then 
there exists Fetf such that v = vF. 

The proof of the Corollary 1 follows from Lemma 2 and Proposition 1. Accord­
ing to Lemma 1, FeM implies MF = &) and thus jUF = 0 (i.e. [iF(E) = 0 for all 
E e &*). Hence /i = /iF

x by additivity. 
Corollary 2 follows from Lemma 2 for M = &>. 

Corollary 3. Let \i, v be set functions and M, N their null systems. Let M be 
a o-ideal and let (M-N)C hold. Then there exists FeM such that vE^<^ and 
vF±n. 

If moreover v is additive, then v = vE + vE±. 
The proof is evident from Theorem 1 and Proposition 1. (Note that v(0) = O as 

was supposed at the beginning of the chapter) 
The questions of the Lebesgue decomposition theorem and propositions con­

cerning it were discussed by many authors. 
Omitting the most classical results, the standard formulations of the Lebesgue 

decomposition theorem may be found e.g. in [13, Theorem 32.C], [3, Theorem 
47.3]. Other proofs are in papers [4], [22]. Even the following very simple example 
shows that our result is stronger than the results where totally a-finitness or 
finiteness is required for v. (These assumptions are stronger than the assumption 
that v satisfies CCC). 

Let v be defined on Sf= {0, X} where x+ 0 in the following way: v(0) = 0 and 
v(X) = oo? and let \i be an arbitrary measure. Then the hypotheses of Theorem 1 
and of the Corollary 3 are satisfied, but v is not a-finite. 
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Problems of the formulation of the Lebesgue theorem in terms of the null 
systems were discussed by Ficker in [8], [9]. He uses the assumptions XeSf and 
(Sf — N)C. His result can be obtained directly from Theorem 1. The result of 
Musial [19; Theorem 9] which assumes v<ty also follows from Theorem 1 and 
Corrolary 3. 

With the aim to compare the result mentioned above I give an example which 
shows that the used assumption (M -N)C, is weaker than the assumption CCC. 
This example shows that Theorem 1 is stronger than all formulations of the 
Lebesgue theorem mentioned above. 

It also shows that Ficker's assumptions XeSf and (Sf-Jf)C and MusiaVs 
assumption v<^/i are not necessary. 

Example 3. Let Sf be the a-ring of all countable subsets of R. Let (2R, A) be 
the group of all subsets of the set R with symmetric difference as the group 
operation. The convergence A„—»A will be used in the usual sense (i.e. A„ —> A iff 

A = Q PI Ak - H U A J . We can easily see that (2R, A) with the convergence 
n — 1 k = n n = \ k = n J 

topology introduced in such a way forms a Hausdorff topological group. Let v and 
\i be measures defined on Sf as follows: 

v(A) = AnR0 and /u(A) = A n l for A eSf. Since 0 is the neutral element in the 
group (2R, A) we have M= {A eSf: A cl} and M = {A eSf: A czR0}. We can 
easily verify that the assumption (M - N) C of the Theorem 1 is fulfilled and that 
the required decomposition exists, but the measure v with values in the group 
(2R, A) does not satisfy CCC. 

I also call your attention to Lipecki's paper [18], where he for the first time 
mention the applications of abstract formulations for measures in a topological 
semigroup. 

Corollary 1 includes results [3, Theorem 47.3], and [20, Lemma] as special 
cases, Corollary 2 involves results dealing with exhaustion [16, Theorem 3.1], [13, 
excercise 17.3]. For a further generalization of the last two mentioned results see 
Neubrunn's principle of the exhaustion in [2]. 

As to the applications of our Theorem 1 (or further results in this paper) I call 
your attention to the fact that if \i is a measure with values in a metrizable 
topological group, then \i satisfies CCC. (see Kluvanek [16, Section 3] and also 
more generally Lipecki's proposition in [17]) 

6. Applications to decompositions into totally atomic 
and atomless parts 

Definition 12. Let v be a set function defined on Sf and X be its null system. 
Then we say that A is an atom (more exactly a v-atom) if A e sd(Jf). The set of all 
v-atoms will be denoted by s4(v). 

63 



Definition 13. Let v be a set function defined on a o-ring 9 and letJfbe its null 
system. Then we say that: 

(1) v is atomless (atomic) if sd(v) = 0 (sd{v) £ 0) 
(2) v is totally atomic (resp uniformly totally atomic) ifJfis totally atomic (resp. 

uniformly totally atomic). 

Corollary 4. Let v be an atomic additive set function on 5/ such that its null 
system Jf satisfies (si{JC)* -Jf)C. Then there exists A esi(Jf)* such that vF± is 
atomless and vF is uniformly totally atomic. 

ff Jf is a o ideal then the condition (si(Jsr)*-,^)C holds iff sd(Jf)C. 
The proof s evident from Theorem 2 and Lemma 9. 

Corollary 5. Let \k be set functions defined on (J andJfk be their null systems for 
k = 1, 2, ... Let v be a set function the null class of which is a o-ideal such that 

Jf-D n Jfk and let (Jf Jfk)C be satisfied for all k e N. Then there exists Fe Jfsuch 
k-\ 

that {A-F: A es<t(v)} c \J.s4(vk) 
k 1 

The proof of the corollary is evident from Theorem 3. We point out that in the 

particular case if we put v = ^vk, then the condition D Jfk aJf in Corollary 5 is 
k-\ k-\ 

fulfilled 
Thus if we suppose in Corollary 5 v3 = v4 = ... = 0 and v = Vi + v2 and sd(Jf\) = 

sd(Jf2) = 0, and if moreover we assume (Jf-Jfx)C and (Jf-N2)C instead of 
(^-Jfi)C and (y-Jf2)C, we get the first part of the Hoffmann—Jorgensen's 
Theorem 4 in [15] and also Statement 1 in [19] and Corollary 3 in [18]. 

7. Remarks on the Hahn decomposition theorem 

Let v be a singed measure defined on Sf, which does not attain the value - oo. If 
we put Jf~-={Ee9?: v ( £ ) ^ 0 } , $>={EecJ' v ( E ) ^ 0 } then &,Jf are #-a-ideals 
such that 3>uJf= &>. It is well-known e.g. from [13] that $*, Jf satisfy the property 
(ix). See also [7]. 

Theorem 3 is thus a generalization of the classical Hahn decomposition theorem. 
An abstract formulation of the Hahn theorem which generalized the classical 

version was introduced for the first time by Cervefiansky and Dravecky in [7]. 
Their proposition will be denoted (CD). They consider sysicnis 0*, .JV*, ££, which are 
analogues of the systems {E e 9>: v(E) ^ 0 } , {E e &>: v(E) ^ 0 } , { e Etf: v{E) = 0} . 
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Among the hypotheses of the (CD) proposition there are the following assump­
tions : 

a,) 0e£cz&nJf, 
a2) (&-%) satisfies (vi), 
a3) (&-£)C. 

It is possible to show that if 3P, Jf, 2C satisfy the assumptions in (CD), then &, Jf are 
a-ideals satisfying (viii), (ix) and thus Theorem 3 includes the (CD) proposition. 
The following example shows that the (CD) proposition does not imply our 
Theorem 3. 

Example 4. Let 9*= {A: AczR, A is at most countable} and I = R-R0. 
Evidently Sf is a a-ring. Let us define the systems &>,Jf as follows: & = 
{A e&: A a I}, Jf= {AeSf: A is infinite} u { A e ^ : A is finite, AnRo±0} u 
{0}. It is easily seen that 3>, Jf are #-a-ideals and that SPuJf=<?. Further 
SP-Jf= {AeS:A is finite, A c / } - {0}, Jf- &= {Ae9>: AnRo±0}. As each 
set from (Jf-0>) contains at least one rational number we have (Jf—3>)C. 
Moreover as each set Ne & is at most countable for all Ne(Jf-&) the condition 
[N\ (5P — Jf)]C is satisfied. Thus we have shown that 3>, Jf satisfy the axioms (vi), 
(vii), (viii), (ix) and thus Theorem 4 can be successfully used. 

We shall show that no system ££ exists for which the triple (0>, Jf, 2t) or 
(Jf, &, T) satisfies aO, a2), a3). Suppose the contrary. As 3f c &nJf then 0> - 3? = 
&-&nJf = 9-JT = {Aetf: A c / , A is finite}-{0}. Due to a2) &-%=> 
{Ae<f: AczI}-{0}. Hence 2£=&-(&-2£)c:{0} and thus %, = {0}. 
Then Jf-2E= {Aetf: A is finite, AnRo0} u { A e ^ : A is infinite}. It is easily 
seen that neither the condition (&-3£)C nor (Jf-2£)C holds true and thus the 
triples (&, Jf, %), (Jf, &, 2E) do not satisfy the assumption a3) in (CD). 

8. Applications of the Hahn—Herer theorem 

Definition 14. Let \ibe a set function. Then the system M = {Ee£f: ii(E) = 0} 
will be called a null-valued system (more exactly a ^null-valued system). 

Let us note that if JU is a measure (i.e. a a-additive set function) with values in 
a topological semigroup, then M is a #-a-ideal. 

Corollary 6. Let & be a o-ring and \ibe a set function defined on 9>. Let the 
null-valued system of pi be a nonpathological g-o-ideal. 

Then there exists a system (At)teT of pairwise disjoint members of (tf — M) such 
that if some set A is from At \ M for some teT, then A is \i-null and each set from 

(UA, ) \&>is \i-null. 
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The proof of the corollary is evident from Theorem 5. Let us also note that 
according to Lemma 15 a g-a-ideal satisfies [ff— M)C, then M is not pathological. 

Remark 4. Theorem 5 and Corollary 6 generalize Herer's result in [14] and 
cVo generalize Theorem 2 from Lipecki's paper ([18]). 

In [14] Herer introduces Example 3 to which it is not possible to apply 
uaccessfully the results mentioned in [18] and in [14]. But our Theorem 5 and 
\>rollary 6 can be used also for this example to prove the existence of 

Hahn—Herer decomposition. 

9. The Hahn decomposition theorem for measures with values 
in a partially ordered semigroup 

In this section we shall introduce the Hahn theorem for measures with values in 
? partially ordered topological semigroup G. According to our agreement at the 
1 "ginning the second chapter, G is an Abelian semigroup with the neutral 
clement 0. 

^.et us recall some definitions. A partially ordered semigroup is a triple 
(G, + , = ) where (G, +) is a semigroup, (G, ^ ) is a partially ordered set and 
moreover the partial ordering and the operation of addition are related by the so 
called monotonicity rule, which is in case of an Abelian semigroup as follows: 

(M) a, beG, at%b => a + c = 6+ c forallce G. 

If G is a partially ordered semigroup, then the system P={aeG: a^O} 
(P~ = {a e G: a = 0}) is called a positive cone (negative cone). 

Lemma 16. Let G be a partially ordered semigroup. Then the positive and the 
negative cone satisfy properties 

(a) PnP~ = {0} 
(0) P + PaPand P +P czP 

The proof of the property (a) follows from the antisymmetry of the partial 
ordering. (/3) follows from (M) and from the transitivity of the partial ordering. 

Definition 15. Let Gbea partially ordered semigroup with a positive (negative) 
cone P (P~). Then we say that A is purely positive (more exactly purely 
(fi, P)-positive) if y(E) eP for all EeA\ Sf. We say that A is purely negative 
(more exactly (n, P~)-negative) if pt(E) e P~ for all EeA\9*. 

Lemma 17. Every Hahn decomposition of an additive set function \i with values 
in a partially ordered semigroup G is the two-element Hahn—Herer decom­
position. 

Proof. Let {A, Ax} be Hahn's decomposition of an additive set function \i. 
Thus A is (fj,, P~)-negative and A± is (JU, F)-positive where P, P~ are positive and 
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negative cones of the partially ordered semigroup G. Let us put 0> = 
{Eetf: ii(E) e P} and .vV= {E e 9>: n(E) e P'}. We prove first that the following 
property is satisfied: 

(x) Ee<PnJf,FleE\&,F2eE\Jf=> E-FleJf9E-F2e0>. 

Indeed let Ee 3>nN and F.eE 13>. Then pi(Fx) + ii(E-Fx) = JU(E) = 0. Then 
from the inequality pi(Fl) = 0 and using (M) we get JU(FI) + ii(E-Fx) ^ 
li(E-Fx) and thus 01=ii(E - Fx). Hence E-FxeN. Similarly we can prove that 
E-F2e&. 

We denote M = {E e Sf: ti(E) = 0}. According to (a) we have M = &nN. To 
prove that {A, A^ form a Hahn—Herer's decomposition it is sufficient to prove 
that A \M^M0 and A±\JiczMo. Let BeA\M and CeB\9>. As C e A |5f and 
A |5^cz JV we have CeN. For the same reason also B — CeN. Since BeM and 
B - C e JV, by (x) we obtain C e ^ and thus CeM.VJe have proved that £ | 5?c ^ 
and thus A \MczM0. The inclusion A±\MczM0 can be proved analogously. 

Theorem 6. Lef Gbea partially ordered Hausdorff topological semigroup and \i 
be a measure with values in G. Let positive and negative cones of G satisfy: 

(y) xneP (or xneP ) for all neNand ^xne(PuP"), then ^xneP 
n = l n=\ 

(or i>„eP-) 
* = 1 

(<5) {{1(E): Ee¥}czPuP-
(e) {Aey:ii(A)e(P--P)}C 
(C) ifv(E)e(p--P), then {AeE\<f: ti(A)e(P-P~)}C. 

Then there exists Aetf such that A is purely Gu, P~)-negative and A± is purely 
(fi,P)-positive. 

Moreover {A, Ax} is a two-element Hahn—Herer decomposition. 
Proof. Let us put 3>= {Eetf: ti(E)eP} and JV= {EeSf: ^(E)eP'}. Ac­

cording to (a) 0 e 3>c\N. Let Ene3> for all neN. Then ii(En)eP and according to 

(6) J\J En) e PuP~. Hence according to (y) we get that J£li(En) = d\J En) 
\n 1 / n=l \ n = l / 

eP 

and thus [J EneP. Analogically we could show that Jf satisfies (iii) and thus we 

have proved that 3>, N are #-a-ideals. 
. It is easily seen that 0>-N={Ee&>: fi(E)e(P-P~)} and J{-<3> = {Ee&>: 
[i(E)e(P~ - P ) } and condition (£) means that for all Ee(Jf-SP) one has 
[E | (3> - JV)]C and thus 9>, JVsatisfy (ix). From (6) we get that 3>, jV satisfy (viii). 

According to Theorem 2 there exists AeSf such that A | Sfa JV and A x | Sfcz & 
and thus A is purely (ji, P~) -negative and A± is purely (//, P)-positive. 
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The following example shows that the condition (y) is not fulfilled even in the 

case when G is a partially ordered group. 

E x a m p l e 5. Let G be the additive group of real numbers and let us put 

P = {r - z • e: r e R0, r =~ 0, z = 0, z is an integer} where e is the base of the natural 

logarithm. Since G is a group, then F = {xeG: -x eP}. It is easy to verify that 

the conditions F n F ~ = {0} and F + F c z F are fulfilled and thus according to 

Theorem II.2. in [11], F defines a partial ordering. 

But the condition (y) is not fulfilled because if we define xn = -, -T-T for all 
{n- \)\ 

neN, then xneP for all n eN, but ^xneP . 
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ТЕОРЕМЫ О РАЗЛОЖЕНИИ В ТЕОРИИ МЕРЫ 

Петер Цапек 

Резюме 

В первой главе работы были получены абстрактные формулировки следующих теорем 
о разложении в теории меры: теоремы Лебега, теоремы о разложении меры на неатомическую 
а вполне атомическую части, теоремы Хана, теоремы Хана—Герера. Здесь также приводится 
абстрактная формулировка и обобщение теоремы Хоффманн—Йогенсена о сумме двух бе­
затомических мер. Во второй главе приведено применение абстрактных формулировок 
и сранение их с известными родственными результатами. В девятом разделе доказана теоремы 
Хана для мер со значениями в частично упорядноченной топологической полугруппе, из которой 
следует как частичный случай класическая теорема Хана. 
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