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K-RADICAL CLASSES OF ABELIAN LINEARLY
ORDERED GROUPS

JAN JAKUBIK

The notions of a radical class and a semisimple class of linearly ordered
groups were introduced and studied by C. G. Chehata and R. Wiegandt
[1]. Further results in that field were obtained in [6], [7] and [10].

Radical classes and semisimple classes of abelian linearly ordered groups
were investigated in the papers [9], [11], [12] and [5]. Let 4, be the class of all
abelian linearly ordered groups.

Let X be a radical class of abelian linearly ordered groups. X is said to be
a K-radical class if it can be defined by means of the properties of the lattices
of convex subgroups of linearly ordered groups belonging to X.

An analogous notion of K-radical class of lattice ordered groups was studied
by P. Conrad [2]. Cf. also [8] and [3].

Let Z, be the collection of all K-radical classes of abelian linearly ordered
groups. The collection % is partially ordered by inclusion.

It will be shown that %, is a complete lattice. For § # X = ¢, let T(X) be
the least element of %, containing X as a subclass. A constructive description
of T(X) will be presented. It will be proved that the relation

T,(X) = Ext Lat Hom X

is valid. (For denotations, cf. Section 1 below.) Let #, be the lattice of all radical
classes of abelian linearly ordered groups (cf. [9]). It will be proved that Z is
a closed sublattice of #,.

1. Preliminaries

The class of all abelian linearly ordered groups will be denoted by ¢,. For
Ge %, let ¢(G) be the system of all convex /-subgroups of G. The system c(G)
is partially ordered by inclusion. Then, in fact, ¢(G) is a linearly ordered set.
Moreover, ¢(G) is a complete lattice. From this it follows that the lattice
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operations in ¢(G) coincide with the corresponding set-theoretical operations
i.e., for {G},.; € c(G) we have

/\fE,Gl: mlelGl’ \/:chi= UIEIGI'

We recall some notions concerning radicdl classes of abelian linearly ordered
groups (cf. also [9]).

By considering a subclass X of ¢, we always suppose that X is closed with
respect to isomorphisms and that {0} e X.

A subclass X of 4, is said to have the transfinite extension property if,
whenever Ge %, and

{0l=G,cG,c... G, = ... (a<9)
1s an ascending chain of convex subgroups of G such that
Gyl ), 4G, € X for each B < 6.

then | ), . ;G, belongs to X. We express this fact by saving that X is closed with
respect to transfinite extrensions.

Under the above denotations, the linearly ordered group \ ), G, is said to be
a transfinite extension of linearly ordered groups G, (a < 8), where G, is isomor-
phic to G,/ J, - .G, for each a < §

A class X < %, is said to be a radical class if it is closed with respect to
homomorphisms and with respect to transfinite extensions.

1.1. Definition. Let X be a radical class of abelian linearly ordered groups. X
is said to be a K-radical class, if it satisfies the following condition: whenever Ge X
and G, € G, such that ¢(G) is isomorphic to c(G)), then G, X.
For each XeZ, let p(X) = T«(X). It will be shown that (i) ¢ is a complete
homomorphism with respect to the operation \/, and (ii) ¢ fails to be a
homomorphism with respect to the operation /\. The lattice £, has no atoms
and no antiatoms. It will be proved that if X is hereditary, then the class Ty(X)
is hereditary as well.

Let Zy be the collection of all K-radical classes; the collection A2 is con-
sidered as being partially ordered by inclusion.

If {X},.,is a subcollection of Z#y, then we obviously have

(\yesX;€ A

Let 0~ be the class of all one-element groups bvelonging to %,. Then 07 € #;
also, 0 is the least element of Z, and ¥, is the greatest element of Z,. Thus we
obtain:

1.2. Theorem. %, is a complete lattice. If {X}},c, is a nonempty subcollection of
Ry, then
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/\ieJXj = mjelXj'

For X = ¢, let Ext X be the class of all Ge%, which can be expressed as
transfinite extensions of linearly ordered groups belonging to X; next let Hom X
be the class of all homomorphic images of elements of X.

Let 7 be a linearly ordered set and for each i€/ let G, be a linearly ordered
group. Let H be the set of all functions f: I — | J,.,G; such that (i) f(i) e G, for
each iel, and (ii) the set {ie I: f(i) # 0} is either empty or dually well-ordered.
The operation + in H is defined coordinate-wise and for f,, f,€ H with f, # f,
we put f; < f; if there exists ie I such that f,(i) < f,(i) and f,(j) = f;(j) for each
jeIwith j > i. Then H is said to be a lexicographic product of linearly ordered
groups G, (ieI) and we write H = I_,G,. If I ={1, 2, ..., n}, then we write also
H=G,°G,0...0G,. :

Let us mention an example of a K-radical class which is distinct from 0~ and
from %,.

1.3. Example. Let X be the class of all linearly ordered groups such that
¢(G) is a well-ordered set. We shall verify that Xe %, and that 0~ # X # &,.

Let Z be the additive group of all integers with the natural linear order. Next
let N and Q be the set of all non-negative integers or the set of all rational
numbers, respectively (with the natural linear order). For each ieN and each
jeQlet H,= H;=Z. Put

Gl = I:eNHi9 Gz = I;eQ}II

Then ¢(G,) is a well-ordered set, while ¢(G,) fails to be well-ordered. Since
G, # {0}, we have 0~ # X # 4,.

If Ge X and He Hom X, then ¢(H) is well-ordered (because ¢(H) is isomor-
phic to a dual ideal of the linearly ordered set ¢(G)). Hence He X. Moreover,
if G’ € Ext X, then ¢(G’) is well-ordered. Therefore X is a radical class of abelian
linearly ordered groups. According to the definition of X we infer that X is a
K-radical class.

Let I be a linearly ordered set. We denote by d(I) the system of all subsets
I, = I which satisfy the following condition: if i, €/, ie/ and i < i}, then i€ [,.
(Hence d(I) is the system of all subsets I, = I such that either I, = @ or [, is an
ideal of I.) The set d(I) is partially ordered by inclusion.

1.4. Lemma. Let I be a linearly ordered set. For each i€ I let G, be a nonzero
archimedean linearly ordered group. Put G = I_,G,. Then the linearly ordered set
¢(G) is isomorphic to d(I).

Proof. The assertion of the lemma is a consequence of the fact that an
archimedean linearly ordered group has no nontrivial convex subgroup.
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If Pis a partially ordered set, x and y are elements of P with x < y and if [x, y]
is a prime interval, then we write x < }.

Let J be a linearly ordered set. For each jeJ let I, be a linearly ordered set
with card I, 2. Assume that the following condition is satisfied:

(a) Letj(1)andj(2) be distinct elements of J and let xe I,y €l ,. Then x = y
if and only if we have either

J(1) <j(2), x =max [;;, and y = min [,
or
J(2)<j (1), y =max I, and x = min [ ,,.

Denote I = | J,.,1;. For u, vel u# v we put u < v if either

(i) there is je J such that both # and v belong to /;and u < v in [,
or

(i) there are j(1) and j(2) in J such that j(1) <(2), uel,,, and vel,,,
Then [ is a linearly ordered set under <, which will be denoted by

M 0

I will be said to be the reduced lexicographic sum of linearly ordered sets /,(j€ J).

From each system of mutually disjoint linearly ordered set [ (je J’), where J’
is linearly ordered and card I'2 2 for each jeJ’ we can construct a reduced
lexicographic sum if some elements of the set | ) ., I/are identified according to
the condition (a). The linearly ordered set constructed in this way will be also
denoted as in (1).

From the definition of reduced lexicographic sum we immediately obtain the
following generalization of Lemma 1.4:

1.S. Lemma. Let J be a linearly ordered set. For each jeJ let G, be a linearly
ordered group, G, # {0}. Let G = I_,;G,. Then the linearly ordered set c(G) is
isomorphic to

d(Z,c(G)).

Next, from the definition of transfinite extension of abelian linearly ordered
groups (cf., e.g., [9]) we infer:

1.6. Lemma. Let Ge¥,. Assume that G is a transfinite extension of linearly
ordered groups H, (a < ), H,# {0}. Then the linearly ordered set c(G) is
isomorphic to

d(£2< ﬂC(Ha))'
We conclude this section by an example of a radical class of abelian linearly

ordered groups which fails to be a K-radical class.
1.7. Example. Let Z be as above. Let us now denote by Q the additive
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group of all rational numbers with the natural linear order. According to
Propos. 2.2in [9], X = Ext Hom {Z} is a radical class of linearly ordered groups
and clearly Q does not belong to X. We have ¢(Z) ~ ¢(Q). Thus X fails to be
a K-radical class.

2. The operation \/ in the lattice #x

If P, and P, are isomorphic partially ordered sets, then we write P, ~ P,. For
X < ¥, we denote by Lat X the class of all abelian linearly ordered groups G
such that there exists G, € X with ¢(G) ~ ¢(G)).

The following lemma is obvious.

2.1. Lemma. Let Ge¥%,, Hec(G). Then the linearly ordered set ¢c(G/H) is
isomorphic to the interval [H, G] of ¢(G).

2.2. Corollary. Let Ge¥%,. If G’ is a homomorphic image of G, then ¢(G’) is
isomorphic to a dual ideal of c¢(G) having a least element. Conversely, let I be a
dual ideal of c(G) having a least element. Then there exists a homomorphic image
G’ of G such that I ~ c(G’).

From 2.2 we obtain:

23. Lemma. Let 0 # X = 9,, Hom X = X. Then we have Hom Lat X =
= Lat X.

2.4. Corollary. Let 0 # X < %,. Then Hom Lat Hom X = Lat Hom X.

2.5. Lemma. Let § # X = %,. Then Lat Ext Lat X = Ext Lat X.

Proof. Let Ge Lat Ext Lat X. Hence there exists He Ext Lat X such that
¢(G) ~ ¢(H). Let ¢ be an isomorphism of ¢(G) onto ¢(H). There exist convex
subgroups H,(a < p) of H such that

{=HcH<c..cH,c..cH(a<p), J,cyH,=H and for each
a < B, Hy/\J, < .H, either is a zero group or belongs to Lat X. Thus we have

=0 'H)s o '\(H)S ..o \(H)S ... G, Jocpo '(H) = G.

In view of 2.2 we have c(¢p~'(H)/\J,<.¢ '(H) ~ c¢(H/\J,<.H,). Hence
G e Ext Lat X and therefore Lat Ext Lat X < Ext Lat X. Clearly Ext Lat X < -
Lat Ext Lat X.

2.6. Lemma. Let ) # X = 9,. Then Hom Ext Hom X = Ext Hom X.

Proof. This follows from Proposition 2.2 in [9].

2.7. Lemma. Let § # X = %,. Put Y = Ext Lat Hom X. Then we have

ExtY=Y,Lat Y=Y and Hom Y =Y.

Proof. The first assertion is obvious, because Ext Ext Z = Z for each
nonempty subclass Z of 4,. The second assertion follows from 2.5. Finally, in
view of 2.4 and 2.6 we have

Hom Y = Hom (Ext Lat Hom X) = Hom Ext (Lat Hom X) =

37



= Hom Ext (Hom Lat Hom X) = Hom Ext Hom (Lat Hom X) =
= Ext Hom (Lat Hom X) = Ext (Hom Lat Hom X) = Ext Lat Hom X = Y.

For ¢ # X = ¢, we denote by Ti(X) the K-radical class generated by X (i.e.,
T(X) is the intersection of all K-radical classes Z with X = Z).

From 2.7 we obtain:

2.8. Theorem. Let 0 # X = %,. Then T,(X) = Ext Lat Hom X.

2.9. Theorem. Let X; (iel) be K-radical classes. Then in the lattice Ry the
relation

\/:eIXi = Ext (Uie IX|)

is valid.
Proof. We have obviously

\/lelXi = TK(Uiele)'

Because X; are K-radical classes, we obtain X; = Hom X; and Lat X, = X, for
each ie /. Hence in view of 2.8,

TK(UielXi) = EXt(U:eIX,)-
The above theorem gives a constructive description of the operation \/ in the
lattice %y.

3. Another characterization of K-radical classes

We have defined a K-radical class as a radical class of abelian linearly ordered
groups fulfilling a particular condition. In this section it will be shown that a
K-radical class can be characterized directly, without using the notion of a
radical class of an abelian linearly ordered group.

Next we shall prove that the lattice #; is a closed sublattice of the lattice of
all radical classes of abelian linearly ordered groups.

Let 0 # X = ¢,. We denote by /(X) the class of all chains .# having the
property that there exists Ge X with ¢(G) ~ L.

3.1. Lemma. Let X be a K-radical class. Then the following conditions are
Sulfilled:

(1) If J is a well-ordered set and if for each je J there is given a linearly ordered
set L, with card L; > 2 belonging to I(X), then d(X.,L,) also belongs to /(X).

() If Lel(X) and if L, is a principal dual ideal of L, then L,el(X).

(i) if Lel(X), Ge¥9,, C(G)~ L, then Ge X.

Proof. The assertion (i) follows from the fact that X is closed with res-
pect to transfinite extensions, and from 1.6. Next, because X is closed with
respect to homomorphisms, from 2.2 we infer that (ii) is valid. The validity of
(ii1) is obvious.
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3.2. Lemma. Let 0 # X < %,. Assume that the conditions (i), (i1) and (iii) from
3.1 are satisfied. Then X is a K-radical class.

Proof. From (i) and from 1.6 it follows that X is closed with respect to
transfinite extensions. According to (ii) and 2.2, X is closed with respect to
homomorphisms. Thus X is a radical class of abelian linearly ordered groups.
Next, from (iii) we infer that X is a K-radical class.

3.3. Theorem. Let O # X = %4,. Then X is a K-radical class if and only if the
conditions (1), (ii) and (i) are valid.

Also, from 1.5, 3.1 and 3.2 we infer:

3.4. Theorem. Let # O & be a class of chains. Assume that & is closed with
respect to isomorphisms. Then the following conditions are equivalent:

(@) There exists a K-radical class X such that (X)) = &.

(b) & fulfils the conditions (1), (ii) and (iii) from 3.1 (with I(X) replaced by ¥ ).

Let #, be the collection of all radical classes of abelian linearly ordered
groups; 4, is partially ordered by inclusion. Then £, is a complete lattice;
moreover, we have (cf. [9])

3.5. Proposition. Let A,€e R, (i€ I). Then in the lattice R, the relations

/\iElAl = mielAi’ \/ielAi = EXt(UielAi)
are fulfilled.

The above proposition and Theorem 2.9 yield:

3.6. Theorem. % is a closed sublattice of the lattice R,.

Let 0 # X = %,. The intersection of all elements Ye £, with X < Y will be
denoted by T;(X) (the radical class of abelian linearly ordered groups generated
by X). We have T(X) = Ext Hom X (cf. [9]).

Let us consider the mapping ¢(X) = Tx(X), where X runs over the lattice Z,.
We can ask whether ¢ is a A -homomorphism or a v -homomorphism.

3.7. Example. There are X, and X, in £, such that
o(X) A X3 # o(X) A (X))

Let X,=T(2Z2) and X,=T(Q). Then X, A X, =X,nX,=0", hence
o(X, A X,) =07. On the other hand, ¢(Z) ~ ¢(Q) and thus @(X)) = ¢(X,).
Therefore ¢(X;) A o(X,) #07.

3.8. Theorem. Let X, (ie I # Q) be elements of R,. Then we have

(P(\/ielXi) = \/iel(p(/Yr)'
Proof. The assertion easily follows from the fact that for X = %, we have
Lat Ext X = Ext Lat X, whence T;(X) = Lat Ext Hom X.
By summarizing, we obtain:
3.9. Corollary. The mapping ¢ is a complete homomorphism with respect to the

operation v , but it fails to he a homomorphism with respect to the operation A .
Let {0} # Ge¥9, Let us recall the notion of the skeleton of G (cf.
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Fuchs [4]). Let us denote by ¢,(G) the system of all principal convex sub-
groups of G. Let ITbe a set indexing the system ¢,(G) and inversely ordered. For
ne IT we denote by C, the corresponding element of ¢,(G). There exists a
uniquely determined element D, of ¢(G) such that D, < C, is valid in ¢(G). Put
B,= C,/D,. Then B, is a real group. The skeleton of G is defined to be the
system [I1, B, (we IT)]. Put IT = I1(G).

The following consideration shows that by defining the notion of a K-radical
class we can apply the linearly ordered set I1(G) instead of ¢(G).

It is easy to verify that a nonzero element H of ¢(G) belongs to ¢,(G) if and
only if there exists H, e c(G) with H, < H. Hence for any G,, G, %, we have

(G) = c(Gy) = Cp(Gl) = Cp(Gz)-

Next, ¢(G) is isomorphic to the system of all ideals of the linearly ordered set
¢,(G) (this system of ideals is linearly ordered by inclusion). In fact, let H e ¢(G);
we denote by ¢@(H) the system of all principal convex subgroups H, of G with
H; < H.Then ¢is an isomorphism of ¢(G) onto the system of all ideals of ¢,(G).
Thus

¢,(G)) =~ Cp(GZ) = c(G)) ~ (G)).

Therefore ¢(G,) is isomorphic to ¢(G,) if and only if IT(G,) is isomorphic to
11(G,).

Darnel [3] applied the notion of the skeleton by constructing examples of
radical classes (these exampies fail to be, in general, K-radical classes).

4. Nonexistence of atoms and antiatoms in 2,

Let a be an infinite cardinal. We denote by w(a) the first ordinal with
cardinality a. Let Ge 9, G # {0}. We put

G(o) = I,,G;

where I = w(e) and G, = G for each iel.
Each dual ideal of I is isomorphic to I. Thus we obtain

4.1. Lemma. Let {0} # He Lat Hom Y where Y = {G(a)}. Then card H = a.
In view of 2.8 we infer:

4.2. Corollary. Let {0} # He Tx(Y) where Y = {G(@)}. Then card H = a.

4.3. Lemma. Let {0} # Ge ¥, Let a be a cardinal with a > card G. Then
0~ < Ti(G(@)) < T(G).

Proof. Since G(a)e Tx(G(a)), we have 0~ < Tx(G(a)). According to the
definition of G(a), the relation G(a)e Ext{G} is valid. Hence G(a)e T(G)
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(cf. 2.8) and thus T;(G(a)) < Tx(G). In view of 4.2, G does not belong to
T(G(a)). Therefore Tx(G(a)) < T(G).

4.4. Theorem. The lattice R, has no atom.

Proof. Let Xe%y, X # 0™. There is {0} # Ge X. Hence T(G) £ X. Now
from 4.3 we obtain that X cannot be an atom in %.

4.5. Lemma. Let {0} # Ge 9,. Let a and B be cardinals, card G £ a < B. Then
Tx(G(B)) < T (G(a)).

Proof. G(B) can be represented as a lexicographic product of factors iso-
morphic to G(a). Hence G(B)e Tx(G(a)) and thus Tx(G(B)) < Tx(G(a)). Now
from 4.2 we obtain G(a) ¢ Tx(G(B)). Therefore T(G(P)) < T((G(a)).

Let C be a subcollection of %. If there exists an injective mapping of the class
of all cardinals into C, then C will be said to be a proper collection.

Theorem 4.4 can be strengthened as follows:

4.6. Theorem. Let 0~ # Xe€ Ry. There exists C < [0~, X] such that

(1) C is a chain,

(ii) C is a proper collection.

Proof. There exists Ge X with G # {0}. In view of 4.5 it suffices to con-

sider the collection of all K-radical classes Ty(G(a)), where @ runs over the class

of all cardinals larger than card G.
Let {0} # Ge¥,. Let a be an infinite cardinal and let w(a) be as above. Let

1 be a linearly ordered set dually isomorphic to @(a), and for each ie ! let G; be
a linearly ordered group isomorphic to G. We denote G'(a) = I_,G,.

From 2.8 we obtain:
4.7. Lemma. Let {0} # Ge 9, and let a be a cardinal, a > card G. Then G'(a)

does not belong to Ti(G).
Since Ge Hom G'(a), we have G € Ty(G’(a)) and thus in view of 4.7 we obtain
4.8. Lemma. Let G and a be as in 4.7. Then Ty(G) < Ty(G'(a)).
A K-radical class of the form T(G) is said to be a principal element of %.

From 4.8 we get
4.9. Corollary. No principal element of Rk equals %, or is a dual atom of the

lattice Ry.
The second assertion of 4.9 will be strengthened below (cf. Theorem 4.14).

4.10. Proposition. Let Ge¥,and X € Rx. Let {H},_, be the system of all convex
subgroups of G which belong to X. Then | )., H; also belongs to X.

The proof is analogous to that of [1], Proposition 3; it will be omitted.

Under the denotations as in 4.10 we put | J,.,H, = X[G]; this linearly ordered
group will be called the radical of G with respect to X. We have obviously:

4.11. Lemma. Let Ge %, and Xe€ Ry. Put H = G/X[G]. Then X[H] = {0}.

4.12. Lemma. Let {0} # Ge¥%,, {0} # He I (G). Then there exists H, e c(H)
such that H, # {0} and card ¢(H,) < card G.
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Proof. This is a consequence of 2.8.

In view of the construction of G’(a) we have:

4.13. Lemma. Let {0} # Ge¥, and let a be an infinite cardinal. Let
{0} # He c(G'(@)). Then card ¢(H) = a.

4.14. Theorem. The lattice Ry has no dual atom.

Proof. By way of contradiction, assume that X is a dual atom of ;.
Hence there exists G, €%, such that G, does not belong to X. Thus X[G,] # G,.
Put G = G,/X[G,]. Then G # {0}. In view of 4.11 we have

(M X[G] = {0}.

Therefore G does not belong to X and hence Tx(G) £ X. Thus we obtain
(2) Xv T(G)=9,.

Let a be a cardinal, ¢ > card G. In view of (2) and 2.9 we have

3) G'(a)e X v Ty(G) = Ext(X U T(G)).

From (3) it follows that there exists a nonzero convex subgroup H of G’(a) such
that either He X or He T(G). But in view of 4.12 and 4.13, the relation
H e Ty(G) cannot hold. Hence we have He X.
From the construction of G’'(a) we infer that H can be expressed as a
lexicographic product H = H, - H, such that the following conditions are valid:
(i) H, is isomorphic to G'(a);
(ii) H, is isomorphic to a convex subgroup of G.
Since H e X and because H, is a homomorphic image of H we get H,e X, thus
X[H,] = H,. On the other hand, from (1) and from (ii) we infer that X[H,] = {0},
whence H, = {0}. Thus (i) yields that H is isomorphic to G'(a), hence G'(a)€ X.
Because Ge Hom G’(a) we obtain G € X, which is a contradiction.

5. Hereditary classes

Let) # X © 9,. The class X is said to be hereditary if it is closed with respect
to isomorphisms and if it fulfils the following condition: whenever Ge X and
Hec(G), then He X.

In 5.1—5.3 below we suppose that X is a nonempty subclass of ¥,.

5.1. Lemma. Let X be hereditary. Then Lat X is hereditary as well.

Proof. Let GelLatX and Hec(G). There exists G,€X such that
c(G,) ~ ¢(G). Let ¢ be an isomorphism of ¢(G,) onto ¢(G). Put H, = ¢~ ' (H).
Since X is hereditary, we have H, e X. Clearly ¢(H,) =~ ¢(H) and hence He Lat X.

5.2. Lemma. Let X be hereditary. Then Hom X is hereditary.

Proof. Let GeHomX and Hec(G). There exists G,e X and G,ec(G))
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such that G ~ G,/G,. Let ¢ be an isomorphism of G onto G,/G,. We denote by
G, the set of all g,€ G, such that |g;| < |g)| for some g, € G, having the property
that there exists he H with g,e¢@(h). Then G, is a convex subgroup of
G,, G, < G, and G,/G,~ H. Now because X is hereditary we infer that G,
belongs to X and hence G,/G,e Hom X. Therefore He Hom X.

5.3. Lemma. Let X be hereditary. Then Ext X is hereditary.

Proof. Let GeExtX and let Hec(G), H # G. There exists a chain of
convex subgroups of G of the form

{0}=G, =G, c...cG,c...=G(a< p),
Ua<pGa= G
such that for each @ < 8 we have G,/| J,.,G,€ X. Thus
H=HNG=\J,.s(HNG).

There exists the first ) < g with H < G,. Hence HN G, = G, for @ < a,. The
linearly ordered group H is a transfinite extension of linearly ordered groups
GJ\),<.Gla<a) and of H/),.,G,. We have H/\J,.,G,ec(G,/
U,<4 G,)€ X. Since X is hereditary, we infer that He Ext X.

Remark. Lemma 5.3 can be obtained as a consequence of Theorem 2.1,
[10]. The proof of this theorem is more involved than the proof of 5.3, since the
commutativity of linearly ordered groups under consideration is not assumed.

5.4. Theorem. Let 0 # X = ¥,. Assume that X is hereditary. Then the class
Tx(X) is hereditary as well.

Proof. This follows from 5.1, 5.2, 5.3 and 2.8.

Also, from 5.1, 5.2 and [9], Propos. 2.2 we obtain (cf. also [5], Corollary 2.2)

5.5. Corollary. Let ) # X = 9,. Let X be hereditary. Then T(X) is hereditary.
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K-PAJJUKAJILHBIE KJIACCBHI ABEJIEBbIX JIMHEMHO YIIOPSAJIOYEHHBIX PYIII

Jan Jakubik

Pe3rome

Jnsa nuHEeHHO ynopsao4eHHOH rpynnbl G 0603HayuM yepe3 ¢ (G) SIMHEHHO YMOpSIOYEHHOE
MHOXECTBO BCEX BHINYKJbIX noarpynn. G. PaaukanbHbiid knacc X (BcMbicne Yexatsl-Buranara)
Ha3piBaeTca K-paJMKaJibHBIM, €CJIH IS KaXI0H abeneBoil TMHEHHO ynopsaaoYeHHO# rpynnsl G, H
kaxporo G,eX u3 ¢(G,) ~ ¢(G,) BeiTekaer G,€X. B craree uccneayercs pemerka bcex K-
paZMKaJIbHBIX KJacCOB.
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