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ON A SINGULAR SET FOR THE RESTRICTION 
OF THE CHARACTERISTIC M A P 
TO A LINEAR SUBSPACE OF Mn 

MARCIN SKRZYNSKI 

(Communicated by Michal Zajac ) 

ABSTRACT. We give some basic characterizations of the set of matrices A £ 
Mn (over an algebraically closed field F of characteristic zero) such tha t the 
image X A ( ^ ) 1S n o t dense in F71 , where C C Mn is a fixed linear subspace and 
XA : M.n —> IF™ is the characteristic map associated with A. We study the case 
of n G {2,3} in a more detailed way. 

Preliminaries and introduction 

Throughout the note we work over an algebraically closed field F of charac
teristic zero. We write F* instead of F \ {0}. We mean by MmXn the set of 
all m x n -matrices whose entries are elements of F. We write Mn instead of 
MnXn. We denote by 0 and I the zero matrix and the unit matrix belonging 
to Mn. We define QCn to be the full linear group of size n over F, i.e. 

QCn := {U G Mn : U is invertible} . 

Furthermore, we put s\n = {A G Mn : tr(A) = 0} and Tn = {A G Mn : 
A is upper triangular}. We refer to the linear subspaces of Mn of codimension 
one as (linear) hyperplanes. For an A G Mn we define Diag(A) G Mn to be 
the diagonal matrix whose diagonal entries coincide with those of A. 

A map \&: Mn —r F , where Y is an arbitrary set, is QCn-invariant if 
*(U-XAU) = *(A) for all A G Mn and for all \J e QCn. A set £ C Mn 

is ^ - i n v a r i a n t if U~1£U := {U~XAU : A G £} C £ for all U G QCn. 
The set £ is a cone if it is nonempty and ¥£ := {AA : A G F , A G £} C £. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 15A18, 14A10. 
K e y w o r d s : characteristic polynomial of a matrix, characteristic map , dominan t map , linear 
space of matrices. 

229 



MARCIN SKRZYNSKI 

Let F[A^n] be the coordinate ring of the space Mn, i.e. the polynomial ring 
F [ T n , . . . ,T n n] in n2 variables which are the entries of the "generic matrix" 
T = [Tkl]k l=1 n. For a positive integer j < n we define s3

n G F[A/In] to be the 
sum of all principal minors of size j of the matrix T . Notice that sn(A) = tr(A), 

n 

S£(A) = det(A), and Tn + ]T (-1)3 s3
n(A)Tn~^ G F[T] is the characteristic 

j=i 
polynomial of a matrix A G Mn . 

We consider an arbitrary finite dimensional vector space X over F and all 
their subsets as topological spaces equipped with the Zariski topology induced 
by any linear isomorphism X —> F^ , where d = dim X. This is the only topology 
we deal with in the text. 

Let X and Z be finite dimensional vector spaces over F, let d = d i m X , 
w = d i m Z , and let / : X —> W1, g: Z -> F^ be linear isomorphisms. A map 
$ : I D E^—> Z , where E is a closed set, is regular if there is <£: X —» Z such 
that $ = $ | ^ and a o $ o / _ 1 : F^ —•> W*3 is a polynomial map. 

Let E be an irreducible closed subset of X. A regular map $ : E -> Z is 
dominant if the range $ ( £ ) is dense in Z . Notice that the map $ is dominant 
if and only if the rank of the differential d ^ G Mwxv, where v = d i m E , is 
equal to w for a smooth point x G E. 

We refer to [5], [7], [8] for all information needed about Algebraic Geometry, 
to [6], [7] for Algebra, and to [3] for Matrix Theory. 

From now on n stands for an integer not smaller than 2. 

In the present note we deal with the characteristic map XA associated with 

a matrix A e M n , i.e. X A : Mn ~> F i s defined by x A ( B ) = ( s n( A + B ) ) J= i • 

We write x instead of Xo • 

In paper [4] it is shown that, under natural assumptions on a fixed linear 
subspace C C Mn, the set of all matrices A G Mn such that the restric
tion XAIZ"' ^ ~* ^ IS a dominant map contains a nonempty open subset 
of Mn. The authors work over the field of complex numbers. Our purpose is 
to provide basic geometrical characterizations of the "singular set" {A G Mn : 
XA\C ls n o ^ dominant} . We also aim at completely describing that singular set 
in certain simple cases. 

The present note is a self-contained continuation of the work on the charac
teristic map and on the Helton-Rosenthal-Wang theorem originated in [9]. 

Notice that our definition of the characteristic map differs a bit (in the signs 
of coordinates) from that given in [4]. 
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1. Basic properties 

From now on, throughout the text, C stands for a linear subspace of Mn. 
The subject of the note are the sets S(C) and 1Z(C) defined as follows: 

S(C) = {A G Mn : XA(£) is not dense in T } 

and 11(C) = Mn \ S(C). The set S(C) is referred to as the singular set (for 
the restriction of the characteristic map to C). It is easy to see that S(Mn) = 
5(7;) = 0. (In a more detailed way, XA(MJ = XA(TJ = ^ f o r a11 A e Mw) 

Let us remark that 

TZ(C) + 0 = > (dim£ >n k C£ sln). 

The main result of [4] may be rephrased now as follows. 

THEOREM 1.1 (HELTON-ROSENTHAL-WANG). Assume that ¥ coincides 
with the field of complex numbers. Then 11(C) contains a nonempty open subset 
of Mn provided dim£ > n and C % sln . 

In the present approach to the sets S(C) and 1Z(C) we will not make use of 
the above theorem. We begin with a topological property that is not surprising 
but seems to be worth giving an explicit proof. 

PROPOSITION 1.2. The set 11(C) is open in Mn. 

P r o o f . If C = {0}, then 11(C) = 0. Assume that C ^ {0}. Put m = 
dim£, fix a basis in 12, and consider the regular map <£: Mn x C -» MnXm 

defined by $(A, B) = C I B ^ A I / ! ) - (We take into consideration the canonical 
basis in F1.) Define 7i = {C e MnXm : rank(C) = n } . Then % is an open 
subset of MnXm. By the definition of a dominant map via the differential, 
11(C) = Il($""1('rY)), where IT: Mn x C -> Mn is the natural projection. Since 
II is an open map (with respect to the Zariski topology in Mn x C = ¥n + m ) , 
the openess of 11(C) follows. • 

Let us note three useful technical properties of the singular set S(C). 

P R O P O S I T I O N 1 .3 . 

(i) If K C C is a linear subspace, then S(IC) D S(C). 
(ii) If U G GCn, then ^ ( U - ^ U ) = U-1<S(£)U. 

(iii) If S(C) ^ 0 ; then S(C) is a closed cone. 

P r o o f . Property (i) is obvious. Property (ii) follows from the equality 
XA(£) = x (U _ 1 ( A + £ ) u ) t h a t h o l d s t r u e for a11 A G Mn. In order to prove 
(iii), pick A G P and A e Mn and observe that x(AA + C) = x(A(A + C)) = 
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#(x (A+ .£)), where ': F1 -> IP is defined by V((xj)]=1) = ( A ^ ) n
= i - (Re

call that sJ
n is a homogeneous polynomial of degree j.) Since ~ is a linear 

automorphism, x(AA + C) is dense in F71 if and only if so is x(A 4- C). There
fore, S(£) D F*S(£). Since S(C) is a closed set (cf. Proposition 1.2), the latter 
inclusion implies that S(£) is a cone provided it is nonempty. The proof is 
complete. • 

LEMMA 1.4. For an arbitrary set V C Mn, the image x{V) i>s dense in F12 if 
and only if so is x(l 4- V). 

P r o o f . Observe that 
n 

\n + ]T(- l ) j s£(l + A)An"̂ ' = det(AI - (I + A)) 
.7 = 1 

- = d e t ( ( A - l ) l - A ) 

= ( A - i r + ̂ ( - l ) ^ s^ (A) (A- l )^ 
j = i 

for all A G F and for all A G yVfn. Reducing the polynomial on the right hand 
n 

side to the form An + ~~ c-\n~i one can see that there is a triangular affine 
j=i 

automorphism E: F72 -> W1 such that (s£(l + A))n
=1 = ---((s£(A))n

=1) for all 
A e Mn. The assertion follows. • 

Let us turn to the main result of the section. For a closed set £ C Mn we 
define £ C ./Vin to be the Zariski closure of the union (J U - 1 £U. Notice that 
£ is irreducible whenever so is £. e* n 

THEOREM 1.5. The following conditions are equivalent: 

(1) S(C) = $, 
(2) OeTZ(C), 
(3) \€K(C), 
(4) C = Mn. 

P r o o f . Implication (1) =-t> (2) is obvious. Implication (2) = > (1) is 
a consequence of Proposition 1.3(iii). Equivalence (2) <=$> (3) follows from 
Lemma 1.4. Assume that condition (4) is satisfied. Then, by the continuity and 
the 6Cn-invariancy of the map x > w e n a v e 

F ^ - X ( / : ) C X ( u u-1cu)=x(C), 
KUeGCn

 J 

where the bars denote Zariski closures. Condition (2) follows. Assume that (2) 
is satisfied. Then the inverse image x~l (x(£)) contains a nonempty open subset 
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of Mn. Since the set V := {A G Mn : all eigenvalues of A are of multiplicity 1} 
is open, the intersection X~l{x{C)) H V is dense in Mn. Pick an A G 
X {x(C)) n V. Then there is a B G C such that x(A) = x ( B ) . Therefore, 
the eigenvalues of B coincide with those of A . It turns out that A = U - 1 B U 
for a U G QCn. Hence, x " 1 (x(£)) H V C £ . Condition (4) follows. The proof is 
complete. • 

The above theorem extends, in some sense, the main results of [1], [2]. 

COROLLARY 1.6. If S(C) ^ 0. then S(C) D Fl + C. 

P r o o f . Observe that x(AI + A + C) = x(AI + C) for all A G F and for all 
A G £ . Furthermore, by Theorem 1.5 and Proposition 1.3 (iii), the assumption 
S(C) ^ 0 yields Fl C S(C). The claim follows. • 

COROLLARY 1.7. 7/ C is a hyperplane in Mn and C^s\n, then S(C) = 0. 

P r o o f . Notice that s\n is the only 6£n-invariant linear hyperplane in Mn 

and that £ is a 6£n-invariant irreducible closed subset of Mn containing C. 
Thus, the above assumptions on C imply C ^ £ , which yields d i m £ > d i m £ . 
Therefore, C = Mn. Using Theorem 1.5 completes the proof. • 

Let VnC Mn be the set of all diagonal matrices. Notice that by Theorem 1.5 
and Proposition 1.3(i), if C D Vn, then S(C) = 0. This is a counterpart of the 
main result of [2]. 

It seems to be of some interest to provide a characterization of the singular 
sets S(C) for the triangularizable subspaces C. 

PROPOSITION 1.8. If C is such that U _ 1 £ U C Tn for a U G QCn and 
S(C)^®, then S(C)D U ^ I T 1 . 

P r o o f . Put /C = U - 1 £ U . In virtue of Proposition 1.3(ii), it is enough to 
show that Tn C 5(/C). Consider the map 6 : Mn -> Vn defined by 9(A) = 
Diag(A). By the assumptions, we have /C C Tn and 5(/C) = U-1<S(£)U ^ 0. 
Consequently, the image xCQ — x(®(^ ) ) is not dense in F^ (cf. Theorem 1.5). 
This yields dim6(/C) < n. Pick an A G Tn. The image x(A + /C) = x(A + 0(/C)) 
is not dense in F™ because A + 0(/C) C Mn is an affine subspace of dimension 
smaller than n. Hence, Tn C 5(/C). The proof is complete. D 

One may ask finally the question about the surjectivity of restrictions XA|,C : 

C -> F 1 . Consider the following example. 
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EXAMPLE 1.9. Let £ c M2 be defined by 

£ = { [ ;« ] : a,/?€F}. 

It is not difficult to verify that S{£) = 0. Pick an A = [° *j G M 2 . Then 

XA(£) does not contain the product {a + d - 26} x (F \ {{a — 6)(d — b)}). 

Thus even if K(C) = Mn, the set {AeMn: xA(£) = ^ } may be empty. 

2. Low dimensional case 

We begin with a counterpart of Helton-Rosenthal-Wang's Theorem 1.1 for 
the size n = 2. Notice that only two-dimensional subspaces of M2 can be of 
interest. 

THEOREM 2.1. Let £ be a linear subspace of M2 such that dim£ = 2 and 
£ <$_ s\2. Then the singular set S{£) is a linear hyperplane in M2 provided it 
is nonempty. 

P r o o f . Pick matrices B = [bkl], C = [ckl] G M2 \ s\2 which form a basis 
of the subspace £. Put rt = tr(B), r2 = tr(C), S1 = det(B), and 52 = det(C). 
A matrix A = [akl] G M2 is an element of S{£) if and only if the regular 
map \&A: F2 -> F® defined by \PA(A,/z) = X A ( A B + vQ i s n o t dominant. 
Observe that this is the case if and only if the polynomial ^ A : -^ "* ^ defined 
by ^ (A, / / ) = det(d/A j * A ) is identically equal to zero. A direct calculation 
reveals that 

</>A(A> AO = K w - 2 r2 ( 5 l )A + ( 2 r i 52 - r 2 W )^ + (T1C22 ~ T2622)all 

~ ( r iC21 ~ r 2 & 2 l ) a i 2 ~ (T1C12 ~ T2h\2)a2\ + (T1C11 ~ T 2 6 l l ) a 2 2 > 

where u = bnc22 + b22cn - b12c21 - b21c12. The assumption S{£) ^ 0 yields 
TXU — 2T25X = 0 = 27-^2 — T2U. Consequently, 

S{£) = {A = [akl] G M 2 : {TXC22 - r2622)au - ( T - ^ - r2b21)a12 

- (r lC l2 - r2b12)a21 + {Txcn - T2bn)a22 = 0} . 

Since B and C are linearly independent and TX ^ 0 ^ r2, at least one of the 
coefficients of the linear form which describes the set S{£) is nonzero. The proof 
is complete. • 

The following corollary is an immediate consequence of the above theorem 
and Proposition 1.8. 
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COROLLARY 2.2. If C C M2, dim>C = 2 ; C(jLs[2, and U _ 1 £ U CT2 for a 
UeGC2, then either S{C) = 0 or S{C) = U X U " 1 . 

Revising the proof of Theorem 2.1 leads to stating effective formulae. 

PROPOSITION 2.3 . Let B = [bkl], C = [ckl] G M2 be two liriearly independent 
matrices such that TX := tr(B) ^ 0 / r2 := t r (C). Denote by /C the linear 
subspace of M2 generated by B and C. Define u = buc22 + b22cu — b12c21 

— b21c12 . Then the following conditions are equivalent: 

(1) S ( / C ) # 0 , 
(2) r-w - 2r2 det(B) = 0 = 2 ^ det(C) - r2a;. 

Moreover, if S(IC) ^ 0, then 

S(IC) = {A = [akl] G M2 : [TXC22 - T2b22)au - (Tlc21 - r2b21)a12 

- (T1C12 ~ T2h\2)a2\ + (TlCll ~ r26ll)fl22 = °} ' 

In the case of n = 3 the situation is much more complicated. To see that, 
consider an example of a linear subspace C C M3 whose singular set S(C) is 
reducible and of pure codimension two. 

EXAMPLE 2.4. Define 

C = 
Q / 3 0 
0 a 7 

L 0 0 a 
: a , j ð , 7 Є F 

Let A = [akl] G M3. A straightforward calculation (cf. the proof of Theorem 2.1) 
shows that A G S(C) if and only if either a 3 1 = a 2 1 = 0 or a 3 1 = a 3 2 = 0. 
Hence S(C) = /C2 U /C2, where /Cx = {A = [akl] G M3 : a 3 1 = a 2 1 = 0} and 
K2 = {A = [akl] G M3 : a 3 1 = a 3 2 = 0 } . 
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