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ON RANDOM VARIABLES HAVING VALUES 
IN A VECTOR LATTICE 

RASTISLAV POTOCKY 

In this paper an integration theory of the Daniel type for functions with values in 
a vector lattice is presented. The integral is defined on a simple family of functions 
first, then a method of extension is used. We begin with elementary functions. (For 
terminology see [1]). 

Definition 1.1. Let (£2, 5, P) be a probability space, X be any Dedekind 
o-complete vector lattice. A function f: Q-*Xis said to be an elementary random 
variable if there are a sequence of mutual disjoint sets EH Et eS, uEt, = Q and 
a sequence {xf} of elements of X such that f(co) = xt for every coeEi. An 
elementary random variable is said to be integrable if the series yZxiP(El) is 
absolutely o-convergent. The integral of f is then defined as follows 

jfdP = XxiP(Ei). 

The set of all elementary random variables will be denoted by E. The order 
relation in E is defined in the usual manner, i.e. f^g iff f(co)^g(co) for every 
coe£2. The order convergence in X and the order relation in E then imply an order 
convergence in E. This will be denoted by fn—>f or fn]f (resp. fn[f) if /„ is 
increasing (resp. decreasing). 

The integral as defined in 1.1. is a non-negative linear operator on E. In order to 
prove that it is continuous under monotone limits, i.e. that fn[0 implies J/„ dPjO, 
we need the following two lemmas. 

Lemma 1.1. Let T be an o-continuous linear functional defined on X. Then 
T(T), T(x) = supT(0,x), x^O (T~(x) = sup T( -x, O), x^O) is 
o-continuous. 

Proof. Given a sequence {xn} in X such that xn[0 we have to prove that 
T(xn)[0. If not, there exists a positive number c such that T(xn)[c. Hence we 
have T(xn)^c for every n. It follows from the definition of T that for every n 

there exists a z„e(0, xn) such that c-—^T(zn). It is evident that z„—»0 and 

consequently T(zn)-+0. On the other hand c^lim T(zn), a contradiction. 
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Lemma 1.2. Iff„ eE(R), i.e. elementary random variables with values in R (the 
field of real numbers), fn integrable, then fn[0 implies \fn dP[0. 

Proof. See [3], page 126. 

Theorem 1.1. Let (Q, S, P) be a probability space, X be a locally convex space 

with an ordering given by a closed cone K Let xn-^x imply T(xn)—> T(x) for every 

TeX*. ThenfneE, fn integrable andfn[0 imply J/n dPjO. 
Proof. Given any z>0 , zeX we have to prove the existence of a natural 

number n such that J/rt dP<$(z, °°). Since z>0and K is a closed cone, there exists 
a continuous linear functional T on X such that 0 < 6 = inf T(z, °°). Since T is 
o-continuous, by hypothesis, and since every o-continuous linear functional is 
o-bounded (i.e. maps o-bounded sets into bounded sets), if follows from the Riesz 
decomposition theorem that T is the difference between two monotone linear 
functional, namely 7^ and 7^. By lemma 1.1.7^ and T~ are o-continuous linear 
monotone functionals. It is clear that for such functionals fn[0 implies 7^ fn[0 
(T~ fn[0), i.e. 7^ fn(co)[0 for every co(T~ fn(co)[0 for every co). It follows by 
lemma 1.2. that J IT fndP[0 (J F" fndP[0). Moreover we have T*ffn = r 
(o-\im Z XtPiE,) = o-Mm TfJLx^E,) = o-\im 2 rT(xi)P(Ei) = 2 rT(xi)P(Et) = 
J T* fndP. (Similarly for 7""). Thus there exists a natural number m such that for 

every n^m,T J/„ dP^-,T~ J/„ d P ^ - Since for every x ^ 0 | Tx\ ^ T^x + T~x, 

it follows that | r J / I d P | ^ 7 ^ J / n d P + 7 ^ J / I d P ^ | . 

It is not difficult to present the examples of spaces in which the conditions of 
theorem 1.1. are fulfilled. We know that in some spaces (e.g. in complete 
metrizable topological linear spaces ordered by a closed cone) the last condition in 
theorem 1.1. implies the so-called normality of cone, which consequently implies 
that xn[x in the topology of the space X, whenever xn[x in order (see [2], [4] and 
[5] for detailed discussion). It is worth mentioning that this is not always the case. 

Example 1. Let Fbe the space of all real sequences having only a finite number 
of non-zero terms ordered by the partial sum cone Ps, i.e. by the set of all sequences 
in F having all partial sums non-negative. Let the supremum norm be given on F, 

i.e. | |*||= sup \xi\. 
i 

We recall that a cone K gives a normal ordering of a normed linear space iff 
there exists a >0 such that for x, y in K||.rVy|| ^a\\x\\. Jameson has shown (see 
[4], page 94) that Ps is not normal in F with respect to the supremum norm. 

It follows that Ps is closed in this topology. If this is not the case, there exists 
a sequence {xn} of elements of Ps converging in the topology to a x, which does not 
belong to P,. From it there follows the existence of a natural number k such that 
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ÍA 
d = ^jXi = c<0. Put d~ —c and consider —. There exists a natural number A*O 

2k' 

such that for every n ̂  n0 \\xn - x|| <yr- i.e. \xni - xt \ < — for every /. We have 

i^=i(^-^)+i^<f+c=f<o. 
It is well known that every continuous linear functional on F may be written in 

the form f(x) = 2 jr,-wf-, {u,} a sequence in /. All we need to prove is the o-continuity 
of such functional. Let a sequence xn of elements of F such that .*„ JO be given. It 

follows that inf sn
k = inf 2 xn = 0 for every k. (Indeed, the existence of a natural 

n n 

number k such that inf sn
k^c>0, i.e. sn

k^c for every n leads to a contradiction, 
n 

since the element of F having c in the place k, — c in the place k +1 and 
0 elsewhere precedes all jr„, but does not precede 0). 

Denote max s] by L (it exists, since all s] are the same from an index /'). It 

follows that \sn\ ^L for every'(/, n), since xn is decreasing. Given b >0 there exists 

6L' N such that 2 k I < ZT • ^u t m a x k I = M. Then a natural number N0 exists such 

that for every n^N0 and for every / _ {1 , ..., N}\sn\< . We have, conse­

quently, 

|/(x")|^Z|*7l k | ^ 2 | 5 ? | k|+Z|_7-. | k l = 

=ik lk l + ikr-.lkl + ikrlkl + 
1 1 A ! + l 

+ iK,iki^2i--4-ki+2Liki<*. 
/V+l 1 O i > i V i 7V+1 

In the general case, z„—>0 implies the existence of a sequence xn[0 such that 
k„|^.*„|0. Hence we have 

|/(zn)| = | 2 z ^ | ^ 2 | z 7 | k | = 2 | 5 7 - 5 7 - , | k|*S 

^2 |_r |k ( |+2 |s7- i lk , | , 

Sn, sn denoting the partial sums of zn and xn, respectively. 
We present now sufficient conditions for the assumptions of theorem 1.1. to be 

fulfilled. The proofs are known and therefore may be omitted. 

269 



Proposition 1.2. Let X be a semireflexive locally convex space ordered by 
a closed cone and let every continuous linear functional be absolutely majorized 

(i.e. \f(x)\^g(x), x^O, g(x) a monotone functional). Then xn-^x implies 

T(xn)-> T(x) for every T e P . 
Proof. See [4]. 

Proposition 1.3. Let X be a complete topological linear space, ordered by 

a closed cone with a bounded base B such that OIB. Then x„—>x implies 

T(xH)-> T(x) for every TeX*. 
Proof. See [2]. 
It is interesting that in some cases we can do without topology, i.e. we can state 

and prove theorem 1.1. replacing continuous linear functionals by o-bounded ones. 
From now on X+ denotes o-dual of X, i.e. the set of all 0-bounded linear 
functionals on X. We recall that X is said to be regularly ordered by a cone, if X+ 

separates points of X. 

Theorem 1.4. Let (Q, 5, P) be a probability space, Xbe a vector lattice regularly 
ordered by a cone. If every o-bounded linear functional is o-continuous, then /. | 0 , 
fn elementary integrable random variables, implies //.dPjO. 

Proof. Analogous to that of theorem 1.1. 

Corollary 1.5. Let Xbe a linear space ordered by a cone with the order topology, 
i.e. the largest locally convex topology making all o-intervals bounded. If every 
o-bounded linear functional is o-continuou$, then fn[0, fn elementary integrable 
random variables implies J/ r tdP |0. 

Proof. In such space X+ separates points of X. 
There is another interesting application of theorem 1.4. We recall that a vector 

lattice is called a regular vector lattice if it has the diagonal property for 
^-convergence (see [I]). For such spaces the following theorem holds, which 
should be compared with [6], lemma 2. 

Theorem 1.6. Let X be a Dedekind o-complete regular vector lattice. If X+ 

separates points of X, then fn JO implies J /ndP |0 . 
Proof. If a vector lattice has the diagonal property, then every o-bounded linear 

functional is o-continuous (see [4]). 

II. 

Definition 2.1. A function f defined on Q and having values in X is said to be 
a random variable if there exist an increasing sequence {/„} of elementary random 

270 



variables such that fn]f and a decreasing sequence {gn} of elementary random 
variables such that gn[f. 

Remark. Let X be a metric space. A function /: Q-+X is called a random 
element, iff f~\B)eS for every Borel set B of X. 

We recall that a subset H of a cone K in an ordered vector space exhausts K if 
for every xeK there exists heH and a natural number n such that x^nh (see 
[4]). 

Proposition 2.1. Let X be a complete separable linear metric space ordered by 
a closed cone K such that a countable set exhausts K and the mapping x-^x+ is 
continuous at 0. Then every random element is a random variable. 

Proof. Let D be a countable dense set in X. For every xeX there exists 
a sequence {xn} czD, converging to x, i.e. r(xn —x, 0)—>0. Hence, by hypothesis 
r(\xn — x\, 0)—>0. Therefore we can choose a subsequence xnk such that 

r(\xnk -x\, 0)<-p. It follows that the series *Zk\xnk -x\ metric-converges. Denot­

ing its sum by z, we have \xnk—x\^-rz^Th, heH, since K is closed and 

1 * 2 
denoting xnk - - h by znk, we have that \z„k -x\ ^ - h, znk ^x. 

Thus there exist sequences zn and un such that the following set equality holds: 

X=\jnu\x;\x-xk\^un}-
un k xk I AC J 

oo k - l f I ] 

- U U [*; \x-Xi\^jumj. 
We define the countably-valued functions Tk as follows 

Tk(x) = xx if JCGU ] * ; \x-xt\^-7 un\ and 

Tk(x) = xs if xe\J \x', \x-xs\^jun\-

-UUkM^J. 
m = l i = l I /C J 

Then we put 

T*l(x)=Tl(x), T*k(x)=T*k-i(x)vTk(x). 
The next example shows that the continuity of the mapping jt-».r+ at 0 does not 

imply, by itself, the normality of the corresponding cone. 
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Example 2. Consider the space / ordered by the partial sum cone Pv with the 
norm | |* | | =__|JC B | -P, is not normal with respect to this norm, since 

and 

1 л- 1 + ! 

xn = el--e2 + -ze3-...±-en 
L Ó П 

1 ì ___ _ ì 
yn=-1e2—ъe, + ...+-en 

belong to Ps and we have \\xn + y„|| = |ki| | = 1, but 

i i , . i i=i + i + i + . . . + i , iki i=i + i + . . . + i . 

We show now that x—*x+ is continuous for all x. Given c >0, there exists N such 

that | * r | < c for r>N. Consider yel such that I I ^ - ^ H ^ T ; • Define 

Xr=xt + ...+xr, ;;„ = 0 and Yr = y, +... + yr, Y„ = 0. We have x+ = {ar}, 
y* = {br}, where a, =X*r-XUu br= Y*r - Y:_,. It follows that 

lly+-^ll = _;i^-^l^2Vf|r r-A;| + |:iz,r-a,|. 
r=\ N 

From this we obtain 

N'i\Yr-xr\^ii\yl-x,\^c 
i i i 

and 

±\br-ar\^t\br\ + t\ar\^t\yr\ + t\xr\ 
N N N N N 

t\yr-Xr\ + 22\Xr\^3c, i.e.\\y + - x + 1 | ^ 5 c . 

N TV 

In the converse direction we can prove the following 

Proposition 2.2. Let Xbe a separable locally convex metrizable linear space with 

a closed ordering. Let a countable set exhaust the cone. Let xn—>x imply 
T(xn)—> T(x) for every TeX*. Then the uniform o-limit of every sequence of 
random elements is a random element. 

Proof. Since every closed set C in Xcan be written in the form C = H U \*\ 
P «=i I 

\x — xn\p^— I, where {p} is an increasing sequence of seminorms in X, we may 

restrict our attention to convex closed sets. For such a set C we have 
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V~l(C) = unuVn'
l{x; \x-xn\^on} 

{on}eB n xneC 

both B and {xn} countable subsets of the set of all sequences o-converging to 0 and 
C respectively. 

Indeed the right-hand side of the equality implies that a sequence xneC 
w-converges to V((o), i.e. that V(a>) belongs to the weak closure of C and hence to 
the closure of C. 

Proposition 2.3. Let X be a separable locally convex metrizable linear space with 

a cone K such that X* has a countable basis. Let xn-*x imply T(xn)^> T(x) for 

every TeX*. If Vn(w)-+ V(o) for every oeQ, Vn random elements, then Vis 
a random element. 

Proof. 
V~l(C) = nunuVn

l{x; \T(x)-T(xn)\^an}, 
n xneC TeB{an}eA 

{xn}, B, A countable subsets of C, X* and the set of all null sequences, 
respectively. 

Proposition 2.4. Let X be a separable locally bounded locally convex metrizable 

linear space, X* be separable in the strong topology. Let xn—>x imply T(xn) —> T(x) 

for every TeX*. If Vn((o)-± V((o) for every (oeQ, {Vn} a sequence of random 
elements, then V is a random element. 

Proof. 
V~l(C) = ununuV-n

1{x;\T(x)-T(xn)\^an}, 
OaCnxneA TeD{an}eE 
OeB 

B a countable set of bounded subsets of C; A, D, E countable subsets of C, X and 
the set of all sequences converging to 0, respectively. 

III. 

Consider now spaces with the following properties (which we refer to as (A) and 
(B), respectively): 
(A) X is a locally convex space with an ordering given by a closed cone such that 

xn-+x implies Txn-*Tx for every TeX*. 

(B) X is a vector lattice regularly ordered by a cone such that every o-bounded 
linear functional is o-continuous. 
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Definition 3.1. Let (£?, 5, P) be a probability space, X be a Dedekind 
o-complete vector lattice ordered by a cone such that either (A) or (B) holds. 
A random variable f.Q-*X is called integrable if there exist an increasing 
sequence {/„} of elementary integrable random variables, such that fn\f and 
a decreasing sequence {gn} of elementary integrable random variables such that 
gn iA both with uniformly bounded integrals. The integral of f is defined by 

J / d P = lunJ/„dP. 

This definition is justified, since one can show that the value of integral does not 
depend on the choice of the sequence {/„} and the sequence {gn}. 

It is easy to show that the integral just defined is a monotone linear operator on 
the set of all integrable functions. It also has the property that the absolute value of 
an integrable function as well as its positive and negative parts are integrable. 

Theorem 3.1. Let (£?, S, P) be a probability space, X be a Dedekind o-complete 
vector lattice ordered by a cone such that either (A) or (B) holds. If {/„} 15 an 
increasing sequence of integrable random variables which converges to a function f 
bounded from above by an integrable random variable and such that lim JY„dP 

exists, then f is integrable and J / dP = lim J/„dP. 

Proof. For each n there is an increasing sequence {w„,} of elementary integrable 

random variables such that | uni - /„ | ^ zni, inf zni = 0. Define un = sup ukn. We hawe 
' k^n 

0^f-un^mf\f-ukn\^M{\f-fk\ + \fk-ukn\}^ 
k^n k^n 

^inf {zkn + ok} = wn 
k^n 

and it is immediately that inf wn = 0. The rest of the proof follows easily. 

Theorem 3.2. If /„ is a sequence of integrable functions which converges to 
a function f such that lim //„ exists and if g is an integrable function such that 

|/„ | ^ g for every n, then f is integrable and J*/ dP = lim ]"/„ dP. 
n 

Theorem 3.3. Let g and h be integrable functions and let /„ be a sequence of 
integrable functions such that fn^g resp. fn^h. Then, if lim inf J"/„ dP< oo, the 
function lim inf /„ is integrable and J lim inf/„dP^lim inf J/„dP, resp. if 
lim sup J/„ dP> - oo, the function lim sup /„ is integrable and 
J* lim sup fn dP^lim sup J7„ dP. 

At the end of this paper we give the outline of two other possible approaches to 
the problem we are dealing with. 
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Definition 3.2. Let the assumptions be as above; a random variable fis said to be 
integrable if there exist a sequence {/„} of elementary integrable random variables 
and a sequence {gn} of elementary integrable random variables such that gn[Q and 

\f, ~ f\ ^ gn. The integral of f is defined by SfdP = lim J"/, dP. 
n 

This definition is justified, since a sequence xn in a Dedekind a-complete vector 
lattice o-converges iff the double sequence |.rm-jc„| o-converges to 0. 

We present now an analogue of theorem 3.1. 

Theorem 3.4. Let (Q, 5, P) be a probability space, Xbea Dedekind o-complete 
vector lattice such that either (A) or (B) holds. If a sequence {/,} of integrable 
random variables converges to a random variable / , i.e. | / . - / | ^ o „ , {on} a 
sequence of elementary integrable random variables which converges to 0, then fis 

integrable and S f dP = lim J/„ dP. 

There is another way how to define the integral of a random variable. Following 
an idea of Bochner, we introduce the next 

Definition 3.3. Let the assumptions be as above, a random variable f is called 
integrable if a sequence {/,} of elementary integrable random variables such that 
lim S fn dP exists, tends to f in order and if, moreover, T\fn \ ^ T\f\, for every linear 
functional mentioned in (A) and (B), respectively. Then we define 

SfdP = limSfndP. 
n 

One can easily show, by using the method of theorems 1.1. and 1.4. that this 
definition is justified. Similarly we can prove the analogues of theorems 3.1., 3.2. 
and 3.3. 

Remark. It should be emphasized that there are several papers discuissing 
similar problems, however, from other points of view. Among them the most 
interesting seem to be papers [7], [8], [9]. 
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О СЛУЧАЙНЫХ ВЕЛИЧИНАХ С ЗНАЧЕНИЯМИ 
В НЕКОТОРОЙ ВЕКТОРНОЙ РЕШЕТКЕ 

Растислав П о т о ц к и 

Резюме 

Функция /, определенная на вероятностном пространстве (т//, 5, Р) со значениями в некоторой 
векторной решетке называется элементарной случайной величиной, если существует полная 
счетная система попарно непересекающихся событий такая, что / постоянна на всяком элементе 
системы. Элементарная случайная величина называется интегрируемой, если естественным 
способом определенный ряд абсолютно сходится по упорядочению. Сумма ряда называется 
интегралом от /. 

В первой части работы приводятся достаточные условия, при которых выше определенный 
интеграл является непрерывным линейным оператором. Во второй части вводится понятие 
случайной величины как порядкового предела двух последовательностей - возрастающей 
и убывающей - элементарных случайных величин. В последней части излагается теория 
интеграла и доказываются некоторые классические результаты. 
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