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ON RANDOM VARIABLES HAVING VALUES
IN A VECTOR LATTICE

RASTISLAV POTOCKY

In this paper an integration theory of the Daniel type for functions with values in
a vector lattice is presented. The integral is defined on a simple family of functions
first, then a method of extension is used. We begin with elementary functions. (For
terminology see [1]).

Definition 1.1. Let (2, S, P) be a probability space, X be any Dedekind
o-complete vector lattice. A function f: 2 — X is said to be an elementary random
variable if there are a sequence of mutual disjoint sets E;, E,€ S, UVE, = Q and
a sequence {x;} of elements of X such that f(w)=ux; for every weE,. An
elementary random variable is said to be integrable if the series Zx,P(E,) Is
absolutely o-convergent. The integral of f is then defined as follows

[fdP=ZxP(E).

The set of all elementary random variables will be denoted by E. The order
relation in E is defined in the usual manner, i.e. f<g iff f(w)<g(w) for every
w € 2. The order convergence in X and the order relation in E then imply an order
convergence in E. This will be denoted by f,—f or f,Tf (resp. f.lf) if f, is
increasing (resp. decreasing).

The integral as defined in 1.1. is a non-negative linear operator on E. In order to
prove that it is continuous under monctone limits, i.e. that £, |0 implies [ £, dP|0,
we need the following two lemmas.

Lemma 1.1. Let T be an o-continuous linear functional defined on X. Then
T(T), T'(x)=supT(0,x), x=0 (T (x)=supT(—x,0), x=0) Iis
o-continuous.

Proof. Given a sequence {x,} in X such that x,|0 we have to prove that
T*(x,)]0. If not, there exists a positive number ¢ such that T"(x,)]c. Hence we
have T"(x,)=c for every n. It follows from the definition of T that for every n
there exists a z, € (0, x,) such that c-—z—is T(z,). It is evident that z,—0 and
consequently 7{z,)—0. On the other hand c¢<Ilim 7(z,), a contradiction.
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Lemma 1.2. If f, € E(R), i.e. elementary random variables with values in R (the
field of real numbers), f, integrable, then f,|0 implies [f, dP|O0.
Proof. See [3], page 126.

Theorem 1.1. Let (2, S, P) be a probability space, X be a locally convex space
with an ordering given by a closed cone K. Let x, Sx imply T(x,)— T(x) for every

TeX*. Then f, e E, f, integrable and f,|0 imply {f, dP|O0.

Proof. Given any z>0, ze X we have to prove the existence of a natural
number 7 such that [ f, dP ¢ (z, ). Since z >0 and K is a closed cone, there exists
a continuous linear functional T on X such that 0<b =inf T(z, ). Since T is
o-continuous, by hypothesis, and since every o-continuous linear functional is
o-bounded (i.e. maps o-bounded sets into bounded sets), if follows from the Riesz
decomposition theorem that T is the difference between two monotone linear
functionals, namely 7" and 7. By lemma 1.1. T" and T~ are o-continuous linear
monotone functionals. It is clear that for such functionals £, |0 implies T £, |0
(T £.10), i.e. T" f.(w)]0 for every (T f,(w)]0 for every w). It follows by
lemma 1.2. that [T f,dP|0 (J T f,dP|0). Moreover we have T [f,=T"
(o-lim X x,P(E;)=o0-lim T"(Ex,P(E)=o0-lim ZT'(x,)P(E)=ZT (x;)P(E)=
J T f,dP. (Similarly for 77). Thus there exists a natural number m such that for

b

everyn=m, T" [f, dPSZ, T ff. dPS%. Since forevery x =0 |Tx|<T 'x+ T x,

it follows that |Tff,dP|<T" [f,dP+ T [f, dPsg.
It is not difficult to present the examples of spaces in which the conditions of
theorem 1.1. are fulfilled. We know that in some spaces (e.g. in complete
metrizable topological linear spaces ordered by a closed cone) the last condition in
theorem 1.1. implies the so-called normality of cone, which consequently implies
that x, | x in the topology of the space X, whenever x,|x in order (see [2], [4] and
[5] for detailed discussion). It is worth mentioning that this is not always the case.
Example 1. Let F be the space of all real sequences having only a finite number
of non-zero terms ordered by the partial sum cone P,, i.e. by the set of all sequences

in F having all partial sums non-negative. Let the supremum norm be given on F,
ie. x|l =sup |x].

We recall that a cone K gives a norma\l ordering of a normed linear space iff
there exists @ >0 such that for x, y in K||x + y||=a||x||. Jameson has shown (see
[4], page 94) that P, is not normal in F with respect to the supremum norm.

It follows that P, is closed in this topology. If this is not the case, there exists
a sequence {x,} of elements of P, converging in the topology to a x, which does not
belong to P,. From it there follows the existence of a natural number k such that
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k
. d .
S = Ex, =¢<0. Put d = — ¢ and consider % There exists a natural number 7,
1

such that for every n = n, ||x, — x|| <§‘%, ie. |x.—x| <2_a;( for every i. We have

k k k d c
DX =2 (X — X)) + zx,<§+c=§<0.
1 1 1

It is well known that every continuous linear functional on F may be written in
the form f(x) =Zxu,;, {u;} a sequence in /. All we need to prove is the o-continuity
of such functionals. Let a sequence x, of elements of F such that x, |0 be given. It

follows that inf s; =inf = x] =0 for every k. (Indeed, the existence of a natural

number k such that inf s; =c¢ >0, i.e. s, =c for every n leads to a contradiction,

since the element of F having ¢ in the place k, —c in the place £+1 and
0 elsewhere precedes all x,, but does not precede 0).

Denote max s; by L (it exists, since all s; are the same from an index j). It
follows that |s?| <L for every (i, n), since x, is decreasing. Given b >0 there exists

N such that > |u| < % Put max |u;| = M. Then a natural number N, exists such

N+1
that for every n=N, and for every ie {1, ..., N}|s/| <-6%-/I. We have, conse-
quently,

If(x")lsz’x” Iu,-lszls,f'l |uil+2|s."l-1| Iuil=
N N 3
=S 151l + S st lal+ 15+

ed N N b o
+~Zl |si—| |u | <2 Z6NM lu;| +2L Y, |u|<b.

N+1

In the general case, z,— 0 implies: the existence of a sequence x, |0 such that
|z.|<x,]0. Hence we have

If(z)] = Zziu| <Z|z}| |w| =2 |87 = Si| |u| <
<Z|s7| |w| +Z[sioi] |ui],

S7, s7 denoting the partial sums of z, and x,, respectively.
We present now sufficient conditions for the assumptions of theorem 1.1. to be-
fulfilled. The proofs are known and therefore may be omitted.
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Proposition 1.2. Let X be a semireflexive locally convex space ordered by
a closed cone and let every continuous linear functional be absolutely majorized

(i.e. [f(x)|<g(x), x=0, g(x) a monotone functional). Then x,—x implies

T(x,)— T(x) for every Te X*.
Proof. See [4].

Proposition 1.3. Let X be a complete topological linear space, ordered by
a closed cone with a bounded base B such that 0¢B. Then x,—x implies

T(x,)— T(x) for every Te X*.

Proof. See [2].

It is interesting that in some cases we can do without topology, i.e. we can state
and prove theorem 1.1. replacing continuous linear functionals by 0-bounded ones.
From now on X" denotes o-dual of X, i.e. the set of all o-bounded linear
functionals on X. We recall that X is said to be regularly ordered by a cone, if X"
separates points of X.

Theorem 1.4. Let (2, S, P) be a probability space, X be a vector lattice regularly
ordered by a cone. If every o-bounded linear functional is o-continuous, then f, |0,
f. elementary integrable random variables, implies [ f,dP]0.

Proof. Analogous to that of theorem 1.1.

Corollary 1.5. Let X be a linear space ordered by a cone with the order topology,
i.e. the largest locally convex topology making all o-intervals bounded. If every
o-bounded linear functional is o-continucus, then f,]0, f. elementary integrable
random variables implies {f,dP|0.

Proof. In such space X" separates points of X.

There is another interesting application of theorem 1.4. We recall that a vector
lattice is called a regular vector lattice if it has the diagonal property for
o-convergence (see [1]). For such spaces the following theorem holds, which
should be compared with [6], lemma 2.

Theorem 1.6. Let X be a Dedekind o-complete regular vector lattice. If X~
separates points of X, then f,|0 implies [ f,dP|0.

Proof. If a vector lattice has the diagonal property, then every o-bounded linear
functional is o-continuous (see [4]).

IL.

Definition 2.1. A function f defined on Q and having values in X is said to be
a random variable if there exist an increasing sequence {f.} of elementary random
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variables such that f,1f and a decreasing sequence {g.} of elementary random
variables such that g, |f.

Remark. Let X be a metric space. A function f: £ — X is called a random
element, iff f~'(B)e S for every Borel set B of X.

We recall that a subset H of a cone K in an ordered vector space exhausts K if
for every x € K there exists # € H and a natural number n such that x<<n#/ (see

(4D.

Proposition 2.1. Let X be a complete separable linear metric space ordered by
a closed cone K such that a countable set exhausts K and the mapping x—x" is
continuous at 0. Then every random element is a random variable.

Proof. Let D be a countable dense set in X. For every x € X there exists
a sequence {x,}c D, converging to x, i.e. r(x, —x, 0)— 0. Hence, by hypothesis
r(|x, — x|, 0)—0. Therefore we can choose a subsequence x, such that

1 . .
r(|x,, — x|, O)<7(7. It follows that the series X k|x,, — x| metric-converges. Denot-

ing its sum by z, we have [x,, — x| s% zs% h, heH, since K is closed and
%h by z,,, we have that |z, —xIS% h, 7, <x.
Thus there exist sequences z, and u, such that the following set equality holds :

denoting x,, —

x=UNU{xix-ul<gu}-
u, k xi

-Ju {x; lx—x.-lﬁi um}.

m=1 i=1

We define the countably-valued functions 7, as follows

T.(x)=x, if er{x;Ix—x.Is%u,,} and

T.(x)=x, if xelJ {x; |x—x¥|$% u,,}—
o s—1
_ U LJ]

m=1 i=

{x; Ix—x,-ls% u,,,}.

Then we put
Ti(x)=Ti(x), Tix)=Ti.(x)vT(x).
The next example shows that the continuity of the mapping x— x™* at O does not
imply, by itself, the normality of the corresponding cone.
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Example 2. Consider the space / ordered by the partial sum cone P, with the
norm ||x||=Z|x,| P, is not normal with respect to this norm, since

1 1 1
x,.=e.-§ e2+§e3—...t7le,,
and
1 1 _1
y,.—’2' 82—3€3+...+-E e,

belong to P, and we have ||x, + y,||=]le/]| =1, but

1, 1 1 101 1
”xn||'_1+_2'+§+...+n, ||y"”_§+§+_“+;‘

We show now that .c— x™ is continuous for all x. Given ¢ >0, there exists N such

that

x.|<c for r>N. Consider yel/ such that ||y—x”$1%. Define

X =x+..+x, 2,=0 and Y,=y,+...+y, Yo=0. We have x" ={a},
y*={b,}, where a, =X —X/_,, b,=Y; = Y] .. It follows that

Iy*=xll=3

From this we obtain

o

+> b, —al.

N

b, —a,

N-1
<2 Y. -X
r=1

N-1 N—-1 r
2V -x|< ¥ Xly-xl<e

and

>lb—a
N

>

In the converse direction we can prove the following

<Sisl+Slal<3 i+ 3 x|

yo—x|+2 D |x|<3c, ie]lyt—x*||<5c.
N .

Proposition 2.2. Let X be a separable locally convex metrizable linear space with
a closed ordering. Let a countable set exhaust the cone. Let x,—x imply

T(x,)— T(x) for every Te X*. Then the uniform o-limit of every sequence of
random elements is a random element.

Proof. Since every closed set C in X can be written in the form C=[] U {x;

p n=1
-1 . . . . .
|x—x.1, s; , where {p} is an increasing sequence of seminorms in X, we may

restrict our attention to convex closed sets. For such a set C we have
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VI(C)y=unuV, ' {x;|x— xl\o}
{o.}eBnx,eC

both B and {x,} countable subsets of the set of all sequences o-converging to 0 and’
C respectively.

- Indeed the right-hand side of the equality implies that a sequence x,eC
w-converges to V(w), i.e. that V(w) belongs to the weak closure of C and hence to
the closure of C.

Proposition 2.3. Let X be a separable locally convex metrizable linear space with
a cone K such that X* has a countable basis. Let x,— x imply T(x,)— T(x) for

every Te X*. If V,(w)— V(w) for every w € 2, V, random elements, then V is
a random element.

Proof.
VI(C)=nunuV;'{x; |T(x)- T(x,)|<a.},
nx,eCTeB{a,}eA

{x.}, B, A countable subsets of C, X* and the set of all null sequences,
respectively.

Proposition 2.4. Let X be a separable locally bounded locally convex metrizable
linear space, X* be separable in the strong topology. Let x, — x imply T(x,)— T(x)

for every Te X*. If V,(w)— V(w) for every w € 2, {V,} a sequence of random
elements, then V is a random element.
Proof.
VI(CO)=ununuV,; {x; |T(x)- T(x,)|<a.},
OcCnx,eA TeD{a,}eE
OeB

B a countable set of bounded subsets of C'; A, D, E countable subsets of C, X and-
the set of all sequences converging to 0, respectively.

HI.

Consider now spaces with the following properties (which we refer to as (A) and
(B), respectively):
(A) X s a locally convex space with an ordering given by a closed cone such that

X, —X implies Tx,— Tx for every T € X*.

(B) X is a vector lattice regularly ordered by a cone such that every o-bounded
linear functional is. o-continuous.

273



Definition 3.1. Let (L2, S, P) be a probability space, X be a Dedekind
o-complete vector lattice ordered by a cone such that either (A) or (B) holds.
A random variable f:Q2— X is called integrable if there exist an increasing
sequence {f,} of elementary integrable random variables, such that f,1f and
a decreasing sequence {g,} of elementary integrable random variables such that
g.lf, both with uniformly bounded integrals. The integral of f is defined by

[fdP=tim [f.dP.

This definition is justified, since one can show that the value of integral does not
depend on the choice of the sequence {f,} and the sequence {g,}.

It is easy to show that the integral just defined is a monotone linear operator on
the set of all integrable functions. It also has the property that the absolute value of
an integrable function as well as its positive and negative parts are integrable.

Theorem 3.1. Let (2, S, P) be a probability space, X be a Dedekind o-complete
vector lattice ordered by a cone such that either (A) or (B) holds. If {f,} is an
increasing sequence of integrable random variables which converges to a function f
bounded from above by an integrable random variable and such that lim [ f,dP

exists, then f is integrable and [fdP=1im [ f,dP.

Proof. For each n there is an increasing sequence {u,;} of elementary integrable

random variables such that |u,, — f,| < z.., inf z,, =0. Define u, = sup u,,. We hawe

k=sn
0<f—u,<int |f - | <inf {|f =il + | — |} <

sinf {Zuin 0} =W,

and it is immediately that inf w, =0. The rest of the proof follows easily.

Theorem. 3.2. If f, is a sequence of integrable functions which converges to
a function f such that lim [ f, exists and if g is an integrable function such that

|f.|<g for every n, then f is integrable and | f dP=lim {f.dP.

Theorem 3.3. Let g and h be integrable functions and let f, be a sequence of
integrable functions such that f,=g resp. f,<h. Then, if lim inf { f,dP <, the
function liminf f, is integrable and [ liminf f,dP<liminf [f,dP, resp. if
limsup ff,dP> — oo, the  function limsup f, is integrable
{ lim sup f,dP=lim sup [ f,dP.

At the end of this paper we give the outline of two other possible approaches to
the problem we are dealing with.

and
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Definition 3.2. Let the assumptions be as above ; a random variable f is said to be
integrable if there exist a sequence {f,} of elementary integrable random variables
and a sequence {g,} of elementary integrable random variables such that g, 10 and

|f. — fl<g.. The integral of f is defined by [fdP= lim [f.dP.

This definition is justified, since a sequence x, in a Dedekind o-complete vector
lattice o-converges iff the double sequence |x,, —x,| o-converges to 0.
We present now an analogue of theorem 3.1.

Theerem 3.4. Let (2, S, P) be a probability space, X be a Dedekind o-complete
vector lattice such that either (A) or (B) holds. If a sequence {f,} of integrable
random variables converges to a random variable f, ie. |f,—f|<o., {0.} a
sequence of elementary integrable random variables which converges to 0, then f is

.mtegrable and [fdP= lim [f.dP.

There is another way how to define the integral of a random variable. Following
an idea of Bochner, we introduce the next

Definition 3.3. Let the assumptions be as above, a random variable f is called
integrable if a sequence {f,} of elementary integrable random variables such that
lim [ £, dP exists, tends to f in order and if, moreover, T|f,|< T|f|, for every linear
functional mentioned in (A) and (B), respectively. Then we define

[fdP=lim [f,dP.

One can easily show, by using the method of theorems 1.1. and 1.4. that this
definition is justified. Similarly we can prove the analogues of theorems 3.1., 3.2.
and 3.3. :

Remark. It should be emphasized that there are several papers discuissing
similar problems, however, from other points of view. Among them the most

interesting seem to be papers [7], [8], [9]. .
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O CJIIYYAHMHBIX BEJINYMHAX C 3HAUYEHHAMU
B HEKOTOPOMW BEKTOPHOW PELIETKE

Pactucnas [Motouku
Pesome

dyukums f, onpeseNeHHas Ha BEPOSTHOCTHOM NMPOCTpaHcTBe (Y, S, P) co 3HaYE€HMSIMH B HEKOTOPO#
BEKTOPHOH peLUETKE HA3bIBAETCS 3JEMEHTAPHON CAY4aWHOM BEJIMYMHOM, €CNIM CYLIESCTBYET MOJIHAS
CYETHAs CUCTEMA MOTIaPHO HellepeceKaronXcsl COObITHIA TaKas, YTo f MOCTOSIHHA HA BCAKOM 3JIEMEHTE
CHCTEMbl. DJIEMEHTapHasl Cy4yaiHas BEJMYMHA HA3bIBAETCH MHTEPUPYEMOH, €CIH €CTECTBEHHBLIM
cnocob6oM omnpeaeneHHbI psi aGCONMOTHO CXOAMTCA Mo ynopsgoyeHuto. CyMMa psiia HasbiBaeTcs
WHTETPanoMm ot f.

B nepBoii 4acTn paboTbl NPUBOAATCA AOCTATOYHbIE YCJIOBMS, MPH KOTOPbIX BbILIE ONpEAe/eHHbiN
MHTErpaj SBJIAETCA HENMpepbIBHbIM JIMHEHHBIM onepaTopoM. Bo BTOpoii 4YacTH BBOXMTCA MOHATHE
Cy4aHHOW BEJNMYMHBI KaK MOPAAKOBOrO Npefena fABYX MOCIHEROBAaTENbHOCTEH — BO3pacTaroLieH
M yObIBAaIOLEH — 3NIEMEHTApPHbIX CIY4YaiHbIX BENMYMH. B mocnenHel 4acTW u3naraeTcs TEOpuA
WHTErpaia U A0Ka3bIBAIOTCA HEKOTOPbIE KJIACCHYECKHE Pe3ybTaThl.
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