
Mathematica Slovaca

Anatolij Dvurečenskij
Lorenzen's theorem for pseudo-effect algebras

Mathematica Slovaca, Vol. 54 (2004), No. 1, 23--42

Persistent URL: http://dml.cz/dmlcz/131798

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/131798
http://project.dml.cz


Mathematica 
Slovaca 

©2004 
•». - - /«,-.,.. „\ . . - .-.., M~ Mathematical Institute 

Math. Sl0VaCa, 54 (2004), NO. 1, 23-42 Slovák Academy of Sciences 

Dedicated to Professor Sylvia Pulmannovd 
on the occasion of her 65th birthday 

LORENZEN'S THEOREM 
FOR PSEUDO-EFFECT ALGEBRAS 
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(Communicated by Gejza Wimmer) 

A B S T R A C T . We presen t a variation of the Lorenzen theorem for pseudo-effect 
algebras satisfying a kind of the Riesz decomposition proper t y We show that 
the representability of pseudo-effect algebras as a subdirec t produc t of antilat-
tice pseudo-effect algebras depends on the notion of the polar of a pseudo-effect 
algebra. 

1. Introduction 

The famous Lorenzen theorem ([Lor], [Gla]) says that an £-group G is rep-
resentable, i.e., it is a subdirect product of linearly ordered groups if and only if 
the polars of G+ are ^-ideals. 

Recently, new partial algebraic structures, called pseudo-effect algebras and 
pseudo MV-algebras (as total algebraic structures), were introduced in [DvVel], 
[DvVe2] and [Gelo]. They are a non-commutative generalization of effect algebras 
and MV-algebras, respectively, which are studied in many branches of mathe
matics and its applications. For example, such structures serve as models of 
quantum structures ([DvPu]) as well as in mathematical logic. Under some nat
ural conditions, supposing a kind of Riesz decomposition property, they are al
ways intervals in unital po-groups, see [DvVel], [DvVe2]. Moreover, every pseudo 
MV-algebra is an interval in a unital £-group, see [Dvul]. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06F20, 03G12, 03B50. 
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A generalization of the Lorenzen theorem for directed interpolation groups 
was presented by G l a s s [Gla; Theorem 42]; however in its proof, there are 
some unclear points. The Lorenzen theorem for pseudo MV-algebras was proved 
in [Gelo]. 

Inspired by these results, we present a variation of the Lorenzen theorem 
for pseudo-effect algebras satisfying a kind of the Riesz decomposition property. 
For this aim we introduce the notion of a polar and of a C7-polar. The paper 
is organized as follows. In Section 2, we introduce elements of pseudo-effect 
algebras and pseudo MV-algebras. In Section 3, the polars for pseudo-effect 
algebras are presented and some results are proved. C-polars, where (7 is an 
ideal, are studied in Section 4. C-carriers are investigated in Section 5. Section 6 
defines representable pseudo-effect algebras. Finally, the main result is given 
in Section 7, showing when a pseudo-effect algebra is a subdirect product of 
antilattice pseudo-effect algebras. 

2. Pseudo-effect algebras 

A partial algebra (F7;-f-,0,1), where -f is a partial binary operation and 0 
and 1 are constants, is called a pseudo-effect algebra ([DvVel], [DvVe2]) if, for 
all a,b:c G E, the following hold 

(i) a + b and (a + b) + c exist if and only if b + c and a + (b + c) exist, and 
in this case (a + b) + c = a + (b + c); 

(ii) there is exactly one d G E and exactly one e G E such that a + d = 
e + a = 1; 

(iii) if a + b exists, there are elements d, e G E such that a + b = d+a = b + e; 

(iv) if 1 + a or a + 1 exists, then a = 0. 

If we define a < b if and only if there exists an element c G E such that 
a + c = b, then < is a partial ordering on E such that 0 < a < 1 for any a G E. 
It is possible to show that a < b if and only if b = a + c = d + a for some 
c,d G E. We write c = a / b and d = b\a. Then 

(b \ a) + a = a + (a / b) = b , 

and we write a~ = 1 \ a and a~ = a / 1 for any a G E. 

For basic properties of pseudo-effect algebras see [DvVel], [DvVe2]. We recall 
that if + is commutative, E is said to be an effect algebra. For properties of 
effect algebras see [DvPu]. 
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For example, if (G,u) is a unital (not necessarily Abelian) po-group with 
strong unit u (in fact it is sufficient to take a positive element u in G) , 1 and 

T(G,u):={geG: 0 < g < u} , 

then (r(G, u)\ + , 0, u) is a pseudo-effect algebra if we restrict the group addition 
+ to T(G,u). 

According to [DvVel], we introduce for pseudo-effect algebras the following 
forms of the Riesz decomposition properties: 

(a) For a, b G F7, we write a com b to mean that for all ax < a and bx < b, 
ax and bx commute. 

(b) We say that E fulfils the Riesz interpolation property, (RIP) for short, 
if for any a 1 , a 2 ,b 1 ,b 2 G E such that ax,a2 < b1?b2, there is a c G E 
such that a1,a2 < c < b1,b2. 

(c) We say that E fulfils the weak Riesz decomposition property, (RDP0) for 
short, if for any a, b1, b2 G £" such that a < b1 + b2 , there are dx, d2 £ E 
such that ^ < bx, d2 < b2 and a = dx + d2. 

(d) We say that E fulfils the Riesz decomposition property, (RDP) for short, 
if for any a 1 , a 2 ,b 1 ,b 2 G J? such that ax + a2 = bx + b2, there are 
dx, d2, d3, d4 £ E such that dx + ri2 = ax , d3 + d4 = a2, dx+ d3 = bx, 
d2 + ^ = b2. 

(e) We say that J!? fulfils the commutational Riesz decomposition property, 
(RDPj) for short, if for any a1? a2, bx, b2 G F? such that ax +a2 = bx +b 2 , 
there are d1:d2,d3,d4 £ E such that 

(i) d1 + d2 = a1, d3 + d4 = a2 , ^ + d3 = b1, d2 + d4 = b2 , 
(ii) ^ com c?3. 

(f) We say that E fulfils the strong Riesz decomposition property, (RDP2) 
for short, if for any a1,a2, bl5 b2 E E such that ax + a2 = b1 + b2, there 
are d1,d2,d3,d4£ E such that 

(i) d1 + d2 = ax, d3 + d4 = a2, dx + d3 = b1, d2 + d4 = b2 , 
(ii) d2 Ad3 = 0 . 

We introduce analogical notions for po-groups. Let G be a po-group and for 
a,b £ G + , we write a com b if and only if, for all a1,b1 G G + such that ax < a 
and bx < b, we have ax + bx = b2 + a t . 

Let (G;+ ,0 , <) be a directed po-group. According to [DvVel], [DvVe2], we 
say that G fulfills (RIP), (RDP 0 ) , (RDP), ( R D P J , and (RDP 2 ) , respectively, if 

1We say that a positive element u of a po-group G is a strong unit if, for any g G G, there 
is an integer n > 1 such that g <nu. 
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analogical properties as those for pseudo-effect algebras hold also for the positive 
cone G + of G. 

A mapping h: E —> _F, where E and F are pseudo-effect algebras, is said to 
be a homomorphism if 

(i) /i(0) = 0 and /i(l) = 1, 
(ii) h(a + b) = /i(a) + /i(&) whenever a + b is defined in E . 

If h is injective and surjective such that also h~l is a homomorphism, then h 
is said to be an isomorphism, and E and _F are isomorphic. It is clear that a 
one-to-one homomorphism / from E onto F is an isomorphism if and only if 
f(a) < f(b) implies a <b. 

According to [Gelo], a pseudo MV-algebra is an algebra (M; 0,~ ~ , 0,1) of 
type (2,1,1,0,0) such that the following axioms hold for all x,y,z 6 M with 
an additional binary operation 0 defined via 

yQx = (x~ ®y~)~ 

(A1) x@(y( Эz) = (x@y)@z; 
(A2) x@0 = --0@x = x; 
(AЗ) x@ 1 = -l@x = i; 
(A4) 1~ = 0 ; i " = 0; 
(A5) (x-®y~)~ = -(x~®y~)~; 
(A6) I I ~ y = 2/ ® y~ x = x y 
(A7) x (x~ -@y) = (x@y~) y; 

\y z= y Q X © X]2 

l) = (x@y~)Oy; 
(A8) ( a r ) ~ = x. 

If we define x < y if and only if x~ 0 H = 1, then < is a partial order such 
that M is a distributive lattice with x\/y = x($(x~Oy) and x/\y = xQ)(x~ ®y). 
For basic properties of pseudo MV-algebras see [Gelo] or [DvPu]. 

If we define a partial binary operation + on M via: x+y is defined if and only 
if x < y~ , and in this case x + y := x 0 y, then (M; +, 0,1) is a pseudo-effect 
algebra. Moreover, a pseudo-effect algebra E can be converted into a pseudo 
MV-algebra such that the + derived from 0 and the original + coincide if and 
only if E satisfies (RDP 2 ) ([DvVe2]). 

For example, if u is a strong unit of a (not necessarily Abelian) £-group G, 

T(G,u):=[0,u] 

and 

x 0 y := (x + y) Au, 

x~ := u — x , 

x~ := — x + u , 

x Gy := (x - u + y) V 0 , 

2 0 has a higher priority than 
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then (T(G, u)\ ©," ,~ , 0, w) is a pseudo MV-algebra ([Gelo]). 

The basic representation theorem for pseudo-effect algebras is the following 
result [DvVel], [DvVe2], and for pseudo MV-algebras see also [Dvul]. 

THEOREM 2 .1 . For a pseudo-effect algebra E fulfilling (RDP-,), there is a 
unique (up to isomorphism of unital po-groups) unital po-group (G,u) fulfilling 
( R D P J such that E £. T(G,u). 

If M is a pseudo MV-algebra, there is a unique (up to isomorphism of unital 
£-groups) unital £-group (G,u) such that M = T(G,u). 

A non-empty subset I of a pseudo-effect algebra E is said to be an ideal 
of E if 

(i) x + y e I whenever x,y e I and if x + y is defined in E, 
(ii) if x < y for x e E and y e I, then x e I. 

Then E as well as {0} are ideals of E. 

Let 1(E) denote the set of all ideals of a pseudo-effect algebra E. According 
to [Dvu3] if E satisfies (RDP), then 1(E) is a lattice with respect to the set-
theoretical inclusion with meets and joins denoted simply by A and V. 

An ideal I of E is 

(i) normal if a + I = I + a for all a e E ,3 

(ii) maximal if / is a proper subset of E and it is not included in any proper 
ideal of E as a proper subset, 

(iii) prime if I0(a) f) I0(b) C I implies a G I or b G I for all a, b G E.4 

We denote by fif(E), M(E), and V(E) the set of all normal ideals, maximal 
ideals, and prime ideals, respectively, of E. Using the Zorn lemma, we see that 
M(E) is non-void. Under some conditions on E, [Dvu3], we can prove that 
M(E)CV(E). 

We recall that if E satisfies (RDP), then an ideal I is prime if and only if 
E/I is an antilattice, see [Dvu3; Proposition 4.6], 

3. Polars and pseudo-effect algebras 

For 0 ^ A C E, we set AL := {x G E : x A a = 0 for all a G A}, and we 
refer to AL as the polar of A. We define a 1 := {a}1 for a G E. Then 

a± n a±A- = {0}, aeE, (3.1) 

3If A is a non-empty subset of E, then a + A := { a + x : x G A and a + x is defined in E}. 
In a similar way we define A -f- a. 

4 By I0(a) and N0(a) we define any ideal and any normal ideal generated by a G E. 
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and, for 0 / ACE, 

A±nA±± = {0}, jlCA11, AL=ALLL, (3.2) 

AL = f]{aL : a G i } , 5 1 C A 1 if j4 C B C F, and 5 1 C a 1 if a < 6, 
a,be E. 

We recall that if E satisfies (RDP0) and I0(a) is the ideal of E generated 
by an element a e E, and A is a non-void subset of E, then 

a±=I0(a)± and AL = I0(A)L , 

where I0(A) is the ideal of E generated by A. 

PROPOSITION 3.1. Let E be a pseudo-effect algebra with (RDP0). If 0 ^ 
A e E, then AL is an ideal of E. In addition, if a + b e E, then 

(a + b)L = a±nbA-. 

P r o o f . 0 e A1. If x,y e E and x < y e AL, then x e AL. Assume 
now x,y e AL and let x -f y e E. Fix a £ - 4 . I f z < x - f - H and z < a, then 
z = xl

J
ryl, where xx <x, yx <y, and xx,yx e aL. While xx,yx<a, we have 

x-y =x1Aa = 0 = y1Aa = y1, which proves z = 0. 
In a similar way we prove the equation. • 

PROPOSITION 3.2. If A is an ideal of a pseudo-effect algebra E with (RDP0). 
then A n A1 = {0} and A1 is the greatest ideal of E whose intersection with 
A is the null ideal. 

P r o o f . The first statement follows from (3.2). Assume that I is an ideal 
of E such that I n A = {0}. Let x el and a e A, then x A a = 0, which yields 
xeAL. • 

PROPOSITION 3.3. Let E be a pseudo-effect algebra with (RDP0). If A and 
B are ideals of E, then 

(AnB)11 =A±LnB±±. (3.3) 

In particular, if a,b £ E, then 

(i0(a)ni0(b))1-A- = a^nb^. 

P r o o f . It is necessary to verify that A1-1 n B±A- C ( A n B)1-1-. Choose 
x e A±A- n BL1-, y e (An B)1-, and a e A, b e B. Assume w < x,y,a,b. 
Then w e An B, and since w < w,y, we have w = 0. So if g < x,y, a, then 
g £ bL, therefore, g e BL. Since x e B11 and 0 < g < g, x, we have g — 0. 
Hence, if v < x,y and w < v,a, then w = 0, i.e., v e a1 and v e Ax • But 
v < x e A1-1-, which by (3.1) gives v = 0, consequently, x e (An B)L}-. ---
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PROPOSITION 3.4. Let A and B be two ideals of a pseudo-effect algebra E 
with (RDP0). Then 

(A OB)1 = (A±UB±)±±. 

P r o o f . Since An B C A,B, we have A1- U J51 C (An B)L. Hence, 
(A n B)±L C (A1 U B1)-1. By Proposition 3.3, A±L n BL± C (AL U B 1 ) 1 . 
Hence, if x G (A-1 U B1)-1 and y € AL U J?-1, then x A y = 0. If now y G j l 1 , 
then x e A±L ; if y G B 1 , then x G B 1 - 1 , i.e., x G A 1 1 n .B-1-1 • • 

4. C-polars in pseudo-effect algebras 

According to [Gla], we generalize the notion of a polar as follows. Let C 
be an ideal of a pseudo-effect algebra E. The C-polar of a non-void subset A 
of E is the set A±c := {g G E : (Va G A)(c < g, a = > c G C)} . We 

set g-^ := {g}-1-0, if g G -E. We define A±c±c = (A^)"1"0 . For example, if 
C = {0}, then A^w = A-1. 

Many analogical properties as those for polars hold also for C-polars. We 
recall that C-polars for interpolation groups were studied in [Gla]. 

PROPOSITION 4.1. Let E be a pseudo-effect algebra, 0 ^ A C E, and 
C e 1(E). 

(o) A±c =n{a±c : aeA}. 
(i) CCA±C. 

(ii) B±c C A-1^ if ACBCE. 
(iii) A±c±c±c = A-1^ . 
(iv) ACA±C±C. 
(v) A l c n . 4 l c l c = C . 
Le* £ sate/y (RDP0). 

(vi) A±c e 1(E). 
(vii) (IQ(A))±C = A±c . 

(viii) If x + y eE, then (x + y)±C7 = x-1^ n y±c . 
(ix) If C C A e 1(E), then A n A ± c = C, ana7 A±c* is tte Zaryes* idea/ o/ 

£7 whose intersection with A is C. 

P r o o f . It follows he same ideas as those for polars. • 

PROPOSITION 4.2. If A is a non-void subset of a pseudo-effect algebra E, 
the following statements are equivalent. 

(i) ACC. 
(ii) A±c =E. 

(iii) ACA±C. 
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P r o o f . The implications (i) =$> (ii) =--> (hi) are evident. Assume now 
(iii). Then A C A±c and, for any a 6 A, we have a G A±c C a±c . Therefore, 
if c < a, then c e C, i.e., a e C. D 

As a consequence, we have g ^ = E if and only if j G C. The following 
statement is direct. 

PROPOSITION 4.3. Let E be a pseudo-effect algebra and A a non-void subset 
ofE. 

(i) / / C19C2e 1(E), C1CC2, then A±ci C A±c2 . 
(ii) If C-., C2 G Z(.E), «Aen .A-^i n A±c2 = A±(<c^c2). 

(iii) If A,C G I(.E), *Acn -4± c = ^ ( ^ n o . 

PROPOSITION 4.4. If A,B,C G 1(E), where E is a pseudo-effect algebra 
with (RDP0), then 

(A n B)±c±c = A±c±c fl B±c±c , 

(A H B)±c = (A±c U B±c)±c±c . 

P r o o f . It follows the proof of (3.3), where we change w = 0 and v = 0 to 
w e C and v € C, respectively. D 

PROPOSITION 4.5. Let {At}t be a non-void system of ideals of a pseudo-effect 
algebra E satisfying (RDP0). If A = \JAt, then A±c = f]A±c . 

t t 

P r o o f . Since ADAt for any t, we have A±c C A^c , i.e., A±c C f| A t
±c . 

Choose now a: G n-4 J"c and o G i , and assume w < x,a. Then w G A^ c for 

any t and simultaneously w G Ato for some ^0. Hence, w € C proving x G A±c . 

D 

Let C be an ideal of E. We denote by 

Polc(F;) :={ACE: A = A±c±c) . 

By (i) of Proposition 4.1, we have C C A C E for any A G Pol c(E). 
THEOREM 4.6. Let E be a pseudo-effect algebra with (RDP). Then 
{Po\c(E)\C.±c,C,E) is a complete Boolean algebra such that for the corre-

C C / \-l-c---c 

sponding meets and joins we have /\ At = f] At, V At = ( |J At J , and 
t t t ^ t ' 

AAc(\JcAt)=Vc(AACAt). 
V t ' t 
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In addition, the mapping TTC : X{E) -> Po\c(E) given by 7TC{A) := ALcLc , 
A G X{E), is a lattice homomorphism of X{E) onto Po\c(E), and C is the 
largest element of the set {A £ X{E) : nc(A) = C} . If <f> is a lattice homomor
phism of X{E) into a lattice X with 0 such that C is the largest element in the 
set {A G X(E) : <j>{A) = 0} , then $(1^) = (j){I2) implies ^ ( / j ) = TTC(I2) . 

P r o o f . According to Proposition 4.4, Po\c(E) is a de Morgan lattice with 
A Ac B = A n B and A Vc B = (Au B)lc±c , and A Ac A±c = C and 

A \/c ALc = E. In view of Proposition 4.5, \JQAt = (\JAt) ° ° G Po\c(E) 
t ^ t ' 

and 0 A t = n(-4/-c)±c G ?o\c{E). Hence, /\CAt = f]At 

t 

-r t 

, 1-c-Lc , / / \ \ J-c-Lc 
Further, AAC (\JCAt) =An(\JAt) ° ° = / l^-cn (/0(U>-«))' 

(An(\JAt)Y°±c = (y(An^))XoX° = (I0([J(A n At)))
±c±c = 

( \_Lc-Lc C/ r» \ 

\J{AnAt)j = V {A AG At), where we have used distributivity in the 
lattice X{E), see [Dvu3; Proposition 3.2]. 

Finally assume that A* is a lattice with 0 and that 4>: X{E) -> X is a lattice 
homomorphism with C the largest element of the set {A G X(f5) : 0(-4) = 0} . 
Let I be an ideal of E and define I = {M G X(£) : </>(M) A^ 0(7) = (j){C)}. 
If M G 7, then M n 7 C C, which yields M C 7-L(cn/) = j±c by (iii) of 
Proposition 4.3. In addition, (/>(7±c n 7) = ^{iMcm) n 7) = 0(7 C\C) = </>(C). 
Hence, I±c G 7, and so is the largest element of 7. Consequently, if (j)^) = 
<f>(I2), Itc = I^c yielding 7rc(LJ = TTC(/2) . D 

In the rest of the present section, we show the relation among prime ideals 
and C-polars. 

We say that an ideal C of a pseudo-effect algebra E is prime in an ideal A 
of E if 

(i) C C A , 
(ii) for a,b e A, IQ{a) n 70(b) C C implies a G C or b G C. 

Using ideas from [Dvu3], we have that an ideal C of a pseudo-effect algebra E 
with (RDP) is prime in A (C C A) if and only if 7 n J C C for 7, J C A, 
7, J G X(F0, implies 7 C C or J C C or if and only if 7 n J = C for 7, J C A, 
7, J G 1(E), implies 7 = C or J = C. 
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THEOREM 4.7. Let C and A, CCA, be ideals of a pseudo-effect algebra E 
with (RDP). The following statements are equivalent. 

(i) C is prime in A±c±c . 
(ii) C is prime in A. 

(iii) A±c is a prime ideal of E. 
(iv) A±c = a±c for all aeA\C. 
(v) A±c is a maximal C-polar of an ideal containing C. 

(vi) A±c±c is a minimal C-polar of an ideal containing C. 
(vii) A±c±c is an ideal maximal with respect to the property of being C prime 

in it. 

P r o o f . 

(i) = > (ii). Since C C AC A±c±c , the implication is evident. 

(ii) ==> (iii). Let I, J G 1(E) be such that I n J = A±c . Then (Anl)n 
(An J) = C. Therefore, AnI = C or An J = C. Hence, I C A±c or J C A±c 

(by (ix) of Proposition 4.1), which proves A±c is a prime ideal of E. 

(iii) = > (ii). Let A±c be a prime ideal of E and let I,Je 1(E) be subsets 
of A such that Jn J = C. Then (lVA±c)n(JvA±c) = A±c , where V denotes 
the join in the lattice 1(E), which yields J V A±c C A±c or J V A±c C A±c . 
Hence, J C A±c and in view of hypothesis J C A, we have I C A±c n A = C. 
In a similar way we proceed in the second case. 

(ii) ==> (iv). Assume that C is a prime ideal of A. Then, for all a € -A, 
A±c C a±c . If there exists a G A\C such that A±c ^ a±c , then we can choose 
an element x G a±c \A±C . Since A±c = n { a ± c : a £ A}, there exists a0 G A 
such that x £ a0

c. Consequently, there exists y G E\C such that y < a0,x. 
Then y G a±c n A. But C is prime in A, so we have by (v) of Proposition 4.1 
C = a±c n a±c±c = (a±c n A) n (a-^-Lc n -A), so that C = a±c n A or 
C = a±c±cnA. However, y G (a±cnA)\C and a G ( o i c l c n i ) \ C , which 
is absurd. 

(iv) ==> (ii). Suppose now that A±c = a±c for all a G A \ C, and let 
x,y G A \ C satisfy I0(x) n J0(y) C C. Then y G y-1-̂ -1^ and y e x±c = A±c 

= y±c , which yields y G y±c ny±c±c = C, a contradiction. Hence, C is prime 
in A. 

(iv) = > (v). Suppose C C D G 1(E) and let .A^ C D±c. We claim 
A±c = D±c . We have D % A±c , otherwise D = D n .A-1^ C D C i?-1-^ = C, 
a contradiction. Hence, there exists d £ D\ A±c and by (o) of Proposition 4.1, 
there exists an element u G E\C such that u < a,d. Consequently, u G 
(D n A) \ C. By (iv), D±c C tx^ = A-1^ C D-1^ . 

(v) ==> (vi) and (vii) => (i). They are evident. 
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(vi) ==--> (vii). First, we prove C is prime in A±c±c . If not, there are two 
ideals I and J of E such that C C J, J C A 1 * 1 0 and C = 7 C J . There 
exist two elements a e I\C and b e J\C, and define D = C V I0(a). Then 
^i.C-Lc c .D and C C .D while a G iH-tf J-c = JI-LC-LC ? i.e>j p-Lc = A±c. Let 
x e .D, and as b G A-1-07 n J C .A-Lc n A±c±c = C, we have a contradiction. 
Hence, C is prime in A±c±c . 

Second, assume there exists an ideal B of E such that i? D A±c±c and C is 
prime in B. Therefore, for C and B the statement (vi) holds, i.e., B±c = A±c , 
and, consequently, B C jg-Lc-i-c = A 1 0 1 0 C P , which gives 5 = A±c±c . D 

THEOREM 4.8. Let P be an ideal of a pseudo-effect algebra with (RDP). The 
following statements are equivalent. 

(i) P is prime. 
(ii) P = a±p for all aeE\P. 

(iii) Polp(E) = {P,E}. 

P r o o f . 
(i) <=> (ii). It follows from Proposition 4.7 while E±p = P . 
(i) = > (iii). Let I e Polp(E) and P be prime. Since P = I±p n /-Lp-Lp, 

we have P = J ± p or P = 7, i.e., I = E oi I = P. 
(iii) = > (i). Assume that aeE\P and P C a±p. Since a ± p G Po\p(E), 

we have a ± p = E, i.e., a G a±p±p = E±p = P , a contradiction. • 

5. C-Carriers of pseudo-effect algebras and C-regularity 

Let a be an element of a pseudo-effect algebra E and let C be an ideal of E. 
The C'-carrier of a, aA(c), is the set 

aA<c) = { & € £ : 6 ^ = a X c } . 

In particular, if C = {0}, we call aA := aA^0/) the carrier of a. 
The following basic properties of C-carriers can be easily proved. 

PROPOSITION 5.1. Let E be a pseudo-effect algebra and let a G E and C G 
1(E). Then 

(i) aA(c^ = C for any a G C. In particular, 0A = {0}. 
(ii) a € a«C) C a^a , a±c = (aA(C))--o . 
Let E satisfy (RDP0). 

(iii) / / bv b2 € a^0") and ^ + 62 € E, then b1+b2£ aA<c). 

(iv) / / a € E \ C, then C n aA<c) = 0. 
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We say that a pseudo-effect algebra E is C-regular if C is a normal ideal 
of E: and a±c is normal for any a e E. 

PROPOSITION 5.2. Let E be a pseudo-effect algebra with (RDP0) and let C 
be an ideal of E. Then E is C -regular if and only if a + x G E and y + a e E 
imply aA(c) = (x / (a + x))A{C) = ((y + a) \ y)A{C). 

P r o o f . Let E be C regular, and let z e a±c . Then a e zLc and the 

normality of z±c yields x / (a+x), (y+a) \ y e z±c , i.e., z e (x / (a+x)) c and 

z e ((y + a) \ y) c . Conversely, if z G ((y + a) \ y)±c , then z e (x/ (a + x)) c , 

i.e., a e z±c , z G a ± c , and similarly z G ((y + a)\a) c implies z G a l c . 

Assume now aA(c) = (x / (a + x))A{C) = {(y + a) \y)A{C). Let a;0 G a ± c and 

let y0 / (x0 + y0) eE. Then a G x i c = (y0 / (x0 + y0))
lc . Hence, y0 / (x0 + y0) 

e a±c , and similarly we can prove (y0 + x0) \y0 G aLc for some y0 e E for 
which y0 + x0 is defined in F. • 

Let C be an ideal of a pseudo-effect algebra E. Let us set 

K.C{E) := {aA(c) : a G £ } , 

and define a partial order < on JCC(E) as follows: aA(c) < bA(c) if and only if 
blc C a±c . Then, for all a,b e E such that a < b, we have 

QA(C) < flA(C) < &A(C) < X A ( C ) # 

THEOREM 5.3. Let E be a pseudo-effect algebra with (RDP). 
(i) If c = a + b. t/ien cA(c) is tte join o/ aA(c) and bA(C) in tbe space 

/cc(£;). 

(ii) aA(c) V 6A(C) is defined in KC(E) for all a,b € E. Moreover, there 
exists an element d 6 E such that d>a,b and dA(c) = aA(c) V 6A(C) . 
For an element e € E, we have eA(c) = aA(c) V 6A(C) if and only if 
e±c = a-i-c n 5-Lc _ 

(iii) If a V 6 is defined in E, then (a V 6)A(C) = aA(c) V 6A(C) . If a A 6 is 
defined in E, then (a A 6)A(C) = aA(c) A 6A(C). 

(iv) / / d±c = (aLc U bLc)±cLc , then dA(C) = aA(c) A 6A(C) . 

(v) Let aA(c) < 6A(C). Then, for any 0 l € aA(c) there exists bx G 6A(C) 

such that ax < 6 t . 

(vi) If aA(C) A 6A(C) is defined in KC(E), then so is (aA(C) V cA(C)) A 
(6A(C) V c A ( c ) ) , and it is equal to (aA(c) A 6A(C)) V cA(C) , and if also 

aA(C) AdA(C) exists in JCC(E), then so does aA(c) A (oA(C) Va*A(c)) and 
it is equal to (aA(c ) A 6A(C)) V (aA(C) A dA ( C )) . 

(vii) If KC(E) is finite, then it is a Boolean algebra. 
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P r o o f . 

(i) Let c = a + b. According to (viii) of Proposition 4.1, we have c±c = 
a±c H b±c , which proves easily c A ( c ) = a A ( c ) V bA(c). 

(ii) Let a and b be arbitrary elements of E. (RDP) implies that there are 
three elements a1? b1? c G E such that a = a1 + c, b = bx+c and ax +bx + c = 
bl+al+c£E. Let d := a1 +b = bx + a . Then d±c = a±c Db±c =b±c Da±c , 
i.e., dA ( c ) < a A ( c ) , b A ( c ) = a ^ n b±c . Assume y A ( c ) > a A ( c ) , b A ( c ) . Hence, 

y ± c c a
±c H blc = d A ( c ) , i.e., dA ( c ) < ?yA(c). 

The rest is evident. 

(iii) Assume a V b G E. Then a,b < aV b < d, where d is the element from 
(ii). This gives a A ( c ) , bA(c) < (a V b)A(c) < dA ( c ) = a A ( c ) V bA(c). 

Assume now aAbeE. Hence, (a A b)A(c) < a A ( c ) , bA(c). Suppose x A ( c ) < 
a A ( c ) , b A ( c ) . Since 70(a A b) = 70(a) D I0(b), according to Proposition 4.4, we 
have (a A b)±c = ( a ^ U b-Lc)-Lci-c g x ± c . This gives (a A b)A(c) > x A ( c ) . 

(iv) Suppose d±c = ( o ^ u ^ ) 1 ^ ^ . Then d±c D a±c,b±c , i.e., dA ( c ) < 
a A ( c ) , b A ( c ) . Assume x A ( c ) < a A ( c ) , b A ( c ) . Then x±c D a±c \Jb±c , i.e., i r ^ D 
( a - ^ U b 1 ^ ) 1 ^ = d±c , which gives x A ( c ) < d A ( c ) , and dA ( c ) = a A ( c ) Ab A ( c ) . 

(v) By (ii), there exists b1 > a,b such that bA(C) = aA(C) V bA(c) = 
aA(C) v ftA(C) = 6 A ( C ) ^ w h i c h g i v e s 6 i G 6A(C) ^ 

(vi) Put x A ( c ) = a A ( c ) Ab A ( c ) . Then obviously x A ( c ) V c A ( c ) < a A ( c ) Vc A ( c ) 

and x A ( c ) V c A ( c ) < bA(c) V c A ( c ) . Assume that u A ( c ) < a A ( c ) V c A ( c ) and 

UA(C) < 6A(C) V c
A ( c ) but it is not less than x A ( c ) V c A ( c ) . By (v) and (ii), there 

is a u A ( c ) such that 

x A ( C ) V c A ( C ) < | X A ( C ) ^ 

(we change wA ( c ) to i*A(c) V x A ( c ) V c A ( c ) if necessary). As in the proof of (ii), 
we have xx < x, a1 < a and bx < b such that (x1 + c ) A ( c ) = x A ( c ) V c A ( c ) = 
u A ( c ) < (fll + c ) A ( c ) = a A ( c ) V c A ( c ) and u A ( c ) < (bx + c ) A ( c ) = bA(c) V c A ( c ) . 
By (iv), we can assume that they satisfy also xx+c < u < ax+c, u < b1+c. Since 
X\(C) < (u \ c ) A ( c ) , we have x A ( C ) < (u \ c ) A ( c ) , otherwise the equality x A ( C ) = 
(u \ c ) A ( c ) would imply, by (i), (xx + c ) A ( C ) = * A ( c ) V c A ( c ) = .xA(C) V c A ( c ) = 
(u \ c ) A ( c ) V c A ( c ) = ^ A ( c ) against (*). Since u\c < av bx, i.e., u \ c < a, b, we 
have (u \ c ) A ( c ) < a A ( c ) A bA(c), which contradicts the choice of , u A ( c ) . 

For the second equality. Let aA(C) = a A ( c ) Ab A ( c ) and a 2
( c ) = a A ( c ) A d A ( c ) . 

Then aA(C) Va A ( C ) < a A ( c ) and aA(C) VaA ( C ) < bA(c) V d A ( c ) . Assume x A ( c ) < 
aA(C) ^ 6A(C) V^A(C) ^ T ] i e n x±c -̂  a ± c u / 6 ± c nd±c ) ? w h i c h g i v e g b y Theorem 4.6, 

xJ-c 2 a±c v c (6-Lc AC d-Lc) = ( a±c v c ftJ-c) AG (a
±c V c d ^ ) = a ^ n a±c . 

T h e n x A ( C ) < a A ( C ) V a A ( C ) . 
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(vii) Since KC(E) is finite, for any two elements a,b G E, there is only 
a finite number of elements c A ( c ) of KC(E) such that c A ( c ) < a A ( c ) , b A ( c ) . 
Hence, the element \ / c A ( c ) is the infimum of aA ( c ) and bA(c). 

By (vi), KC(E) is distributive. 

Let a*{C\...,a^ be the atoms of KC(E). Let bA(c) G KC(E) and 

let a^{C\... , a£ ( C ) be the atoms which are less than bA(c). Then bA(c) = 

V af( ) , and the element c A ( c ) := \ / af( ' is the complement of bA(c). In-
i=l i=k+l 

deed, b ^ A c ^ = y (b*(0 Aa*(C)) = 0A<C>, and 6A(C) V C A(C) = ^ flA(C) 
2 = k+l i=l 

- 1 A ( C ) . D 

PROPOSITION 5.4. Fe£ J5 be a pseudo-effect algebra with (RDP) and let C be 
an ideal of E. The mapping (j) : E —> KC(E) defined by <p(a) -= a A ( c ) , a E E, 
is an order-preserving mapping of E onto KC(E) preserving all existing finite 
suprema and infima which exist in E, and {a G E : <j>(a) = 0 A ( C ) } = C. 

P r o o f . It follows from Theorem 5.3. • 

6. Represent able pseudo-effect algebras 

Let {E^^j be an indexed system of pseudo-effect algebras. The Cartesian 
product Yl &i c a n be organized into a pseudo-effect algebra with the partial 

iei 
addition defined by coordinates. Each E{ has the property (RDP) ( ( R D P J , 
(RDP2)) if and only if Yl -^ n a s this property. 

iei 
We say that a pseudo-effect algebra E is a subdirect product of pseudo-effect 

algebras { ^ } i G / if there is an injective homomorphism of pseudo-effect algebras 

/ : E -» J ] E{ s u c n t n a t f(°) < /(&) ^ a n d o n ly if « < b (a,b e E), and for 
iei 

every j G / , 7r • o / is a surjective homomorphism from E onto E,, where 7r • is 
the j t h projection of Yl &i o n t o E-. 

iei 
We say that a po-group G is a subdirect product of a system {G^}^e / of po-

groups if there exists an injective group homomorphism / : C - ) fJG^ such 
iei 

that f(a) < / (b) if and only if a < b (a,b £ G), and for every j G i~, 7r • o / is 
a surjective homomorphism from G onto C? , where 7r • is the j t h projection of 
n ^ o n t o G - . 
iei 

We recall that a poset (F7; <) is an antilattice if only comparable elements 
of E have an infimum or a supremum. If E is a pseudo-effect algebra, then 
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E is an antilattice if and only if a A b = 0 implies a = 0 or b = 0, while 
(a\(aAb)) A (6 \ (a A 6)) = 0 , see [Dvu3]. 

We say that a pseudo-effect algebra E is representable if ..E is a subdirect 
product of antilattice pseudo-effect algebras such that all finite suprema and 
infima which exist in E are preserved in the subdirect product. 

In the paper [Dvu], we have proved that the system of all representable 
pseudo-effect algebras forms a variety. Not all pseudo MV-algebras are repre
sentable, but every effect algebra with (RDP) is representable, as it was proved 
in [Rav] and [Dvu2]. 

THEOREM 6 .1 . Every effect algebra E with (RDP) is a subdirect product of 
antilattice effect algebras with (RDP), and all existing meets and joins in E are 
preserved in the subdirect product. 

PROPOSITION 6.2. Let a pseudo-effect algebra E with (RDP2) be repre
sentable. Then every polar AL is a normal ideal. 

P r o o f . Let E be a subdirect product of a system {E{}ieI of antilattice 
pseudo-effect algebras. Assume x £ A1 and let x + y be defined in E. We show 
that y I (x + y) G AL. Let z <y I (x + y) and z < a for any a G A. Write 
z = (zi)iei> y = (Vihen x = (xi)iei a n d a = K) ie /> w h e r e zi>Vi>xi>ai e Ei> 
i e I. Then z{ < y{i (xi + y{) and zi < ai for any i e I. Since ai A x{ = 0 
for each i G J , if ai = 0, then zi = 0, if ai > 0, then xi = 0, which yields 
^i < 2/i / (0 + Vi) = 0- Hence z = 0, which proves (y / (a; + y)) A a = 0 for any 
ae A. 

In a similar way, if x G AL and u + x G E , then (w + x) \ u G A 1 . D 

We recall that every polar is normal in E if and only if aL is normal for 
every a G E. In addition, in [Gelo], it is proved that a pseudo MV-algebra 

is representable if and only if every polar is normal, while AL — ( IJ {a}) 

= VI a • 
aeA 

7. Regular pseudo-effec t a lgebras and Lorenzen ' s t h e o r e m 

We say that a pseudo-effect algebra E is regular if aL is a normal ideal for 
any a G E. This is equivalent with the statement A1- is a normal ideal for any 
8 7 - i C j E . We recall that if a regular E satisfies (RDP 0 ) , then for any a G JB, 
wre have A r

0(a)± = a x = ^ ( a ) - 1 , where N0(a) is the normal ideal of E generated 
by a. Indeed, we have I0(a) C N0(a) C a1 1-. Hence, a 1 C ^ ( a ) 1 C a-1. 

We say that a pseudo-effect algebra E is finitely irreducible if, for any two 
ideals I and J of E with 7 n J = {0}, we have I = {0} or J = {0}. 
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We recall that according to [DvVel], if a and b are two elements of a pseudo-
effect algebra E with (RDP 0 ) , then a A b = 0 implies a - f b , b -h a, a V b are 
defined in E, and 

a + b = aVb = b + a. (7.1) 

PROPOSITION 7.1. i4nH antilattice pseudo-effect algebra with (RDP0) is 
finitely irreducible and regular. 

P r o o f . If a pseudo-effect algebra E with (RDP0) is not finitely irreducible, 
then there exist two non-zero ideals I and J such that I D J = {0}. Hence, if 
a e I and b G J are non-zero elements, then a A b = 0, whence E cannot be an 
antilattice. 

Assume x E a 1 and let x + y be defined in E. We show that y / (x + y) G a± . 
Let z < y I (x + y) and z < a for any a G A. Since a A x = 0, then if a = 0, 
then z = 0, if a > 0, then a: = 0, which yields z < y / (0 + y) = 0. Hence z = 0, 
which proves (y / (x + y)) A a = 0. 

In a similar way, if x G aL and u + x e E, then (w + x) \ ix G a 1 , which 
proves F? is regular. D 

PROPOSITION 7.2. Any regular finitely irreducible pseudo-effect algebra E 
with (RDP0) is an antilattice. 

P r o o f . Assume that there are a, b G E\ {0} with a A b = 0. Then a e bL 

and be a1. In view of (7.1), 0 ^ a + b = aVbGF ; , so that a ^ n b 1 = (a + b)1. 
While (a-+b) J-n(a + b)-L-L = {0} and a + be (a + b)±J-, the irreducibility implies 
(a + b)L = {0}, i.e., aLr)bL = {0}, which gives b G aL = {0} or a G b-1 = {0}, 
i.e., b = 0 or a = 0 , a contradiction. D 

PROPOSITION 7.3. Let E be a pseudo-effect algebra with (RDP) and let P 
be a proper normal ideal of E. 

(i) If I is an ideal of E, so is I/P in E/P. Moreover, if I is a proper 
ideal of E containing P, then I/P is a proper ideal of E/P. 

(ii) If M is an ideal of E/P, then 

K(M) :={xeE: x/P G M} (7.2) 

is an ideal of E, and K(M)/P = M. If M is a proper ideal of E so is 
K(M) in E. 

(iii) 
M(E/P) = {N/P : N G Af(E) and P C N} . 

(iv) If P is an o-ideal of a directed po-group G with (RDP1) and if M is 
an o-ideal of G/P, then K(M) := {x G G : x/P G M} is an o-ideal 
of G, and K(M)/P = M. In addition, 0(G/P) = {N/P : N G O(G) 
and P C N} . 
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P r o o f . 

(i) 0 / P G I/P. Let x/P < y/P, where y e l . There exists xx G [x]p such 
that xx < y, which gives xx G J , and Xj /P = x / P < y / P . Assume x/P + y / P 
is defined in E/P for some x,y G J . There are x1 G [# ] p , y-_ G [y]P and 
e , / , u , v G P such that x 1 \ e = x \ / G J , y1\u = y\v£l, x1-\-y1 £ E. Then 
x / P + y / P - x x / P + j ^ / P = (xx + Vl)/P = ((x \ f) + e + (y \ v) + u ) / P = 
( ( x \ / ) + ( y \ i ; ) ) / P and (x \ / ) + (y\ v) G J . 

Let now I D P and 1/P = x / P , where x £ I. There are e, f e P such that 
1 \ e = x \ / , i.e., x / l = / / e G P C J , which gives a contradiction. 

(ii) We have «(M) D P . If x < y G « (M) , then x / P < y / P G M , so 
that x G K ( M ) . Let now x,y G rc(M) and x + y e E. Then (x + y ) / P = 
x / P + y / P G M , i.e., x + y G K ( M ) . 

Finally, assume M is a proper ideal of E/P. Then 1/P ^ M , hence, 
1 ^ K ( M ) . 

(iii) It follows from (ii). 

(iv) It follows the same steps as (iii). • 

P R O P O S I T I O N 7.4. 

(1) Let J and J be two normal ideals of a pseudo-effect algebra E with 
(KDPX) such that J n J = {0} . Then E is a subdirect product of E/I and E/J 
with the embedding f': E -> E/I x E/J defined f(a) = (a/1, a/J), a G E. 

(2) Je£ J and J be two o-ideals of a directed po-group G with (RDPj) such 
that I fl J = {0}. Then G is a subdirect product of G/I and G/J with the 
embedding f: G -> G/I x G/J defined f(a) = (a/1,a/J), a G G. 

P r o o f . 

(1) The mapping / : E -> E/IxE/J given by f(a) = (a/1, a/J), a G E, is a 
homomorphism of pseudo-effect algebras. If / ( a ) = / (b ) , then there are e, fx G J 
and 'Uj, i> G J such that a \ e = b\ f1 and a \ ux = b\v. If we now take the 
addition and subtraction in the corresponding unital interpolation group (G, u) 
such that E = T(G, u), then a — b = e — f1 G (f)(1) and a — b = u1—f1 G (j)( J), 
i.e., a — b = 0, and / is an injective homomorphism. 

Assume f(x) < f(y) for some x,y G E, i.e., x / J < y / J and x / J < y / J . 
There are two elements a G J and b e J with a, b < x such that x\a < y 
and x \ b < y. Since a A b = 0, then x = x \ (a A b) = (x \ a) V (x \ b) (while 
all existing meets in E are preserved in the corresponding representation group 
(G,u)), which gives x < y. 

Hence, E is a subdirect product of E/I and FY J , as claimed. 

(2) The second statement follows the same ideas as the first one. • 
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PROPOSITION 7.5. Let E be a pseudo-effect algebra with ( R D P J . The fol
lowing statements are equivalent: 

(i) E is finitely irreducible. 

(ii) If E is a subdirect product of E1 and E2, and if f is an infective 
homomorphism from E into Ex x E2 such that f(x) < f(y) whenever 
x < V > and TTi ° / and 7r2 ° / being surjective, then Ker(7r1 o / ) = {0} 
or Ker(7r2 o / ) = {0} . 

P r o o f . 
-i(i) = > —i(ii). Suppose E is not finitely irreducible, i.e., there are two nor

mal non-zero ideals A and B of E such that AnB = {0}. By Proposition 7.4, E 
is a subdirect product of E/A and E/B with the embedding f(a) = (a/A, a/B), 
a e E. Hence, for the mappings fA: a H-> a/A and fB: a H-> a / B , we have 
Kei(fA) = A 7-- {0} and Ker( / B ) = B 7- {0}, so that E does not satisfy (ii). 

—>(ii) => ->(-). Suppose E is a subdirect product of Ex and E2 and let 
f: E -^ Ex x E2 be an injective homomorphism with / (# ) < f(y) if and only 
if x < y such that, for every A{ — {a e E : nio f(a) = 0} ^ {0}, i — 1,2. 
Then Ax and A2 are normal non-zero ideals of E. Assume x e A1n A2, then 
f(x) = (0,0), and the injectivity of / gives x = 0, which proves AxnA2 = {0}. 
Hence, E is not finitely irreducible. • 

THEOREM 7.6. Every pseudo-effect algebra E with (RDP-J is a subdirect 
product of finitely irreducible pseudo-effect algebras with ( R D P J preserving all 
finite joins and meets from E. 

P r o o f . Without loss of generality, we can assume that E = T(G,u), where 
(G,u) is a unital po-group with (RDP-J. Let g G G, g ^ 0, and set U(g) := 
{h e G : h > g}. We denote by A(g) a proper normal ideal of E which 
is maximal among normal proper ideals A of E with respect to the property 
U(g) n A — 0. Since 0 £ U(g), A(g) exists due to the Zorn lemma. Moreover, 

nAte) = {o}. 

We assert that E is a subdirect product of {E/A(g)} . Let f(a):— {a/A(g)}g 

< {b/A(g)}g =: / (b ) , a.beE. Then (a - b)/(j)(A(g)) < 0 for any g £ 0. Set 

#0 = a - b. Ii g0 j£ 0, there is an element e G -4(g0) such that a - b < e, which 

implies e G £7(g0) H -4(g0), which is absurd. 
Therefore, E is a subdirect product of {E/A(g)}g, moreover, the embedding 

a H-> f(a) (a £ E) preserves all existing finite joins and meets from E. 
To prove the finite irreducibility of E/A(g), assume that I and J are normal 

ideals of E/A(g) such that I n J = {0}. By Proposition 7.3, the sets K(I) = 
{ a e £ : a/-4(g) £ / } and K(J) = {b £ E : b/A(g) G J } are normal ideals 
of E containing A(g) such that n(I)/A(g) = I and n(J)/A(g) = J . Since 
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I - {0} if and only if K(I) = A(g), assume K(I) D A(g) and K( J) D A(g). The 
maximality of A(g) implies there are a e K(I) D U(g) and b G K(J) C\ U(g). 
Hence, 0,g < a ,b. (RIP) holding in G entails there exists an element c e G 
such that 0, g < c < a, b. Then ceE, ce U(g), c ^ A(g), and c e K(I)P{K(J) , 
i.e., 0 ^ c/A(g) G / and c/A(g) G J , which is a contradiction. Hence, I = {0} 
o r J = { 0 } . • 

THEOREM 7.7. Let E be a pseudo-effect algebra with (RDP-J . If E is repre-
sentable, then E is regular. 

If E is C -regular for any normal ideal C of E, then E is representable. 

If E is a pseudo-effect algebra with (RDP 2 ) . then E is representable if and 
only if E is regular. 

P r o o f . The first statement follows from Proposition 6.2. 

Suppose now that E = T(G,u) for some unital po-group (G,u) with 
( R D P J . For any element g G G, g £ 0, let A(g) be a normal ideal of E 
having the same sense as that in the proof of Theorem 7.6. If E is C-regular 
for any normal ideal C of J5, then A(g) is prime. Indeed, set C = A(g), and let 
A(g) = J n J , where I, J e 1(E). Then A(g) = A(g)±c±c = I±c±c C)J±C±C 

by Proposition 4.4. Since I±c±c and J±c±c are normal ideals of E, we have 
A(g) = I±c±c = I or A(g) = J±c±c = J . Applying the proof of Theorem 7.6, 
we have that E is a subdirect product of [E/A(g)} , and the embedding 
a K> f(a) (a e E) preserves all existing finite joins and meets from E. 

Finally, let E satisfy (RDP 2 ) . Then E is a lattice. Assume a/A(g) A b/A(g) 
= 0. Hence, if aAb = 0, then a G b1- C A(g) or b G bLL C A{g),i.e., a/A(g) = 0 
or b/A(g) = 0. If a A b G A(g), then (a \ (a A b)) A (b \ (a A b)) = 0 , which gives 
again a/A(g) = 0 or b/A(g) = 0. Consequently, A(g) is prime, which yields 
that E is a subdirect product of {E/A(g)} . • 

We note that we do not know whether the condition E is C-regular for any 
normal ideal C of E can be replaced by the condition E is regular in order to 
be E representable. 
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