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FLEXIBLE NIVELOIDS 

SZYMON DOLECKI 

(Communicated by Lubica Holá) 

ABSTRACT. Niveloids are isotone functionals that commute with the addition 
of finite constants. A niveloid is flexible if it commutes with lattice isomorphisms. 
Limitoids are isotone functionals that commute with lattice homomorphisms. 
Limitoids are characterized using carriers within the class of flexible niveloids. 
This characterization contains an illuminating new proof of the Greco represen
tation theorem. 

1. Introduction 
x 

Denote by R = [-co, -Poo] the extended real line. A functional T: R —> R 
is called a flexible niveloid if it is isotone (i.e., f < g implies T(f) < T(g) for 

x 
each f,geR ) and if 

T O / ) = <p(T(f)) (1.1) 
for every lattice isomorphism tp of R onto R. 

Every flexible niveloid is a niveloid, i.e., an isotone functional such that 

rVR T(f + r)=T(f) + r. (1.2) 

An isotone functional is a limitoid if (1.1) holds for every lattice homomorphism 
ip of R onto R. 

Niveloids were introduced in [4]. Numerous regularization functionals, such 
as convexification, quasi-convexification, bi-conjugation, lower semicontinuous 
regularization, upper semicontinuous regularization, are niveloids. In particular, 
lower and upper limits along families of sets are niveloids; actually, they are 
examples of flexible niveloids. Lower and upper limits have been characterized 
by G r e c o [7] as limitoids. 

Within the class of all niveloids flexible niveloids are distinguished by a degree 
of insensitivity to vertical stretching and squeezing (of the functions on which 
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they act). In other words, flexible niveloids depend primarily on the levels of 
functions. Complete dependence on the levels of functions characterizes the limi-
toids. The aim of this paper is to investigate that subtle difference that makes 
a limitoid of a flexible niveloid. 

If A is a family of subsets of X, then the functionals liminf, limsup on R 
A A 

(lower and the upper limits along A) given by1 

lim inf / = sup inf / , 
A Ac: A A AeA (1.3) 

lim sup / = inf sup / 
A A^A A 

are limitoids. Recall that for a given family A of subsets of X the grill A# 
consists of all the subsets of X that intersect every element of A. Notice that 
limsup = liminf, and vice versa, because Aft^ is the least family stable for 

A A* 

supsets that includes A. Denote by XH ^ e characteristic function of H valued 
in the lattice R: 

no/ . f H-oo if x EH , , x 

XH(-) = { .- ' 1.4 
G. H. G r e c o gives in [7] the following representation theorem: 

x 
THEOREM 1.1. ( G r e c o ) For every limitoid L on R . there exists a family 

X 

A of subsets of X such that for every f E R , 
L(f) = liminf/. (1.5) 

A 

Moreover, the largest family fulfilling (1.5) is 

%L={A: L(X%) = +00} . (1.6) 

In particular, it follows from Theorem 1.1 that all the T-functional ([2]) 
are limitoids. In [6] G. H. G r e c o gives another characterization of limitoids, 
namely, in terms of the monotone integral A function (3: 2X -> {0,1} is called 
increasing if_/?(0) = 0, 0(1) = 1 and /3(A) < /3(B) provided that A C B. 
If / : X -> R + , then the integral of / with respect to (3 (G. V i t a l i [8], 
G. C h o q u e t [1]) is defined by 

00 

jfdp = jp{f>t}dt 
x 0 

and / / d/J = J 7 + d(3- Jf_ d/3 for f:X-+ 
X X X 

xOf course, inf / = inf f(x) and s u p / = sup f(x) • 
A xeA A xeA 



FLEXIBLE NIVELOIDS 

X 

THEOREM 1.2. ( G r e c o ) For every limitoid L on E , the function /3(A) = 
x 

L(xA) is increasing and for every f £ E , 
L(f) = Jfdp. 

x 

In what follows we use the upper and lower extensions to E of the addition 

and the subtraction; namely, +00 + (—00) = +00 and +00 + (—00) = —00, 
while — r= +(—r) and —r= +(—r). 

If V C E , then the functionals Vv, Av defined by 

V P / = sup inf (/ - p), 
peV (1.7) 

Avf = inf sup(/ -p) 
pev 

are niveloids. They play a distinguished role in the study of flexible niveloids. 
The functionals (1.3) constitute a special case of (1.7) with 

V={X%: AeA). 
Denote by $ the set of all lattice isomorphisms of E and by 3>0 the subset 

of 3> of those ip for which y>(0) = 0. Of course, tp E $ if and only if <p is a 
strictly increasing continuous function with (p(—oo) = —00 and </?(+oo) = +00. 
A niveloid T is a flexible niveloid if and only if (1.1) holds for every </? E $ 0 . In 
fact, every p E $ is of the form p = cp + r, where <p E $ 0 and r E E. Therefore, 
it is sufficient to use (1.2) to conclude the proof. 

2. Normality 

A niveloid T is called normal if T(0) = 0 ([4]). 

PROPOSITION 2.1. A niveloid T on X is normal if and only if, for each 
feRx, 

i n f / < T ( / ) < s u p / . (2.1) 

P r o o f . Clearly, (2.1) implies normality. Suppose that T is normal and 
inf/ > -00 . Then inf/ = T(inf/ + 0) = T(inf/) + 0 = T(inf/) . Thus, by 
isotonicity, inf/ < T(f). The second inequality follows from duality. • 

A niveloid is normalizable if T(0) E E. If T is normalizable, then, for each 
bounded function 6, one has T(b) E E. The converse is even more obvious. If b 
is bounded and T(b) E E, then the niveloid Tb defined by 

Tb(f) = T(f + b) (2.2) 



SZYMON DOLECKI 

is normal. This explains the term "normalizable". 
Here is an example of biconjugation which is not a normalizable niveloid. 

EXAMPLE 2.2. Let w = {X\ • -y\ : y G R, A > l } . Then T(f) = /**(0) = 
sup (X\y\ — r) is a proper niveloid which is not normalizable, because 

X\.-y\-r<f 
T(0) = -oo. 

Every limitoid is normal. Indeed, if i(0) 7-- 0, then L(0) 6 {-co,+00}, 
because a flexible niveloid is normal if and only if it is normalizable. By choosing 
tp = 0, we get the following contradiction 

0 ^ ( 0 ) = L ( # ) ) = ^ ( i ( 0 ) ) = 0. 

PROPOSITION 2.3. Every normalized flexible niveloid is normal. 

P r o o f . Let T be normalized and flexible but T(0) ^ 0. Let (/? G $ 0 be 
such that <p(T(0)) 7- T(0). Then T(0) = T(ip(0)) = y>(T(0)), a contradiction. 

D 

Denote by A, the closure in the natural topology of a subset A of E. Clearly, 
A is the least complete sublattice of R that includes A. 

PROPOSITION 2.4. IfT is a normal flexible niveloid, then for every / € R , 

T(f)ef(X). (2.3) 

P r o o f . Suppose that, on the contrary, T(f) £ f(X). If T(f) <E R, then 
there exists 5 > 0 such that [T(f) - <J, T(f) + S] fi / (X) = 0. There exists 
tp e $ such that </?(r) = r if r <£ [T(f) - 5, T(/) + 5] and for which <p(T(f)) ± 
T(f). Then ^ / = / and thus, by flexibility, T(f) = T(<pf) = v (T( / ) ) , a 
contradiction. 

If T(/) is infinite, say, T(/) = +oo, then, by normality, sup / = +00 showing 
that +00 e f(X). • 

3. Flexible families of functions 
V 

A family B e l is said to be flexible if $0(B) C B. For a flexible niveloid 
T, the families {T = 0}, {T = +00} and {T = -00} are flexible. We shall see 
that the converse also holds (Theorem 3.3). 

The family B is called 0-admissible if there exists a niveloid T such that 
T(B) = {0}. 
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PROPOSITION 3 .1 . If a flexible family B is 0-admissible, then for every 
beB, inf|b | = 0 . 

P r o o f . Suppose that, for same beB, inf |6| = r0 > 0. Let (p: R -> R be 
defined by 

f § , for r > 0 / n _ 
¥> to - ' " n (3-1) 

I 2r , for r < 0. 
Then, since b is proper, r0 < +oo and 

inf (6 - <p(b)) = inf - U A inf (-6) > -§• > 0 , v v / y {6>o} 2 {_ 0 0 < b<o} v ~ 2 

contrary to 0-admissibility. • 

Let p G R . We shall consider niveloids of the form (1.7) generated by $0(P) , 
the least flexible family that contains p . It is clear that q e $o(H0 if and only 
if there exists a lattice isomorphism v: p(X) -r q(X) such that r > 0 entails 
v(r) > 0, 5 < 0 entails v(0) < 0, i>(-oo) = —oo provided that - c o G p(X) 

and v(+oo) = +oo provided that +oo G p(X). In particular, if q G $ 0(P) , then 
sup p = +oo if and only if sup q = +oo; as well, sup p = 0 if and only 

{p<+oo} {p < + 0 0} {p<0} 
if sup q = 0. Of course, dual formulae hold too. 

{p<0} 
We have seen in Proposition 3.1 that in order that $0(P) be 0-admissible it is 

necessary that inf |p| = 0. This condition is also sufficient. Indeed, suppose, for 
example, that sup p = 0. Then there exists a sequence (xn)n C {p < 0} with 

{p<o} 
\imp(xn) = 0. Consequently, for each q G $ 0 (p ) , q(xn) !$ 0 and limq(xn) = 0. 

n n 
Therefore, for each e > 0, there exists n such that |p(xn) | < e, |q (x n ) | < e so 
that inf(p - r/) < 0 and inf(q - p) < 0. 
THEOREM 3.2. If inf |p| = 0. then V$,p) is a flexible niveloid. Moreover, 
v<Mp)-f= 0 tfand only tf 

sup inf / = +oo , (3.2) 
r € R { r < p } 

V inf / > - o o , (3.3) 
reR {r<p} 

sup inf / = 0 . (3.4) 
£>0 {~£<P} 

P r o o f . Observe first that every q G $0(P) satisfies (3.2), (3.3) and (3.4). 
Indeed, if sup inf q < +oo, then there would exist a sequence (xn)n such that 

reR{r<p} 
limp(a:n) = +oo and sup q(xn) < +oo which is impossible. If there existed r G R 
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for which inf q = — oo, then there would exist a sequence (rn)n C {r < p} 
{r<p} 

for which limq(x ) = — oo, which contradicts q G 3>0(P). Finally to see that 
n 

q fulfills (3.4) note, that in the case where inf p = 0, inf q = 0 as well. 
{0<P} {0<p} 

Otherwise, sup inf q = 0. 
e>0 {s<p<0} 

Let V $ / N/ > 0. Then, for each £ > 0, there exists q G $0(p) such that 
f > q- 5°. Since <I satisfies (3.2), (3.3) and (3.4), / fulfills (3.2) (3.3) and 
sup inf f > —S (for each S > 0), hence 
e>0{-£<p} 

sup inf / > 0. 
e>0 {~e<p} 

If ^®o(P)f — 0 ' t n e n t n e i n v e r s e inequality also holds, hence we have (3.4). 
Assume that, on the contrary, there exists r > 0 such that inf / > r for 

{~e<p} ~ 
some e > 0. As, on the other hand, V$ / */ > 0, there exists q G $0(P) such 
that / > q — £. But there exists 5 > 0 such that inf / > r . We define 

2 {-*<*} " 

«*>-{ («+ , ) . - : ' - • <3-5> 
for ť > 0, 

( j + l ) í for í < 0 . 

Then (̂  G $ 0 and (p(q) G $ 0 ( p ) . Now, o n { g > 0 } , / = | + | > § + f - J = 
§ + 4 — ^(q) + 4 5 o n {—$ < q < 0}> ^(q) < 0 a n d / > r, hence, a fortiori 
/ > V?(q) + 4 i o n {q < —$} > ^(q) = ( | + l)#- Therefore, on {q < —S}, one has 
/ - <p(q) > Q - § — r ( f ) - q > § ' s o t n a t ^ ( / ~~ <P(Q)) > 4 > 0, contrary to 
the assumption. 

Suppose now that / satisfies (3.2), (3.3) and (3.4). We have seen that, for 
every q G $ 0(P) (3.4) amounts to sup inf / = 0. In particular, for every 

6>o {-<*<?} 
S > 0, there exists x G {—S < q} for which f(x) < S. It follows that inf(/ — q) < 
f(x) — q(x) < 25 which proves that V$ , ,f < 0. 

Let £ > 0. We shall find q G $0(p) f° r wn1ch / > <1 - £. In view of (3.2), 
for each k G N, there exists n(A;) G N such that inf f > ke and, besides, 

Wfe)<rf " 
n(k + 1) > n(fc). As a consequence of (3.4), inf / > 0. Define now for n(k) < 

{o<p} 
r <n(fc + l ) , 

^ = n(k + l)-n(k)(r-n^+k*> <3"6> 

where fc = 0 , 1 , 2 , . . . and n(0) = 0. 
By virtue of (3.3), for every k G N, there exists an ra(fc) > 0 such that 

inf / > -m(k) and we may assume that m(k + 1) > m(k) > e. By (3.4), 
{-k<p} 

6 
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there exists 1 > 5 > 0 such that inf / > — e. We complete now the definition 
{-*<P} " 

of (f for negative r . 

f ^ r if - S < r < 0 , 

<p(r) = J m(2)-m(1)(r + 1 ) _ m ( 2 ) i f _ i < r < _ ^ ? 

I [ra(fc + l) -m(k)](r + k) -m(k+l) if - A; < r < - k + 1, k>2. 

So defined (p belongs to <&0(p) and enjoys the property / > (f(p) —e proving 
that V $ o ( p ) = 0. It is clear that if / satisfies (3.2), (3.3) and (3.4) and (p E <-?0, 
then (p(f) also satisfies (3.2), (3.3) and (3.4). 

If V$o{p)g - - t e l , then / = g - t satisfies (3.2), (3.3) and (3.4), hence 
sup inf g = t. As a consequence, for every </? E $ 0 , one has 
£>0 { -£<P} 

sup inf </?(#) = (/?(£) 
£ > 0 { - £ < P } 

and ^(g) satisfies (3.2) and (3.3), proving that V^o{p)ip(g) = (p(t). If V $ o ( p ) g = 
+oo, then there is a sequence (fn)n of functions satisfying V$ , x/n -= 0 such 
that g > fn + n. As we have shown V$o(p)<p(/n + n) = ^ ( n ) . Hence, ^(5) > 

^ ( / n + n ) a n d V $o(p )^^) = + ° ° - F i n a l l y 5
 i f V < M P ) #

 = ~°°' then V $ O ( P ) ^ ^ ) = 
—00 for each tp E $ 0 , because otherwise there would be V^ (p\^p(g) > —00 and 

^<$>O(P)9 = ^7$O(P) (^~ {^(9)) = —°° which is impossible, because of the discussion 
above. • 

If T- is a flexible niveloid on R for each z E I, then V T?: and / \ T̂  are also 
iei iei 

flexible niveloids (the bounds being considered in the complete lattice of all the 

functionals on HI ). The above holds also for the empty set of indices 7; in other 
words, the degenerate niveloids ( T = +00 and T = —00) are flexible. Therefore 

x 
to every functional T on R , there corresponds a least flexible niveloid F1" T 
that majorizes T and a greatest flexible niveloid ¥~T that minorizes T . In fact, 
the upper and lower projections on the class of flexible niveloids in the sublattice 
of all niveloids are 

(F+T)(f) = sup <p-T(<p(f)) , 
" 6 *° (3.7) 

( i r r ) ( / ) = inf <p-T{<p{f)). 
<pe$o 

THEOREM 3.3. If T is a niveloid for which {T = 0} and {T = +00} are 
flexible families (or {T = 0} and {T = —00} are flexible), then T is flexible. 

P r o o f . By the Second Representation Theorem [4; Theorem 2.3], T = 
V r T = 0 | V V r T = + 0 0 i . As {T = 0} is a flexible 0-admissible family, for every 
p E {T = 0} , VcJ>o(p) is a flexible niveloid by virtue of Theorem 3.2. 
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Consequently V r r = 0 | = V ^ $ (P) is flexible as the least upper bound 
T(P)=o ° 

of flexible niveloids. To see that V r ^ + ^ i is flexible, consider / such that 
V f T = | o o | / = -f-oo. As {T = +00} is an (+00) family, this amounts to / G 
{T = +00} , hence (p(f) G {T = +00} for each (p G $ 0 in view of flexibility so 
that Vr T = + 0 0 | (D ( / ) = +00 . Finally, T is flexible being the supremum of two 
flexible niveloids. • 

EXAMPLE 3.4. Let i: R -> R be the identity on R. Of course, $0(z) con
sists of all the strictly increasing continuous finite functions that vanish at the 
origin and tend to +00 and to - c o with the argument. By Theorem 3.2, 
Vfi (;\f = 0 if and only if lim f(x) = +00, inf f(x) > - c o for each 

0K } x—> + oo x>r 
r G R and sup inf f(x) = 0. In particular, / may admit (+00) values. Now 

£>o -£<x 

f G {V^o(- ) = 0} fl {V$ o ( i ) < +00} whenever the preceding conditions hold 
and when / is bounded from above by a vertical translate of a function from 
$0CO • h1 particular, such an / admits only finite values and must tend to —00 
when the argument does. 

Observe that the family B = {V$ o (- ) = 0} n {V^o ( i ) < +00} is a flexible 

0-family. The flexibility follows from the fact that {V$ o ( i ) = 0} is flexible and 

that, if for some h G $ 0 ( 0 a n ( i r £ R, / < h + r , then, for every ip G 3>0, 

¥>(/) < V(h + r) = [(p(h + r) - ip(h(0) + r)] + <p(h(0) + r) and the term under 

the brackets belongs to $ 0 ( i ) . Since $0( i) cB C {V$ o (- ) = 0 } , { V 5 = 0} = 

{V3, {i) = 0 } . Now if VBf < +00, then there exists 6 G V for which / E b. 

But now A $ o ( i ) b < +00 so that A $ o ( i ) / < +00 proving that {AB < +00} = 

{A^ {i) < + 0 0 } . Consequently, B is a 0-family. 

We note that B is strictly greater than {V^o ( i ) = 0} n { A $ o ( i ) = 0 } . For 
instance, the function f(x) = (x + l)(x — l ) 2 belongs to the former but not to 
the latter. 

E X A M P L E 3.5. Let Q = {V^ ,{) -= 0 } , that is, the family of those functions g 

for which lim g(x) = +00, and inf g(x) > - 0 0 for each r G R and 
x—>oo x>r 

sup inf g(x) = 0. (3.8) 
£ > 0 ~£<X 

We shall see that {A^ = 0} consists of all the functions fulfilling (3.8). Therefore, 
in view of section 12, {A^ = 0} is maximal 0-admissible. 

Let Agf = 0. In particular, for every S > 0, there exists g G Q such that 
/ < 9 + S, so that, by (3.8), sup inf /(re) < 0. If this inequality were strict, 

£ > 0 -£<x 

then there would exist T < 0 and a sequence (x) such that —-< x and 
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f(xn) < r. Then either xno > 0 for some n0 G N, so that i/i{Xn } C G and 

s u p ( / T ip{Xn }) = f(xno) < r < 0, or xn < 0, for each n G N. In the latter 

case, ^{^mGN} G ^ a n d S U P ( / T ^ n : n 6 N } ) < r < 0. Consequently, the 
0-admissibility of {A^ = 0} is contradicted. 

Let / satisfy (3.8). As every g G G also satisfies (3.8), we have, by the 
0-admissibility of the set of those functions that fulfil (3.8), that Agf > 0. On 
the other hand, for each n G N, there exists xn > — ^ for which f(xn) < ^ . 
If there is a subsequence (x n J f c of ( x j n with xnk < 0, then / < ^{Xnfc: fc>fco} 

-f ----- and ^ r ^ . k>fc \ G (5 for each k0; otherwise, there exists n0 such that 

xn > 0 for each n > n 0 . Now ^ { X n } G G and / < V / ^ } + ^ . Anyway, A g / < 0. 

In view of [4; Theorem 6.4], a maximal 0-admissible family need not contain 
0. However, 

THEOREM 3.6. Every maximal 0-admissible flexible family contains 0. 

P r o o f . If B is 0-admissible and flexible, then 

V 5 0 < 0 < V B 0 . 

In fact, inf(—b) < inf |b| = 0 in view of Proposition 3.1, hence V B 0 = 
supinf(-/3) < 0. As well, inf(6) < inf |b| = 0 so that A^0 = inf sup(-6) > 0. 
bes b^B 

If B is maximal 0-admissible then V^O = A B 0 , thus 0 £ B. • 

PROPOSITION 3.7. Let B be a 0-admissible flexible family. Then V' Bf = 0 
if and only if there exists a sequence (bn)n C B such that 

sup inf / = +oo , (3.9) 
r£R ir<bn} 

V inf / > - o o , (3.10) 
r {r<bn} 

sup inf / > - i , (3.11) 
£>o{-£<bn} n 

sup sup inf / < 0 . (3.12) 
beBe>0 {-£<b} 

P r o o f . We have that B = \J <&0(b), for some B0 (in particular for 
6eBo 

B0 = B). Therefore, VBf > 0 whenever there exists a sequence (bn)n C B0 

such that V ^ ^ / > ~ which, in view of Theorem 3.2, amounts to (3.9), 
(3.10). Now, VBf < 0 is equivalent to (3.11) in view of Theorem 3.2. • 

A niveloid T is inf-convolutive (resp. sup-convolutive) if for every function / , 

T(f) = V { r = 0 } / (resp. T(f) = A { r = 0 } / ) . 

Here is an example of a flexible niveloid which is neither inf- nor sup- convo-
lutive. 
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EXAMPLE 3.8. Consider the following niveloid 

inf / : sup / < +oo , 

T(f) = { - c o : i n f / = - c o , sup / = +oo, 

+00: inf / > — 00, sup / = +oo. 

We observe that T(f) = 0 whenever inf / = 0 and sup / < +00, T(f) = +00 
if and only if sup / = +00, and inf/ > -00 and T(f) = -co if and only if 
inf/ = - c o . In view of Theorem 3.3, it is sufficient to define {T = 0} and 
{T = +00} or (T = 0) and {T = -00} . 

V{T=o}/= SUP inf(/-6), 
{b: inf 6=0, sup 6<+oo} 

ArT ,f z= inf s u p ( / ~ b ) . 
t i _ U / {&:inf6=0,sup6<+oo} ' 

Now V | T = 0 } / = +00 whenever there exists a sequence of functions (bn)n C 
{T = 0} such that / > bn + n. Therefore, in particular / > n so that 
/ = + o o . We have seen that there exist functions / for which T(f) = +00 
but V r T = 0 i / < + 0 0 : T is not inf-convolutive. 

Now if A / T = 0 } / = - c o , then in particular, s u p / < / 0 . Consequently, there 
exists a function / for which T(f) = - c o but Ar T = 0 -> / > —00: T is not 
sup-convolutive, but {T = 0} is sup-convolutive. 

THEOREM 3.9. If Q is an inf-convolutive flexible family, then Ag is a limi-
toid. 

P r o o f . Let A = U {{-e < b) : e > 0 } . If Agf < 0, then, for every 
beB 

n e N, there exists gn e Q such that / < gn + £ and since gn fulfills (3.11), 
l i m i n f / < 0 . • 

A ~ 

4. Limitoids and carriers 

We shall denote by C(X) the set of all limitoids together with the functionals 
—00 and + 0 0 . The latter will be referred to as degenerate limitoids. We shall 
see later that C(X) is closed under arbitrary least upper bounds and greatest 
lower bounds. 

The notions of (lower and upper) carriers will enable us to characterize the 
limitoids, recovering Theorem 1.1 via a simple alternative proof. 

Denote by tpH the indicator function of H : 

. , , f 0 if x e H, 
M*) = { M ., ' (4.1) 

L +00 if x f H, 
10 
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and by i/jjf the indicator function of H valued in the lattice 
—oo if x G H, 

*%{*) = { (4-2) 

Of course, VJ? = ~XH • 
Let T be an arbitrary niveloid. The lower carrier of T is defined by 

IT={A: T ( - V J > 0 } (4.3) 
and its upper carrier by 

t T = ( | T * ) # . (4.4) 
Here T*(/) = -T(-f) is the conjugate functional of T. Of course, -\T = 

{H: T ( ^ ) < 0 } # . 

PROPOSITION 4.1. If T is a flexible normal niveloid, then A e IT if and 
only if T(-ipA) > -00 and A G \T if and only if T(tpA) < 00. 

P r o o f . Let T(-^A) > - c o . By normality, T(-^A) < 0 and, in view of 
Proposition 2.4, T(-ipA) = 0. The second statement follows from duality. • 

The pseudocarrier is defined by 

tT={A: T(X~) = +oo}. (4.5) 
Recall that pseudocarriers have already appeared in the G r e c o represen

tation theorem (Theorem 1.1). In view of [4; Corollary 1.3], if T is a niveloid, 
then 

AelT <=> V i n f / < T ( / ) , (4.6) 
/ A 

H G ( t T ) # ^ V T(f) < sup / . (4.7) 
/ H 

Now it is clear that 0 G \T if and only if T = +oo; also \T ^ 0 if and only if 
inf < T. Dually, 0 G t ^ if and only if T = - co ; as well, ^T ^ 0 if and only if 
T < sup. Consequently, T is normal if and only if \T and "\T are nondegenerate 
semifilters. 

We observe that F+(T*) = (F_T)*. Moreover, 
t (F + T) = $T = t (F_T) . (4.8) 

Formulae (4.6) and (4.7) imply that, for every niveloid T, and for each / , 
liminf / < T(f) < l imsup/ 

±T (tT)# 
and because lim inf = lim sup, 

A A* 

liminf < T < lim inf . (4.9) 
IT ~ ~ tT 

Moreover, these are the greatest lower limit that minorizes T, and the least lower 
limit that majorizes T. It follows from the definitions that, for every niveloid T, 

4 - T c £ T c t T . (4.10) 

n 
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THEOREM 4.2. A niveloid T is a limitoid (possibly degenerate) if and only if 
\T = t T (and thus equal to \T). 

P r o o f . It is straightforward that lim inf (and lim sup) is a limitoid (proper, 
A A 

whenever A is a base of a proper semifilter). Consequently if t-T = \T, then by 
(4.9) T is a limitoid. 

Suppose now that T is a limitoid. Let A e \T. By setting <p(r) = r A 0, we 
get from (1.1), 

T(-Vu) = T(X% A 0) = T(x5?) A 0 = 0, 

thus A e \T. If now H e (\T)#, then by setting ip(r) = r V 0, we derive 
from (1.1), 

T ( ^ ) = T(1>% V0) = T ( ^ ) V0 = 0 

so that H e ( t T ) # . We have proved that ^Tc\T. • 

In view of (4.9), (4.10) and (4.5), Theorem 4.2 implies Theorem 1.1. 

EXAMPLE 4.3. Let C be the functional of convexification at a given point of 
R, for instance, C(f) = (co/)(0). We have that 

tc^\c = \c. 
In fact, A e \C whenever co(—ipA)(0) = 0 and this happens only when A = R. 
On the other hand, co(x~)(0) = x~Oi4c)c(0). Now> A e (tc ')# i f a n d o n l y 
if 0 = co(^)(0) = VcoA(°) a n d A € (tC)# if and only if c o ( ^ ) ( 0 ) = - 0 , 
equivalently -co = V ^ ^ W -

It follows from our considerations that the lower projection of C on the 
class of limitoids is equal to inf. On the other hand, H G "\C if and only if 
0 ^ coifc. Therefore the upper projection of C on the class of limitoids is equal 
to the quasi-convexification at 0. Summarizing, 

(L" co)(/) = inf / , (L+ co)/ = sup inf / . 
{11: 0gcoHc} H 

EXAMPLE 4.4. Let D(f) = /**(0), the classical biconjugation on the line R. 
As (-i/>A)** ^ -co if only if A = R and alike (x2T* ^ - ° ° if a n d o n l y if 

A = R, \D = \D = {R}. Now (ip%)** = -oo if and only if A ^ 0, while 

^*A=*PclcoA S o t h a t 

The lower projection on limitoids is also inf and the upper the quasi-convex 
lower semicontinuous hull. 
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E X A M P L E 4.5 . (A flexible normal inf-convolutive niveloid which is not a limitoid) 
Let B = {V^o ( i ) = 0} from Example 3.4. We shall set T = {VBu{0} = 0 } . We 
have that / G T if and only if 

V J B / V i n f / = 0, 

equivalently if VBf < 0 and inf / < 0 and either VBf > 0 or inf > 0 . This is 
tantamount to: f e B (because VBf < 0 implies i n f / < 0) or VBf < 0 and 
inf/ = 0. 

Another characterization given in [7] describes limitoids as those isotone func
t iona l L for which 

L ( X ^ ) e { - o o , + o o } , (4.11) 

V_V L(fAr)=L(f)Ar, (4.12) 

V_V L(fWr)=L(f)Vr. (4.13) 
reR f 

Of course, (4.11) is satisfied by every niveloid L. We note that a weaker version 
of (4.12) and (4.13) was used in the proof of Theorem 4.2. 

As it was shown in [7], C(X) is isomorphic to the complete lattice of semifil-
ters on X (degenerate ones comprised). Denote by L + T and L~T respectively 
the upper and the lower projection on the class of limitoids. We note that 

| ( L " T ) = | T , t ( L + T ) = t T ; 

the latter may be obtained from the former by duality. 

THEOREM 4.6. The lower (resp. upper) projection of a niveloid T on C(X) 
is given by 

(h~T)(f) = liminf / (resp. ( L + T ) ( / ) = liminf / ) . (4.14) 

Moreover, for every family {T{}ieI of niveloids, one has 

L _ ( A T i ) = AL"(Ti) and L + ( V T i ) = V L + T . - (4-15) 
^iei ' iei ^iei ' iei 

This property corresponds to the following rule concerning carriers 

t(AT i)=n+T i and t (vT i )=utT i - (4i6) 
M6I ' iei ^iei ' iei 

On the other hand, if I is finite then 

+(vT i)=u+ r i and t (AT i )=ntT i - (4-i7) 
MeI ' iei ^iei ' iei 

In particular, as a consequence of Proposition 4.-1 and Theorem 4.2 we have: 

13 
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PROPOSITION 4.7. If {T{}ieI are flexible normal niveloids, then (4.16) and 
(4.17) hold. 

Therefore, if B is a flexible 0-admissible family containing 0, then 

( L - V B ) / = sup i n f / , 
{bEB: sup6< + oo} i-oo<b} 

( L + V B ) / = inf s u p / . ( 4 ' 1 8 ) 

V BJJ {H: 3 sup6>0} H 

BEB H 

THEOREM 4.8. Every limitoid is a convolutive niveloid. 

P r o o f . Let L be a limitoid. By Theorem 4.2 and by (4.9), L(f) = 0 if and only if sup inf / = 0 and thus L = V r L = 0 i . Dually, L(f) = 0 if and only if 
AetL A 

inf s u p / = 0, hence L = A / r _ n l . D 
He{XL)# H

 { L " 0 } 

5. Flexible niveloids on bounded functions 

Let T be a normal niveloid. A set A belongs to the lower quasi-carrier \T 
of T if there exist — oo < r < s < +co such that the function 

Ь{x) = {° " ^ ? (5-1) 
5 if X Є A, 

r if x ţ A 

satisfies T(b) = s. On the other hand, H G f T if T(b) = r with A = Hc. We 
have that 

| T c i T and ^TC[T. (5.2) 

Indeed, if A G | T , then 0 = T(-^A) < T(XA-1) < T(xA)-l < s u p x ^ - 1 < 0, 
by normality. Similarly, —ipA < b — s. On the other hand, if H G ^T and b is 
given by (5.1), then i/>H > b - 5 so that 0 > T{$H) > T(b) - 5 > i n f b - 5 = 0. 

PROPOSITION 5.1. If T is a normal niveloid and f is a bounded function, 
then 

liminf / < T(f) < l i m s u p / . (5.3) 

P r o o f . Let A G \T and let s-'mif and r = inf / . Then b = (~ipA + s) 

+ r V inf / is of the type (5.1) and fulfills b < / . Thus inf/ = T(b) < T(f) so 
A 

that the first inequality holds. The second is similar. D 

14 



FLEXIBLE NIVELOIDS 

PROPOSITION 5.2. If T is normal and flexible, then 

A G {T <=> T(XA) = 1 ^=> Ac g f r . 

P r o o f . Let A G ^ T and 6 be as in (5.1). Then T(b - r) = s - r and 

T(XA) = T{^~r(b-r)) = 1. If A £ ±T, then T(XA) = 0, because T(f) G J(X). 

By definition Ac G j r . • 

COROLLARY 5.3. If T is normal and flexible, then j T = ( fT) and hence 
for each bounded function f, 

l iminf/ = T ( / ) . 
XT 

This approach that enables us to exhibit the limitoid coinciding with T on 
the bounded functions is akin to the method of carriers in the characterization 
of limitoids. 

6. Application to Moreau-Yosida approximation 

Approximations of the Moreau-Yosida [DOLECKI, S: Fuzzy T-operators and 
convolutive approximations. In: Nonsmooth Optimization and Related Topics 
(F. H. Clarke, V. F. Demyanov, F. Giannessi, eds.), Plenum, New York 1989, 
109-131] type hinge on the coincidence of certain niveloids on the sets of func
tions of the form 

Zlh={f: 3 f>h + r\. 

We say that Q approximates V (from below) over h whenever, for each 
p G P , £ > 0 and s G M. there exists q G Q such that 

pV (h + s)>q-£. (6.1) 

THEOREM 6 .1 . If Q approximates V from below over h, then for each f D h, 

vP/<vQ/. 
P r o o f . Let r < Vvf. Then there exists p G ? such that / > p + r. On the 

other hand, by assumption, there exists t G 1R for which / > h + t. Therefore, 
/ > [pV {h+(t — r))] +r and, since Q approximates V over /i, for every £ > 0, 
there exists q G Q such that / > q — £ + r, hence V Q / > r - £ for each e > 0. 

D 
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