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ALGEBRAS WITH PRINCIPAL TOLERANCESS 

IVAN CHAJDA 

An algebra A has principal congruences or A is congruence principal if every 
compact element of Con A is a principal congruence, in other words, if for any 
elements ai9 bt of A, i = 1, ..., n there exist elements a9 b of A such that 

0ial9bx)v ... v 0(an9 bn) = 0(a9 b) 

in the congruence lattice Con A. A variety y is congruence principal if each 
A eV has this property. Such varieties were characterized in [3], [7], [8]. 

Like numerous other concepts, this one can also be transferred for tolerances. 
By a tolerance on an algebra A is meant a reflexive and symmetrical binary 
relation on A having the substitution property with respect to all operations of 
A. Clearly every congruence on A is a tolerance on A but not vice versa. As it 
was proven in [5], the set of all tolerances on an algebra A forms an algebraic 
lattice LT(A) with respect to set inclusion. Hence, for every two elements a9 b of 
A there exists the least tolerance T(a9 b) containing the pair <a, b}9 the so called 
principal tolerance. Such concepts were studied in [1], [4], [6]. Therefore, we can 
introduce the following concept for tolerances: 

Definition 1. An algebra A is tolerance principal if for each ai9bteA9 

i = 1, ..., n there exist a9beA such that 

T(a]9bx)y ... v T(an9 bn) = T(a9 b) 

in LT(A). A variety y is tolerance principal if each Aey has this property. 

Lemma. (Lemma 2 in [2]). Let ai9 bt(i = 1, ...9n) be elements of an algebra A. 
Then 

<x9y}eV{T(ai9 b,); / = 1, ..., n) 

if and only if there exists a 2n-ary algebraic function cp over A such that 

x = (p(a]9 b]9 al9 bl9 ..., an9 bn) 
y = cp(b]9 a]9 bl9 al9 ..., bn9 an) 

Theorem 1. Let y be a variety of algebras. The followiing conditions are 
equivalent: 
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(1) i ^ is tolerance principal; 
(2) there exist an S-ary polynomial p and 6-ary polynomials t, s such that 

x = t(p(x, v, z, r, x, >\ z, r), p(y, x, v, z, x, y, z, v), x, y, z, v) 
y = t(p(}\ x, v, z, x, y, z, v), p(x, y, z, v, x, y, z, v), x, y, z, v) 
z = s(p(x, y, z, v, x, y, z, v), p(y\ x, r, z, x, y, z, v), x, y, z, r) 

v = s(p(y\ x, v, z, x, y, z, r), p(x, y, z, v, x, y, z, v), x, v, z, r). 
P roof . (1) => (2): Let F4(x, v, z, r) be a free algebra of V with free 

generators x, v, z, r. Then there exist elements a, b of F4(x. v, z, r) such that 

(*) T(a, b) = F(x, y) v F(z, r) in FF(F4(x, } \ z, r)). 

Hence {a, b) e T(x, y) v F(Z, r), by the Lemma this gives a = cp(x, v, z, r), 
b = cp(y\ x, v, z) for some 4-ary algebraic function (p over F4(x, y\ z, r) i. e. 

a = p(x, y, z, v, x, y, z, v), b = p(y\ x, r, z, x, y\ z, r) 

for some 8-ary polynomial p over i \ Moreover, (*) also implies 

x = T(a, b), v = r(b, a) and z = a(a, b), v = o(b, a) 

for some binary algebraic functions r, o~, i. e.there exist 6-ary polynomials t, s 
with 

r(u, w) = l(u, w, x, y, z, r) 
o(u, w) = s(u, w, x, v, z, r), 

whence (2) is evident. 
(2) => (1): Let V satisfy (2) and Aei~, x, y, z, VEA. Then also a = 

= p(x, y, z, v, x, y\ z, r), b = p(y\ x, v, z, x, j \ z, r) are elements of A and, by the 
Lemma, also 

(a,b)eT(x,y) v F(r, z). 

However, (2) implies 

x = l(a, b, x, y, z, v), y = t(b, a, x, y, z, v) 
z = s(a, b, x, y, z, r), r = s(b, a, x, } \ z, v), 

thus <x, v> G T(a, b), <z, r> e T(a, b). We infer 

T(a, b) = T(x, y) v F(r, z). 

By induction, we obtain (1). 
E x a m p l e 1. The variety of groupoids satisfying the following identities: 

(x.z).[(x.y).(z.v)] = x 

(y.v).[(x.y).(z.v)] =y 

[(x.y).(z.v)].(x.z) = z 

[(x.y).(z.v)].{y.v) = v 
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is tolerance principal. We can put 

p(x], X2, x3, x4, X5, X6, X7, x8) = xj . x3 

t(a, b, x, y,z,v) = a. [(x.y) . (z. v)] 
s(a, b, x, y, z, v) = [(x. y). (z. v)]. a. 

We can continue our investigations for varieties with a nullary operations. 

Definition 2. An algebra A with a nullary operation c is c-tolerance principal if 
for each ax, ..., an of A there exists an element aeA such that. 

T(ax, c) v ... v T(an, c) = T(a, c) in LT(A). 

A variety i^ with a nullary operation c is c-tolerance principal if each Ae'V has 
this property. 

Theorem 2. Let ir be a variety with a nullary operation c. The following 
conditions are equivalent: 

(1) f w c-tolerance principal, 
(2) there exist a 6-ary polynomial q and 4-ary polynomials u, w such that 

c = q(c, x, c, y, x, y) 
x = u(q(x, c, y, c, x, y), c, x, y) 
c = u(x, q(x, c, y, c, x, y), x, y) 
y = w(q(x, c, y, c, x, y), c, x, y) 
c = w(c, q(x, c, y, c, x, y), x, y). 

Proof . (1)=>(2): Let F2(x, y) be a free algebra in a variety 1T with a 
nullary operation c. Then there exists an element a of F2(x, y) such that 

T(a, c) = T(x, c) v T(y, c). 

Hence <a, c} e T(x, c) v T(y, c), which gives 

a = q(x, c, y, c, x, y) 
c = q(c, x, c, y, x, y) 

for some 6-ary polynomial q over ir. The remaining part of the proof is 
analogous to that of Theorem 1 and hence omitted. 

(2) => (1): Suppose TT is a variety with a nullary operation c and Ae^, 
x,yeA. Put a = q(x, c, y, c, x, y). By the Lemma we can see 

<a, c) = (q(x, c, y, c, x, y), q(c, x, c, y, x, y)} e T(x, c) v T(y, c). 

Conversely, 

<x, c> =-- <u(a, c, x, y), u(c, a, x, y)} e T(a, c) 
(y, c} = (w(a, c, x, y), w(c, a, x, y)} e T(a, c), 

thus, altogether, 
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T(a, c) = F(x, c) v TTCy, c). 

E x a m p l e 2. Each variety of lattices with the least element 0 is 
O-tolerance principal. Each variety of lattices with the greatest element 1 is 
1-tolerance principal. 

P r o o f . Put q(a,, a2, a^ a4, A\ >') = a, v a-. 
u(a, b, x, y) = a A x 
w(a, b, x, >') = a A y. 

Then 
q(0, x, 0, >\ JC, v) = 0 v 0 = 0 
u(q(x, 0, y, 0, x, >'), 0, x, y) = q(x, 0, >\ 0, x, y) A X = (x v >') A X = x 
u(0, q(x, 0, >\ 0, x, >'), x, >') = 0 A JC = 0 
U'(q(x\ 0, >\ 0, A\ >>), 0, x, >) = q(x, 0, >\ 0, x, y) A y = (x v >') A y = v 
w(0, q(x, 0, >\ 0, JC, y), JC, >') = 0 A y = 0 . 

For lattices with the greatest element 1 the proof is dual. 
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AЛГEБPЫ C ГЛABHЫMИ TOЛEPAHЦИЯMЫ 

Ivan Chajda 

Peзюмe 

Aлгeбpa A тoлepaнтнo глaвнaя, ecли кaждый кoмпaктный элэмeнт peшeтки тoлepaнций 

aлгeбpы A являeтcя глaвнaя тoлepaнция. B cтaтьe дaны нeoбxoдимыe и дocтaтoчныe ycлoвия 

тoгo, чтoбы мнorooбpaзиe былo мнorooбpaзиeм тoлepaнтнo глaвныx aлгeбp. ЭTOT кoнцenт 

тoжe oбoбщaeтcя для cлyчaя aлгeбp c нyляpными onepaциями. 
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