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THE LINEAR ARBORICITY 
OF 10-REGULAR GRAPHS 

FILIP GULDAN 

The concept of linear arboricity was introduced by Harary [8], [2] as one of the 
covering invariants of graphs. 

A linear forest is a graph in which each component is a path. The linear arboricity 
S(G) of a. graph G is the minimum number of linear forests whose union is G. 

The value of linear arboricity so far has been determined only for a few special 
classes of graphs, e.g. for trees, complete graphs and complete bipartite graphs. 
(See [1] and [2].) The following conjecture expressed in [2] has a fundamental 
importance in the research on linear arboricity. 

Conjecture. The linear arboricity of an r-regular graph is \ —z— \ . 

The general proof of this conjecture does not seem to be simple and so we are 
meanwhile satisfied with partial results. The conjecture was proved for r = 3 and 
r = 4 by Akiyama, Exoo and Harary in [2] and [3], the cases of r = 5, 6 were 
solved independently by Enomoto [4], Peroche [10] and Tomasta [12] (only 
for r = 6) and the case of r = 8 was proved by Enomoto and Peroche [5]. 

The aim of this paper is to prove the validity of the conjecture for the case of 
r=10. 

Let us at first introduce some necessary notions and notations. In the paper by 
a graph we mean an undirected finite simple graph, by a spanning linear forest we 
mean a linear forest which is a factor with minimum degree one. Let us denote by 
V(G) the set of vertices of a graph G and by E(G) the set of edges of G. Further 
let us denote by Vr(G) the set of vertices of degree r of G, let NG(v) denote the set 
of vertices adjacent to a vertex v in G, let (M) denote the subgraph induced by 
a subset M of vertices, let (u, v) denote the undirected edge joining vertices u and 
v and let A(G) denote the maximum degree of G. Any terminology not defined in 
the paper can be found in [9]. 

The basic fact which implies our new results about the conjecture is the following 
theorem. 

Theorem 1. Let G be a graph with the degree sequence (6, 5, 5, ..., 5). Then 
E(G) = 3. 
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As the complete proof of this result is too long for publication in a journal, we 
shall only outline the method of the proof. The detailed proof of Theorem 1 and of 
Lemmas 1—3 can be found in [6]. 

The proof of Theorem 1 is based on the strong Theorem 2 proved by E no mo to 
[4] and on Lemmas 1—3. 

Theorem 2. Let G be a graph with A(G) = 4. Let A(( V 4 ( G ) ) ) ^ 1 . Then 
E( G) = 2. 

Lemma 1. Let Gbe a graph with one vertex v of degree 6 and all other vertices 
of degree 5. Let vu v2, ..., v6e V(G) be adjacent to v. Let there exist a spanning 
linear forest P in G such that 

(i) (vl9 v), (v2, v)eE(P), i.e. v is not an endvertex of P, 
(ii) v3, v*, v5 are not endvertices of P, 

(iii) either v6 is not an endvertex of P or no vertex ye(NG(v6)- {v61}) is an 
endvertex of P, where (v6, v61)eE(P). 

ThenE(G) = 3. 

Lemma 2. Let Gbe a graph with one vertex v of degree 6 and all other vertices 
of degree 5. Let vu v2, t>3, t>4, v5, v6 be adjacent to v. Let there exist a spanning 
linear forest P' in G such that 

(i) (v, Vi)eE(P') and (v, v2), (v, v3), ..., (v, v6)^E(P'), i.e. v is an endvertex 
ofP', 

(ii) v2, i/3, .., v6 are not endvertices of P'. 
Then E(G) = 3. 

Lemma 3. Let G be a graph, let V(G) = M1uM2, M1nM2 = 0. Let N(M,) = 
{yeM2; 3xeMu (y, x)eE(G)}, let N(Mt)40. Let there exist a spanning linear 
forest Pin (M2) such that degp(jt) = 2 for all xe N(Mi). Let there exist an integer 
6 > 1 such that 6 ^degG(w)^26 for all u e M2. Then there exists a spanning linear 
forest Pi in (Af2) with the property that there exists a vertex v0e N ( M J such that 
degp.(t;o) = 1 and for all y e NiMJ, y =£ v0 we have degj^(y) = 2. 

The main idea of the proof of Theorem 1 is the following: Let v be the vertex of 
degree 6 and let vl9 v2, v3, v4, v5, v6 be adjacent to v. Consider the graph 
d = G — (v, Vi). From [4] or [10] it follows that Gx can be decomposed into three 
linear forests F[, F2, F3. Then after adding the edge (v, vt) back to d we can either 
find a decomposition of G into three linear forests Fi, Fi, Fi by modifying F-, F2, F3 

or determine a linear forest P (resp. P') in G which fulfils the conditions of 
Lemma 1 (resp. Lemma 2). There are considered 4 main cases in this proof, 
according to the values of the numbers 

6 

pt = 2 degF,-^^) for i = l , 2, 3. 
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The main cases are then analysed and divided into more detailed subcases, the 
whole proof consists of verifying 19 subcases altogether. 

Theorem 3. Let r be an odd integer, r ^ 5 . Let the linear arboricity of every 

r-regular graph be \ - L i.e. let the Akiyama—Exoo—Harary conjecture hold 

for r. Then the linear arboricity of every (r + 5)-regular graph is \ - y 1, i. e. 

the conjecture holds also for the case of r + 5. 
Proof. Let G be an arbitrary (r + 5)-regular graph. The inequality E(G)^ 

r-^— is obvious. By Petersen [11] we can decompose G into a 10-regular 

factor H and an (r-5)-regular factor (G — H). 
I. Let | V(G)| be even. Consider a Eulerian trail in H. Colour the edges of this 

trail alternately with two colours. We obtain two 5-regular factors Hi and H2. By 
fr +1 1 [4] or [10] Hi can be decomposed into three linear forests and E(G - Hi) = —— > 

by assumption. Hence E(G) = \^r J—i. 

II. Let | V(G)| be odd. Once again consider a Eulerian trail in H. Colour the 
edges of this trail alternately with two colours. We obtain a decomposition of H 
into two factors Hj and H2. The factor Hi has the degree sequence (6, 5, 5, ..., 5) 
and H2 has (5, 5, ..., 5, 4). By Theorem 2 Hi can be decomposed into 3 linear 

forests and E(G — Hi) = | - I follows from the assumption. Hence E(G) = 

{t±2±ij 
As the conjecture has already been proved for the case of r = 5, Theorem 3 

implies the following important corollary. 

Corollary. The linear arboricity of every 10-regular graph is 6. 
A similar implication as in Theorem 3 from an add r to r + 3 can be easily proved 

by a generalization ofTomasta 's method of the proof of conjecture for r = 6. The 
implication from an odd r to r +1 follows easily from the fact that every 
(r+l)-regular graph (for an odd r) contains a spanning linear forest (because 
every 2-factor contains a spanning linear forest) and so we can formulate the 
following theorem in the conclusion. 

Theorem 4. If the Akiyama—Exoo—Harary conjecture holds for some odd r, 
then it holds for r + 1, r + 3, r + 5, too. 
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ЛИНЕЙНАЯ ДРЕВЕСНОСТЬ 10-ПРАВИЛЬНЫХ ГРАФОВ 

РШр СиЫап 

Резюме 

Линейная древесность Е(0)графа С — это минимальное число линейных лесов, объединение 
которых равно О. В работе [2] была высказана гипотеза, что линейная древесность г-правильно-
го графа равна 

m-
До сих пор была доказана для г = 2, 3, 4, 5, 6, 8. В этой статье показывается, что гипотеза 
правильна тоже для г =10. 
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