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ON THE UNION OF MATCHING MATROIDS 

MARTIN LOEBL, SVATOPLUK POLJAK 

Let Jf = (#,; iel) be a family of finite graphs. The &£ —packing problem 
consists, for a given graph G, in finding maximum subsets of vertices of G that 
can be covered by vertex disjoint copies of graphs from Jf\ For example, if 
Jf = {K2}, then the ffl — packing problem consists in finding maximum subsets 
of vertices saturated by a matching. 

Set M#(G) = { I c V(G)\ there are vertex disjoint subgraphs Wu..., Ws such 

that Xa \^J V(W^) and each Wf is isomorphic to some HjeJF}. 
i<s 

Sk will be a star on k + 1 vertices. 
P. Tomasta in his lecture given at the conference "Combinatorics and graph 

theory", Luhacovice 85, called attention to connections between the 
Jf — packing problem and the matroids. In fact, for certain families JC the 
positive solution is already known. E d m o n d s and Fu lke r son proved 
that the subsets of vertices of a graph that can be saturated by a matching form 
a matroid. It has been proved recently that M#(G) is a matroid when 

i. 3tf = {K2} u {#,, . . . , # r}, # , hypomatchable graphs (see [3], [4], [7]). 
ii. Jf is a sequential set of stars (see [1], [2], [6], [8], [9]). 

Some further families Jf with the property that M#(G) is a matroid are given 
in [10]. 

In the following theorem we answer three questions formulated by P. Tomas
ta. 

Theorem 1. 
A. For every graph G, M{s s ...$}((/) is a representable matroid. 
B. Let F, G be connected graphs and Jf = {#; # is a connected (noninduced) 

subgraph of F with at least two vertices}. Then M^(G) is a matroid. 
C. Let F, G be connected graphs and J? = {#; # is a connected induced 

subgraph of F with at least two vertices}. Then M#(G) is a matroid. 
The case of packing by sequential set of stars (i.e. Jf7 = {Sl9S29...,-->,.}) was 
studied extensively. The following theorem was observed first in another setting 
by M. LasVergnas . 

Theorem 2. [9] Let G be a graph and r be an integer. Then M{s s ^Sr}(G) is a 
matroid union of r matching matroids M(G). 
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P r o o f of A. The matching matroid is transversal [5]. A union of trans
versal matroids is transversal as well. Every transversal matroid is representable 

[in. • 
We generalize Theorem 2 for packings with additional constraints. 
Theorem 3. [10] Let b, > b2 ^ ... ^ br ^ 0 be integers and G be a graph. Let 

j f = {K2 = S,, ...,S,. + ,} be a sequent ional set of stars. For an Jf packing Q, 
let f(Q) denote the number of S, f , \s used by Q. We call a packing Q a d 
m i s s i b l e iff(Q), i = 1, ...,r, satisfies the system of inequalities 

i (i - K + \)f,(Q) < i b, K= I /-. 
i K i K 

Then the system of subsets of V(G) that can be saturated by an admissible packing 
forms a matroid. 
Proof will appear in [10]. 

The following well-known lemma simply holds by induction. 
Lemma 4. Let F = (V,E) be a connected graph with maximum degree r. Then 

VeM,^.* 6-,;(r). 
P r o o f of B. Let r be a maximum degree of F. Then M„(G) = 

= M s <>,j(G) by L e m m a 4. • 
Lemma 5. Let H = (V,E) be a connected graph. Then there exists a family of 

vertex disjoint induced subgraphs (H,, . . . , / /„) of H such that 

1. V=\JV(Ht), 
i < n 

2. each //, is a triangle or a star. 
Proof . Proceed by induction on |V |. Let x be a vertex of H and 

(G,, . . . ,G,J be a complete covering of H\{x} by triangles and induced stars. Let 
y be a neighbour of x. Without loss of generality assume r e V(G,). 
V If G, is a triangle, then replace G, by a perfect matching of G, u {x}. 
2. Let G, be a star on at least three vertices. If there exists an end vertex z of 

G, such that {x, z}e E(H), then replace G, by the edge {.v, z} and the star 
G, \ {z}. Otherwise y is the centre of G, and then replace G, by the induced star 
G ,u{x} . 

3. If G, is an edge, then G, u {x} is a triangle or a star S2. • 
The packing by triangles and edges (i.e. J f = {K2,KJ) is a special case of 

packing by edges and a set of hypomatchable graphs. 
Theorem 6. [3] MiKytK](G) is a matroid. 

P r o o f of C. If follows from Lemma 5 that if F has no induced S2, then 
M#(G) = M{K K }(G), otherwise MW(G) = M[S Si srl(G), where r is the maxi
mum degree of an induced star in F. • 

Further results concerning matroids induced by packing subgraphs will 
appear in [10]. 
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ОБ ОБЪЕДИНЕНИИ МАТРОИДОВ ПАРОСОЧЕТАНИЯ 

М. ЕоеЫ, 8. РоГ,ак 

Резюме 

В работе показано, что матроиды, нарожденные системами вершинно-непересекающихся 
звезд, являются объединением матроидов паросочетания. 
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