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TRIPLE CONSTRUCTION OF SEMILATTICES WITH
1 ADMITTING NEUTRAL p-CLOSURE OPERATORS

P.V.RAMANA MURTY—V.RAMAN

Introduction

T. Katriidk [5] characterized distributive pseudocomplemented semilattices by
means of triples. In line with Katrifidk, P. Mederly [6] has generalized the triple
construction to modular pseudocomplemented semilattices. William H. Cornish
[1] has obtained triple construction for modular semilattices with 1, possessing
neutral p-closure operators. To main aim of the present paper is to obtain
characterization of semilattices with 1, admitting neutral p-closure operators by
means of triples, thus generalizing the triple construction of Cornish.

In § 1, some interesting properties concerning closure operators on semilattices
with 1 are obtained. In theorem 1 it is shown that a p-closure operator on
a semilattice with 1 is standard (see definition 1) from which it follows as
a corollary that a p-closure operator on a semilattice with 1 is neutral if and only if
it is semineutral (see definition 1). In [6] Mederly has proved that the filter of
dense elements in a modular pseudocomplemented semilattice is neutral. Corol-
lary 2 of the present paper shows that the same is true even in a more general class
of modular semilattices (see also example 2). Further, it can be seen from the same
corollary that if S is a modular semilattice with 1, any p-closure operator on S is
neutral so that the word neutral in the statement of Theorem 2.3 of Cornish [1]
can be deleted. In § 2 triple constructions are obtained. Also a necessary and
sufficient condition for the existence of a join of two elements of a semilattice with
1, having a (p-v )-closure operator (see definition 8) is obtained (see Theorem 6).

In § 3 results similar to the result of Mederly [6] are obtained for semilattices
with 1, admitting neutral p-closure operators. In [6] Mederly has proved that
a modular pseudocomplemented semilattice is distributive if and only if its dense
filter is distributive. In fact in the interesting theorem 12 of this paper it is shown
that even a stronger result is true in a more general class of semilattices with 1.
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§1

Let (S; A) be a meet semilattice and F be a filter of S Then the relation 6(F)
defined by x = y(6(F)) if and only if xAf=yAf for some fe F is a congruence
relation on S called the filter congruence induced by F. For a € S, [a) stands for
{neS|n=a} and 1s a filter of S called the filter generated by a. The set F(S) of al
filters of S is partially ordered under set-inclusion. S 1s directed above if and only if
F(S) 1s a lattice, and for any F,, F; € F(S) we have inf {F,, F,} = FinF,, where N
denotes the set-intersection, sup {F,, F;} = {te S|t=f Af; for some f, e F, and
f.€ F3} denoted by FivF,

The following definitions and results can be found in [1]. However, for the sake
of completeness we g've them here.

Let (S; A) be a meet semilattice with the largest element 1. A mapping 7. S— S
1s called a closure operator on S if 1) s < zs 2) a(xs) = 75 and 3) s <t implies that
as<ant; for all 5, teS. Also C (S)={seS|ns—s} and D.(S)={de S|nd=1)}
are called the set of m-closed elements and s-dense elements, respectively.
A closure operator 7 1s called normalized if S has the smallest element ‘0’ and ‘0’ is
7 closed. A closure operator x is called multiplicative if (s At) = 7s Ant for all s,
te S. If ~ is multiplicative, then one can verify that C,(S) is a subsemilattice with 1,
and D,(S) is a filter of S. A p-closure operator & on S 1s a multiplicative closure
operator such that for each s € S there exist c€ C (S) and d € D.(S) with s =cAd.
It is easy to check that this is equivalent to saying that there is a dense element
d € D,(S) such that s=msAd

Suppose (S; A) is a meet semilattice with the smallest element ‘0’. The
pseudocomplement a* of an element a € S is defined by aAx =0 if and only if
x<a*. If every element of S has a pseudocomplement, then S is called
a pseudocomplemented semilattice. Define B(S)={xe€ S|x**=x} and D(S)=
{neS|n**=1} (B(S), u, N, %, 0, 1) is a Boolean algebra, where for a, b € B(S)
aub=(a*Ab*)* and 1=0* D(S) is a filter of S, called the dense filter of S. For
standard results on pseudocomplemented semilattices see [2] and [3]. In
a pseudocomplemented semilattice, the mapping x: S— S defined by &(x) = x** is
a multiplicative normalized closure operator and C.(S)= B(S), D.(S)= D(S).

We now begin with the following

Definition 1. Let (S; A) be a meet semilattice with 1. A multiplicative closure
operator st on S is called semi-neutral if the filter D,(S) satisfies (Av C) n D«(S)
= (ANnDL(S)) v (BND.(S)) for all A, B e F(S). = is called standard (neutral), if
D.(S) is a standard (neutral) element in the lattice of filters of S (see [4]).

Theorem 1. A p-closure operator on a semilattice S with 1 is standard.
Proof. Let A, Be F(S) and let be (Av D.(S))nBsothat be Band b=and
for some ae A and de D.(S) and hence ab=na(and) = mannd = manl
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= sma=a. We have ab=b. Let b=nb re, for some e € D,(S). This shows that
be(AnB) v (D:(S)nB) and hence (A v D.(S))nB = (AnB) v (D:(S)nB).
q.ed.

Corollary 1. A p-closure operator on a semilattice S with 1 is neutral if and only
if it is semineutral.

Proof. By the above Theorem 3 of § 3 on page 26 in [4].

Remark 1. A semi-neutral closure operator need not be standard because of
the following.

Example 1.

Define
b if n¥c, 1

7 5—~S by n(n)={1 oiherwise

so that D.(S)=[c), which is not standard.

Mederly [6] has proved that the filter of dense elements in a modular
pseudocomplemented semilattice is neutral. Now in the following corollary 2 it can
be observed that the filter of dense elements is neutral even in a more general class
of modular semilattices, as can be seen from the following example.

Example 2. The standard five element modular non-distributive lattice with
identity mapping as closure operator is an example of a modular semilattice with
1 admitting p-closure operator which is not pseudocomplemented.

Further in [1] William H. Cornish actually stated that if S is a modular
semilattice with 1 (respectively O and 1) possessing a p-closure operator &
(normalized p-closure operator), then ¥.(S): C.(S)— F(D.(S)) defined by
Y:(S)(c) = {deDi(S)|d=c}, for each ce C,(S) is a 1-dual homomorphism
((0-1) dual homomorphism) if and only if x is a neutral closure operator. However,
from the following corollary 2 it can be seen that if S is a modular semilattice with
1, then every p-closure operator on S is automatically neutral so that the word
‘neutral’ in the statement of theorem 2.3 of Cornish [1] can be deleted.

Corollary 2. Let S be a modular semilattice with 1. If 7 is a p-closure operator on
S, then = is neutral.
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Proof. By the above theorem 1 s is standard and since S is modular, it is neutral
(Theorem 7 on page 48 of [4]).

Corollary 3. In a modular pseudocomplemented semilattice, the filter of dense
elements is neutral.

Definition 2. A pseudocomplemented semilattice S is said to be neutral if the
filter of dense elements of S is a neutral element in the lattice of filters of S.

Theorem 2. If n is a p-closure operator on a semilattice S with 1, then the map a:
S|6 ((D:(S))— C.(S) defined by a(8(D,(S))[s]= s is an isomorphism. Con-
versely. if a is an isomorphism and x is standard, then n is a p-closure operator.

Proof. For the proof of the first part see Proposition 2.1 of [1]. Let s € S. Since
(s, ws) € B(D,(S)), we have sand=nsAd so that [s)v[d) = [ns)v[d). Thus
[$)=[ns)v D:(S) so that [s)=[s) N ([7s) v Dx(S)) = ([s)n[7s)) v ([s) N D=(S)).
Thus s=s,Ad, where s,=s, si,=nas and d,=s, d € D,(S). Thus s=Zs,ad =
nsAd =ssothat s=ssAd,. q.ed.

Remark 2. In general in a modular semi-lattice S with 1, one may be tempted
to hope that a multiplicative closure operator is standard. However, this is not true
because of the following

Example 3. §:

Define
d if n¥e,1

w: S—>S by n(n)={l otherwise.

Definition 3. A pseudocomplemented semilattice is said to be a strong
pseudocomplemented semilattice if for each xe S there is a dense element
d € D(S) such that x=x**Ad.

Remark 3. Every modular pseudocomplemented semilattice is a strong
pseudocomplemented semilattice but not necessarily conversely.

Now as a consequence of Theorem 2 we have the following

Corollary 4. If S is a strong pseudocomplemented semilattice, then the mapping
a: S|8(D(S))— B(S) defined by a(6(D(S))[x]=x** is an isomorphism. Con-
versely, if a is an isomorphism and D(S) is standard, then S is a strong
pseudocomplemented semilattice.
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Proposition 1.8 of Cornish [1], which is proved for modular semilattices, can be
generalized to semilattices with 1 as in the following

Theorem 3. Let S be a semilattice with 1, C be a subsemilattice of § and D be
a filter of S such that for each s € S there exist ce Cand d e D withs=cAd. Let ¢
be a mapping from C into F(D) defined by y(c) = {de D|d=c} = [c)nD and
for aeC, let 0., denote the congruence relation on D given by 6,=
{(d, e)e Dx D|dAa = enAa}. Then the following statements are equivalent.

(1) (AvB)NnD=(AnD)v(BnD) for all principal filters A, B of §.
(2) (AvB)nD=(AuD)v(BnD) for all filters A, B of S.

(3) y(andb)=y(a)vy(b) and 6(y(a))=6. for all a, beC.

(4) 6..,=06.v 86, and 6(y(a))=8, for all a, bec.

Proof. 1= 2. The proof is straightforward.

23. y(aabd) = [aab)nD = ([a)v[b))nD = ([a)nD) v ([b)nD) (by 2)
= yY(a)vy(b). It is easy to verify that 6(y(a)) < 6.. Now let (d, e) € 6, so that
drna=ena and hence d=ena. Thus [d)=([e) v [a))nD = [e)v([a)nD) so
that there exist @1=a, a, € D such that d= e Aa,. Similarly there exist 4,= a and
a:€ D such that ez=dAa,. Thus dAaiAa; = eAainaz and ayAG:2a, aiAa2€ D.
Hence (d, €) € 0(y(a)).

3>4.6.., = 6(Y(anb)) = 6(y(a)vy(b)) = 6(yY(a)) v 6(y(b)) = 6,v6,.

4>1.Lette([x)v[y))nDsothatte Dand t=xAy.Letx=aandand y=bAe
where a, be C and d, ee D. Thus t=andAbae so that (tAdae, dAe)€ b,
= 6.v6, = 6(y(a)) v 6(y(b)) = 6(yw(a)vy(b)) and hence tadrera
= dAeAaa for some a= By where g€ y(a) and ye y(b). Now dABe[x)nD,
enye[y)nD and ¢t=dAapareay and hence te([x)nD)v([y)nD). Thus
((x)viy)nD = ([x)nD) v ([y)nD). q.ed.

Remark 4. It can be seen that proposition 1.8 of Cornish [1] is a corollary of
the above theorem 3.

§2

In [1] William H. Cornish characterized modular semilattices with 1,
possessing neutral p-closure operators, by means of triples. In this section
characterization of semilattices with 1, admitting neutral p-closure operators, is
obtained. The following definitions 4 and 5 can be found in [1].

Definition 4. Let S be a meet semilattice with 1 and T be a join semilattice with
0. A mapping y: S—T is called a 1-dual homomorphism if y(aAb)
= y(a)vy(b) for all a, b e S and y(1)=0. It is a (0-1) dual homomorphism if
S has 0, T has 1, y is a 1-dual homomorphism such that y(0)=1.
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Definition 5. By a closure isomorphism 6. S— T where S and T are semilattices
with the largest element admitting the closure operators & and . respectively, we
mean an isomorphism from § into T satisfying o(ns)=p(os) for all s€ 8.

Definition 6. (C, D, y) is said to be a generalized triple if C and D are
semilattices with 1 and vy is a 1-dual homomorphism from C into F(D). It is
a generalized O-triple if in addition C has 0 and v is a (0-1) dual homomorphism.
(B, D, y) is said to be a generalized B-triple if B is a Boolean algebra, D is
a semilattice with 1, and v is a (0-1) dual homomorphism from B into F(D).

Definition 7. Two generalized triples (C, D, ) and (C\, D\, y) are said to be
isomorphic if there is a pair (f g) where f is an isomorphism of C onto C,, g is an
isomorphism of D onto D, such that for each c € C, F(g)(y(c)) = y(f(c)), where
F(g) denotes the isomorphism from F(D) onto F(D,) induced by g.

Theorem 4. A semilattice S with 1 and a neutral p-closure operator mw on S is
such that the semilattice itself and the closure operator are determined up to
a closure isomorphism by the generalized triple

(Cx(S), Dx(S), ¥:(S))

Proof. It is easy to check that C.(S) and D,(S) are semilattices with 1 and
Ya(S): Ci(S) — F(D.(S)) defined by y(S)(c) = [c)nD,(S) is a 1-dual
homomorphism. This means that (C.(S), D.(S), ¥-(S)) is a generalized triple. The
set Si{(c, B(y¥:(9))(c)[d])|ce Cu(S), d € D.(S)}. Define x: S,— S by m({c,
O(y=(S))()[d])) = (c. O(y(S))(c)[1]). A similar proof as that of Cornish [1]
shows that S, is a semilattice with 1, s, is a neutral p-closure operator on S, such
that (S, x) and (S,,) are closure isomorphic. qe.d.

Corollary 5. A semilattice with 0 and 1 and a normalized neutral p-closure
operator s is such that the semilattice itself and the closure operator are
determined up to a closure isomorphism by ghe generalized O-triple

(Cx(S). Dx(S). ¥(5)).

Proof. The proof is by the above theorem together with a routine verification.

Corollary 6. A neutral strong pseudocomplemented sermilattice is determined up
to an isomorphism by the generalized B-triple

(B(S), D(S), ¥(S)).

Proof. It is easy to see that y(S): B(S)— F(D(S)) defined by y(S)(a)
= [a)nD(S) is a (0-1) dual homomorphism so that (B(S), D(S), y(S)) is
a generalized B-triple. Let S, be the constructed semilattice as in theorem 4. For
x=(c, O(yp(c))d]) € S define x* = (c’, B(y(c'))[1]) where ¢’ is the complement
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of ¢ in B(S). It is straightforward to verify that S, is a neutral strong pseudocomp-
lemented semilattice such that S and S, are isomorphic.

Corollary 7. A modular semilattice S with 1 (respectively 0 and 1) and a neutral
p-closure operator n is such that S itself and the closure operator are determined
up to a closure isomorphism by the triple

(C(S), Da(S), ¥=(5))-

Remark 5. Observe that there are neutral strong pseudocomplemented
semilattices which are not even modular.

Theorem 5. If (C, D, ) is a generalized triple, then there is a semilattice S with
1 and a neutral p-closure operator x on S such that there are isomorphisms o:
C—C,(S) and o: D—D,(S) and 1-dual homomorphism .(S): C.(S)—
F(Dx(S)) satisfying F(0)(y(c)) = y(S)(o(c)) for each c € C, where F(p) is the
isomorphism of F(D) onto F(D.(S)) induced by o. Further, if (C, D, y) is
a generalized 0-triple, then & is normalized. ]

Proof. Consider S={{(c, 6(y(c))[d])|ceC and deD}. If x={a,
8(y(a))[d]) and y=(b, 8(y(b))[e]), define x<y if and only if a<b and
6(y(a))[d] < 6(y(a))[e] in D|6(y(a)). It is easy to check ‘=<’ is well defined and
S becomes a semilattice with 1 under this ordering. Define #: S—S by x(x)
= (a, 8(y(a))[1]). It is routine to verify that C,(S) = {(a, 8(y(a))[1])]|a e C}.
D.(S) = {(1, 6(y(1))[d]|d € D} and that x is a p-closure operator on S. Now we
claim that (Av B)ND:(S) = (AnD«(S)) v (BND.(S)) for A, Be F(S). Let
(1, 8(w(1)Ie]) € (AvB)  Dy(S) so that (1, 8(w(D)[7]) = (a, B(w(a))[d]) A
(b, 0(y(b))[e]) and hence (tAdne, dar) € 8(yp(anb)) = 8(y(a)vy(b)).
Thus there exist a=pf Ay, Bey(a) and ye y(b)such that tndrera = drena.
Now (1, 6(y(1))[dAB]) € AnD,(S) and (1, 8(y(1))[eay]) € BAD.(S) and
(1, 0O = (1, O(w()[arpl) A (1, 6(w(1)ery]). Define yu(S):
C(S) — F(D(S)) by a(S) ({a, 8(w(@)[1])) = [{a, 8(w(a)[1])) A Du(S).
Since 1 is a 1-dual homomorphism it follows that 1, (S) is a 1-dual homomorphis-
m. Clearly the map o: C— GCi(S) defined by o(a) = (a, 8(y(a))[1]) is an
isomorphism and @: D—>D,(S) defined by o(d) = (1, 8(y(1))[d]) is an
isomorphism and (C, D, y), (G:(S), D:(S), y.(S)) are isomorphic generalized
triples. The proof of the last statement is straightforward. q.ed.

Corollary 8. If (B, D, v) is a generalized B-triple, then there is a neutral strong
pseudocomplemented semilattice S such that there are isomorphisms o: B— B(S),
0: D— D(S) and y(S) a (0-1) dual homomorphism from B(S) into F(D(S))
satisfying F(o)(y(c)) = w(S)(o(c)) for each ce B, where F(0) denotes the
extension of g to F(D).
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Proof. Let S be the constructed semilattice as in the proof of the theorem 5.
A routine verification shows that for x=(a, 6(y(a))[d])eS, x*=(a’,
6(y(a’))[1]) is a pseudocomplement of x, and thus it is a pseudocomplemented
semilattice. Now the proof of the corollary follows by observing the fact that the
closure operator defined in the proof of the theorem 5 is precisely the closure
operator x— x** on this pseudocomplemented semilattice S.

Definition 8. A p-closure operator & on a semilattice S with 1 is said to be
a (p-v) closure operator if Gx(S) is a lattice.

Lemma 1. Let & be a (p-v) closure operator on a semilattice S with 1. If xv y
exists in S, then A(xvy) = mxvmy.

Proof. The proof is straightforward.

In the following theorem a necessary and sufficient condition for the existence of
a join of two elements in a semilattice with 1, admitting a (p-v) closure operator, is
obtained.

Theorem 6. Let 7 be a (p-v) closure operator on a semilattice S with 1. Let x,
y€S. Then x vy exists in S if and only if there exist a n-dense element t=x, y and
tA(mxv y)<f, for every n-dense element f such that f=x, f= y. In this case xv y
= (axvny)Aat.

Proof. First assume the condition. We show that xvy=(axv ay)At, where ¢
satisfies the condition stated in the statement of the theorem. Clearly (7zxv ay) At
is an upper bound of x and y. Let x<z and y<z and z=sazAf, where f is
a m-dense element so that nx<nz, my<nz and hence nxvay<saz. We have
x<z<f and y<z<f so that (mxvay)ar<f. Thus (mxvay)at < azaf=z.
Conversely, assume that x v y exists in Sso that xvy = m(xvy)At = (axvay)at
(by Lemma 1). Thus ¢ is a n-dense element such that r=x and t=y. Now if f is
a m-dense element suchthat f=x, f=y, then fZxvy = (axvmy)At. q.e.d.

Corollary 9. Let S be a strong pseudocomplemented semilattice. Let x, y€ S.
Then xvy exists in S if and only if there is a dense element r=x, y and
tAa(x**vy**)<f, for every dense element f=x, y. In this case xvy
= (x**vy**)at.

Remark 6. In[5] Katrifiak has obtained a necessary and sufficient condition
for the existence of a join of two elements in a pseudocomplemented distributive
semilattice in terms of triples (see Corollary 5.5 of [5]), which, however, is
equivalent to the following *‘if S is a distributive pseudocomplemented semilattice,
and x, y€ S, then xvy exists in § if and only if there is a dense element t=x,
y such that if f is a dense element, f=x, f=y, then (x**v y**)At<f. In this case
xvy=(x**vy**)ar”’.

In line with Katriidk, Mederly has generalized this in [6] to modular
pseudocomplemented semilattices. But the above theorem and corollary show that
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this is true even in a more general class, namely in semilattices with 1 admitting
(p-v) closure operators.

Theorem 7. Let C and D be semilattices with 1. If C has more than one element,
then there is a 1-dual homomorphism from C into F(D) so that (C, D, ¢) is
a generalized triple. If C has 0, then it can be chosen so that (C, D, y) is
a generalized O-triple.

Proof. Similar to the proof of theorem 2.6 of Cornish [1].

Corollary 10. Let B be a Boolean algebra and D be a semilattice with 1. Then
there is a 1-dual homomorphism ¢ from B into F(D) so that (B, D, y) is
a B-triple.

§3

In this article results similar to the result of Mederly [6] are obtained for
semilattices with 1, admitting neutral p-closure operators. However, the proofs of
the theorems in this article are straightforward and are similar to the proof of
Mederly in {6]. Hence in the following we just state the results. However in
theorem 12 of this article we prove an interesting result, namely that if & is
a neutral p-closure operator on a semilattice § with 1, then S is distributive
(modular) if and only if C,(S) and D.(S) are distributive (modular), which is
a generalization of Theorem 7.3 of [6].

Theorem 8. Let (S, n) and (S, m:) be semilattices with 1, admitting p-closure
operators. Let h be a homomorphism from S into S, (i.e. a ‘A’ homomorphism,
preserving x and 1). Then the restriction h|C,(S) is a homomorphism from C.(S)
into C,($)) and the restriction h| D,(S) is a homomorphism of D,(S) into D,,(S))
that preserves 1. Moreover h is onto if and only if h|C.(S) and h|D,(S) are onto.

Corollary 11. Let S and S, be strong pseudocomplemented semilattices and let h
be a homomorphism of S into S,. Then the restriction h| B(S) is a homomorphism
of B(S) into B(S,) and the restriction h|D(S) is a homomorphism of D(S) into
D(S,) that preserves 1. Moreover h is onto if and only if h| B(S) and h|D(S) are
onto.

Definition 9. Let (C,D,vy) and (C, D), y) be generalized triples.
A homomorphism of the generalized triples (C, D, y) and (C\, D, ¥\) is a pair
(f — g), where f is a homomorphism of s into S,, g is a homomorphism of D into D,
such that for every c € C, g(¥(c)) = ¢ (f(c)). A similar definition can be given in
the case of generalized B-triples.

Theorem 9. Let (S, nr) and (Si, m) be semilattices with 1 admitting neutral
p-closure operators and (C, D, ¥), (Ci, D\, y) the associated generalized triples,
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respectively. Let h be a homomorphism of S into S\ and hc, hp be the restrictions of
h to C and D, respectively. Then (hc, ho) is a homomorphism of the generalized
triples. Conversely, every homomorphism (f — g) of the generalized triples uni-
quely determines a homomorphism h of S into S, with he=f and hp = g.

Corollary 12. Let S and S, be neutral strong pseudocomplemented semilattices
and (B, D, y), (B\, Dy, y) the associated triples, respectively. Then (ha, hp) is
a homomorphism of the generalized B-triples, where hs and hp are the restrictions
of h to B and D, respectively. Conversely, every homomorphism (f — g) of the
generalized B-triples uniquely determines a homomorphism h of S into S, with
ha = f y ho =4.

Theorem 10. Let & be a neutral p-closure operator on a semilattice S with 1 and
let S\ be a subalgebra of S. Then C,=S,nC,(S) is a subalgebra of C.(S) and
D,=8,nD:(S) is a subalgebra of D.(S). The triple associated with S, is
(C, D, y), where y, is given by y\(a)=y(a)nD, for ae C..

Corollary 13. Let S, be a subalgebra of a neutral strong pseudocomplemented
semilattice S. Then B, = SinB(S) is a subalgebra of B(S), and D, = S,nD(S) is
a subsemilattice of D(S) containing 1. The triple associated with S, is (B,, Dy, y),
where y, is given by y.(a)=y(a)nD, for ae B,.

Definition 10. Let & be a multiplicative closure operator on a semilattice S with
1. Let a be a congruence on C,(S) and B be a congruence on D(S). (a, B) is said
to be a congruence pair if, whenever a=1(a) and d € D.(S), d = a implies that

(d,1)ep.

Theorem 11. Let B be a congruence relation on a semilattice S with 1, admitting
a p-closure operator n. Then (BN(Cx(S) X Ci(S)), BN(D:(S) X Dy(S))) is
a congruence pair. Conversely, if (Bc, Bp) is a congruence pair, then there is
a congruence relation B on (8, x) such that Bn(C(S) X C.(S))=pPc and
BA(Dx(S) X Dy(S))=Pp.

Proof. The proof of the first part is straightforward. Conversely, let (B¢, Bo) be
a congruence pair and g the natural mapping from D,(S) into D.(S)|Bo defined by
g(d)=Bo(d). Now define B={(x, y(eS X S|(x, my)e B and (g(d), g(e))e O
(g([nx)nD)) n 6(g[my)nD)), where x =axAd and y =y Ae}. It is straightfor-
ward to verify that B has the required properties.

Corollary 14. If B is a congruence relation on a strong pseudocomplemented
semilattice S, then (Bn(B(S) x B(S), Bn(D(S) x D(S))) is a congruence pair.
Conversely, if (Bs, Bo) is a congruence pair, then there is a congruence relation B
on S such that Bn(B(S) x B(S))=Be and Bn(D(S) x D(S))=Po.

Proof. By the above theorem 11, together with a routine verification, the proof
follows.
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Lemma 2. Let & be a multiplicative closure operator on a semilattice S with 1. If
S is distributive (modular), C.(S) and D,(S) are distributive as well.
Proof. The proof is routine.

Theorem 12. Let & be a neutral p-closure operator on a semilattice S with 1. S is
a distributive (modular) semilattice if and only if C,(S) and D.(S) are distributive
(modular).

Proof. First suppose that C.(S) and D,(S) are distributive; let x=mxAd,
y=nynre, z=nzAfeS and z=xAy so that ;iz=nx(xAy) = mxAxy and hence
nz=xiAy, where x,=ax=x, y)=ay=y and x;, y, € G(S). There is also f=
axAmxyAdAe so that

[N e ((mx)v[zy)v[d)v[e))nD = ([ax)nD)v ([xy)nD)v[d) v[e).

Thus f=aA fadae where a=ax, xe D and B=xmy, Be D. Since D,(S) is
distributive f=aiAfindine, av= 2, =P, di=d, es=e. Put X' =xina1nd,
and y'=y;Afinc,. Thus x'=x, y'2y and x'Ay’ = mzaf=z. Thus S is
a distributive semilattice. By a similar proof one can show that § is modular
whenever C.(S) and D,(S) are modular. Since the converse follows from
Lemma 2, the proof is complete. Q.E.D.

Corollary 15, Let S be a neutral strong pseudocomplemented semilattice Then
S is a distributive (modular) semilattice if and only if D(S) is one.
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KOHCTPYKLIMA TPOEK I MONYCTPYKTYP C 1
H C HENTPAJILHBIM p-3AMBIKAHUEM

I1. B. Pamana Myp el n B. Pamanu
Pesome

H3BecTHO, 4TO BCAKYIO MOTYAAPHYIO (AHCTPHOYTHBHYIO) MOAYCTPYKTYPY S C NCEBAOAONON HE HHAMK
MOXHO 0XapaKTepH30BaTh ¢ npuHaancxaue# Tpoikol (B(S), D(S), ¥(S)), rac B(S)-anre6pa Byaa
3aMKHYTbIX 31eMEeHTOB U3 S, D(S)-bHUnbTp NNOTHBIX 3NEMEHTOB H3 S H Y-KOHBEKTHBHOE OTOG-
paxenue u3 B(S) B F(D(S)), cTpykTypy scex punsTpos u3 D(S). ABTOpsI 060611aI0T 3TOT pe3ynbTat
A NONYCTPYKTYP ¢ 1 M ¢ HEHUTPANbLHBIM pP-3aMbIKAHHEM.
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