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Moth. Slovoca 32,1982, Ne. 4,367—378 

TRIPLE CONSTRUCTION OF SEMILATTICES WITH 
1 ADMITTING NEUTRAL p-CLOSURE OPERATORS 

P. V. RAMANA MURTY—V. RAMAN 

Introduction 

T. Katrinak [5] characterized distributive pseudocomplemented semilattices by 
means of triples. In line with Katrinak, P. Mederly [6] has generalized the triple 
construction to modular pseudocomplemented semilattices. William H. Cornish 
[1] has obtained triple construction for modular semilattices with 1, possessing 
neutral p-closure operators. To main aim of the present paper is to obtain 
characterization of semilattices with 1, admitting neutral p-closure operators by 
means of triples, thus generalizing the triple construction of Cornish. 

In § 1, some interesting properties concerning closure operators on semilattices 
with 1 are obtained. In theorem 1 it is shown that a p-closure operator on 
a semilattice with 1 is standard (see definition 1) from which it follows as 
a corollary that a p-closure operator on a semilattice with 1 is neutral if and only if 
it is semineutral (see definition 1). In [6] Mederly has proved that the filter of 
dense elements in a modular pseudocomplemented semilattice is neutral. Corol­
lary 2 of the present paper shows that the same is true even in a more general class 
of modular semilattices (see also example 2). Further, it can be seen from the same 
corollary that if S is a modular semilattice with 1, any p-closure operator on S is 
neutral so that the word neutral in the statement of Theorem 2.3 of Cornish [1] 
can be deleted. In § 2 triple constructions are obtained. Also a necessary and 
sufficient condition for the existence of a join of two elements of a semilattice with 
1, having a (j>- v)-closure operator (see definition 8) is obtained (see Theorem 6). 

In § 3 results similar to the result of Mederly [6] are obtained for semilattices 
with 1, admitting neutral p-closure operators. In [6] Mederly has proved that 
a modular pseudocomplemented semilattice is distributive if and only if its dense 
filter is distributive. In fact in the interesting theorem 12 of this paper it is shown 
that even a stronger result is true in a more general class of semilattices with 1. 
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§ 1 

Let ( S ; A ) be a meet semilattice and F be a filter of S Then the relation 6(F) 
defined by x = y(6(F)) if and only if XAf=yAf for some feF is a congruence 
relation on S called the filter congruence induced by F. For ae S, [a) stands for 
{n eS\n^a} and is a filter of S called the filter generated by a. The set F(S) of al 
filters of S is partially ordered under set-inclusion. S is directed above if and only if 
F(S) is a lattice, and for any Fi, F2 e F(S) we have inf {Fi, F2} = F{r\F2, where n 
denotes the set-intersection, sup {Fi, F2} = {teS\t^f A/ 2 for some / e F , and 
/ 2 eF 2 } denoted by F ivF 2 

The following definitions and results can be found in [1]. However, for the sake 
of completeness we g've them here. 

L e t ( S ; A ) be a meet semilattice with the largest element 1. A mapping JI. S-+S 
is called a closure operator on S if 1) s ^JZS 2) JI(JZS) = JIS and 3) s =£ t implies that 
ns^M; for all s, teS. Also C (S) = { s e S | ^ s — s} and D„(S) = {de S|;rd= 1} 
are called the set of -r-closed elements and jr-dense elements, respectively. 
A closure operator n is called normalized if S has the smallest element '0' and '0' is 
n closed. A closure operator n is called multiplicative if n(sAt) = ns Ant for all s, 
t e S. If n is multiplicative, then one can verify that C„(S) is a subsemilattice with 1, 
and D„(S) is a filter of S. A p-closure operator n on S is a multiplicative closure 
operator such that for each seS there exist ceC (S) and deD„(S) with s = cAd. 
It is easy to check that this is equivalent to saying that there is a dense element 
deD„(S) such that s=nsAd 

Suppose ( S ; A ) is a meet semilattice with the smallest element '0' . The 
pseudocomplement a* of an element a e S is defined by OAX = 0 if and only if 
*=£a*. If every element of S has a pseudocomplement, then S is called 
a pseudocomplemented semilattice. Define B(S) = {xe S|JC** = X} and D(S) = 
{n e S\n** = 1} (B(S), u , n , *, 0, 1) is a Boolean algebra, where for a, be B(S) 
avb = (a*Ab*)* and 1=0*. D(S) is a filter of S, called the dense filter of S. For 
standard results on pseudocomplemented semilattices see [2] and [3]. In 
a pseudocomplemented semilattice, the mapping jt: S—* S defined by n(x) = x** is 
a multiplicative normalized closure operator and C,(S) = B(S), D„(S) = D(S). 

We now begin with the following 

Definition 1. Lef ( S ; A ) be a meet semilattice with 1. A multiplicative closure 
operator nonS is called semi-neutral if the filter D„(S) satisfies (AvC) n D„(S) 
= (A nD„(S)) v (BnD„(S)) for all A, Be F(S). n is called standard (neutral), if 
D„(S) is a standard (neutral) element in the lattice of filters of S (see [4]). 

Theorem 1. A p-closure operator on a semilattice S with 1 is standard. 
Proof. Let A, B eF(S) and let b e (A vD„(S))nB so that beB and b^aAd 

for some aeA and deD„(S) and hence xb^n(aAd) = jzaAjid = na A1 
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= jca^a. We have nb^b. Let b=Jibr\e, for some eeD„(S). This shows that 
be(AnB) v (D„(S)nB) and hence (A vD„(S))nB = (AnB) v (D„(S)nB). 

q.e.d. 

Corollary 1. A p-closure operator on a semilattice S with 1 is neutral if and only 
if it is semineutral. 

Proof. By the above Theorem 3 of § 3 on page 26 in [4]. 
R e m a r k 1. A semi-neutral closure operator need not be standard because of 

the following. 
E x a m p l e 1. 

Define 

j r : S ^ S by n(n) = \b, lf " 
U oihe 

±c, 1 
iherwise, 

so that D„(S) = [c), which is not standard. 
Mede r ly [6] has proved that the filter of dense elements in a modular 

pseudocomplemented semilattice is neutral. Now in the following corollary 2 it can 
be observed that the filter of dense elements is neutral even in a more general class 
of modular semilattices, as can be seen from the following example. 

E x a m p l e 2. The standard five element modular non-distributive lattice with 
identity mapping as closure operator is an example of a modular semilattice with 
1 admitting p-closure operator which is not pseudocomplemented. 

Further in [1] William H. Cornish actually stated that if S is a modular 
semilattice with 1 (respectively 0 and 1) possessing a p-closure operator Jt 
(normalized p-closure operator), then rp„(S): C„(S)—*F(D„(S)) defined by 
if>„(S)(c) — {deD„(S)\d^c}, for each ceC„(S) is a 1-dual homomorphism 
((0-1) dual homomorphism) if and only if JT is a neutral closure operator. However, 
from the following corollary 2 it can be seen that if 5 is a modular semilattice with 
1, then every p-closure operator on S is automatically neutral so that the word 
'neutral' in the statement of theorem 2.3 of Cornish [1] can be deleted. 

Corollary 2 . Lef Sbea modular semilattice with 1. Ifn is a p-closure operator on 
S, then n is neutral. 
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Proof. By the above theorem 1 n is standard and since S is modular, it is neutral 
(Theorem 7 on page 48 of [4]). 

Corollary 3 . In a modular pseudocomplemented semilattice, the filter of dense 
elements is neutral. 

Definition 2 . A pseudocomplemented semilattice S is said to be neutral if the 
filter of dense elements of S is a neutral element in the lattice of filters of S. 

Theorem 2. Ifn is a p-closure operator on a semilattice S with I, then the map a: 
S\6 ((D„(S))-*C„(S) defined by a(6(Dn(S))[s] = Jis is an isomorphism. Con­
versely, if a is an isomorphism and n is standard, then JI is a p-closure operator. 

Proof. For the proof of the first part see Proposition 2.1 of [1]. Let seS. Since 
(s, Jts)e 0(D„(S)), we have sAd = ns/\d so that [s)v[d) = [ns)v[d). Thus 
[s)<=[ns)vD„(S) so that [s) = [s) n ([ns)vD„(S)) = ([s)n[m)) v ([s) n D„(S)). 
Thus s2s.?,Adi where s,^s, s,^ns and d,^s, d,eD„(S). Thus s^s, Ad, 2= 
jKAd,>.Y so that s = xsAd,. q.e.d. 

R e m a r k 2. In general in a modular semi-lattice S with 1, one may be tempted 
to hope that a multiplicative closure operator is standard. However, this is not true 
because of the following 

Example 3. S: 

Define 

r: S—»S by Ji(n) = \ , . 7 U othe 
*e, 1 

otherwise. 

Definition 3 . A pseudocomplemented semilattice is said to be a strong 
pseudocomplemented semilattice if for each xeS there is a dense element 
deD(S) such that x = x***d. 

R e m a r k 3. Every modular pseudocomplemented semilattice is a strong 
pseudocomplemented semilattice but not necessarily conversely. 

Now as a consequence of Theorem 2 we have the following 

Corollary 4. If S is a strong pseudocomplemented semilattice, then the mapping 
a: S |0(D(S))-»B(S) defined by a(d(D(S))[x] = x** is an isomorphism. Con­
versely, if a is an isomorphism and D(S) is standard, then S is a strong 
pseudocomplemented semilattice. 
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Proposition 1.8 of Cornish [1], which is proved for modular semilattices, can be 
generalized to semilattices with 1 as in the following 

Theorem 3. Let S be a semilattice with 1, C be a subsemilattice of S and D be 
a filter of S such that for each seS there exist c e Cand deD with s = CAd. Let i/; 
be a mapping from C into F(D) defined by ip(c) = {deD\d^c} = [c)nD and 
for aeC, let 9a denote the congruence relation on D given by 6a = 
{(d, e)eDxD\dAa = eAa). Then the following statements are equivalent. 

(1) (As/B)nD = (AnD)\/(BnD) for all principal filters A, B of 5. 
(2) (AvB)nD = (AuD)v(BnD) for all filters A, B of S. 
(3) ilf(aAb) = il>(a)vip(b) and e(ip(a)) = 6a for all a, beC. 
(4) d„b = 8avd„ and 6(H>(a)) = ea for all a, bee. 

Proof. 1 =>2. The proof is straightforward. 
2=>3. V ( « A & ) = [aAb)nD = ([a)w[b))nD = ([a)nD) v ([b)nD) (by 2) 

= iff(a)vijr(b). It is easy to verify that 0(^(a))<= 8a. Now let (d, e)e 8a so that 
dAa = eAa and hence d^eAa. Thus [d)c([e) v [a))nD = [e)v([a)nD) so 
that there exist a,>a, a,eD such that d-SeAo.. Similarly there exist a2> a and 
a 2eD such that e>dAa2. Thus dAa\Aa2 = eAfltAfl2 and U|Aa2>a, a,Aa2eD. 
Hence (d, e) e 6(y(a)). 

3=>4. ft** = 9(H>(aAb)) = d(il>(a)vii>(b)) = d(ijf(a)) v 6(ij>(b)) = ft,v0t. 
4=>l.Let f€([*)v[y))nDsothatfeDandf^jcAy .Let* = aAdandy = iAe 

where a, beC &nd d, eeD. Thus t^aAdAbAe so that (tAdAe, dAe)eda*b 

= 6avd„ = 0(il>(a)) v 0(V(*O) = 8(H>(a)\/ip(b)) and hence tAdAeAa 
= dAeAa for some a>/3ny where (3eil>(a) and yei/>(2>). Now dA/3e[jt)nD, 
e n y e l y ) n I ^ ant* f&dAfiAeAY and hence i"€([jc)nD)v([y)nD). Thus 
(Mv[y))nD = ([*)nr>) v ([y)nD). q.e.d. 

Remark 4. It can be seen that proposition 1.8 of Cornish [1] is a corollary of 
the above theorem 3. 

§2 

In [1] William H. Cornish characterized modular semilattices with 1, 
possessing neutral p-closure operators, by means of triples. In this section 
characterization of semilattices with 1, admitting neutral p-closure operators, is 
obtained. The following definitions 4 and 5 can be found in [1]. 

Definition 4. Let S be a meet semilattice with 1 and Tbe a join semilattice with 
0. A mapping ijt: S—*T is called a I-dual homomorphism if ip(aAb) 
= H>(a)vijf(b) for all a, beS and V(l) = 0. It is a (0-1) dual homomorphism if 
S has 0, T has 1, iff is a l-dual homomorphism such that ij>(0) = l. 
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Definition 5. By a closure isomorphism o. S—> T where S and Tare semilattices 
with the largest element admitting the closure operators n and Q, respectively, we 
mean an isomorphism from S into T satisfying o(ns) = g(os) for all seS. 

Definition 6. (C, D, xp) is said to be a generalized triple if C and D are 
semilattices with 1 and xp is a \-dual homomorphism from C into F(D). It is 
a generalized 0-triple if in addition C has 0 and xp is a (0-1) dual homomorphism. 
(B, D, xp) is said to be a generalized B-triple if B is a Boolean algebra, D is 
a semilattice with 1, and xp is a (0-1) dual homomorphism from B into F(D). 

Definition 7. Two generalized triples (C, D, xp) and (C, D,, xp,) are said to be 
isomorphic if there is a pair (f g) where f is an isomorphism of C onto C,, g is an 
isomorphism of D onto D, such that for each c e C, F(g)(xp(c)) = xp,(f(c)), where 
F(g) denotes the isomorphism from F(D) onto F(D,) induced by g. 

Theorem 4 . A semilattice S with 1 and a neutral p-closure operator n on S is 
such that the semilattice itself and the closure operator are determined up to 
a closure isomorphism by the generalized triple 

(C„(S), D„(S), xp„(S)) 

Proof. It is easy to check that C„(S) and D„(S) are semilattices with 1 and 
V*(S): C„(S) -> F(D„(S)) defined by xp„(S)(c) = [c)nD„(S) is a 1-dual 
homomorphism. This means that (C„(S), D„(S), xp„(S)) is a generalized triple. The 
set S,{(c, 6(xp„(S))(c)[d])\ceC„(S), deD„(S)}. Define n,: S,^S, by JI,((C, 
Q(V*(.S))(c)[d])) = (c, d(xp„(S))(c)[\]). A similar proof as that of Cornish [1] 
shows that Si is a semilattice with 1, n, is a neutral p-closure operator on S, such 
that (S, Jt) and (S\Jti) are closure isomorphic. q e.d. 

Corollary 5. A semilattice with 0 and 1 and a normalized neutral p-closure 
operator n is such that the semilattice itself and the closure operator are 
determined up to a closure isomorphism by ghe generalized 0-triple 

(C„(S), D„(S), xp„(S)). 

Proof. The proof is by the above theorem together with a routine verification. 

Corollary 6. A neutral strong pseudocomplemented semilattice is determined up 
to an isomorphism by the generalized B-triple 

(B(S), D(S), xp(S)). 

Proof. It is easy to see that xp(S): B(S)-+F(D(S)) defined by xp(S)(a) 
= [a)nD(S) is a (0-1) dual homomorphism so that (B(S), D(S), xp(S)) is 
a generalized B-triple. Let S, be the constructed semilattice as in theorem 4. For 
x = (c, d(xp(c))[d]) e S, define x* = (c', d(xp(c'))[l\) where c' is the complement 
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of c in B(S). It is straightforward to verify that Si is a neutral strong pseudocomp-
lemented semilattice such that 5 and Si are isomorphic. 

Corollary 7. A modular semilattice S with 1 (respectively 0 and 1 ) and a neutral 
p-closure operator it is such that S itself and the closure operator are determined 
up to a closure isomorphism by the triple 

(C„(S), D„(S), ip„(S)). 

R e m a r k 5. Observe that there are neutral strong pseudocomplemented 
semilattices which are not even modular. 

Theorem 5 . If (C, D, ip) is a generalized triple, then there is a semilattice S with 
1 and a neutral p-closure operator JC on S such that there are isomorphisms o: 
C-»C.(S) and Q: D-+D„(S) and \-dual homomorphism ip„(S): C„(S)-+ 
F(D„(S)) satisfying F(Q)^(C)) = \p„(S)(o(c)) for each ceC, where F(Q) is the 
isomorphism of F(D) onto F(D„(S)) induced by Q. Further, if (C, D, ip) is 
a generalized 0- triple, then n is normalized. 

Proof. Consider S={(c, d^(c))[d])\ceC and deD}. If x = (a, 
0(V(fl))[<l]> and y=(b,Q(V(b))[e]), define x^y if and only if a^b and 
6(*P(a))[d] « 0(ip(a))[e] in D\6(y(a)). It is easy to check '*£' is well defined and 
S becomes a semilattice with 1 under this ordering. Define n: S^*S by K(X) 
= <a, 0(v(a))[l]>. It is routine to verify that C„(S) = {(a, d(ip(a))[\])\aeC}. 
D„(S) = {<1, 0^(\))[d]\de D) and that n is a p-closure operator on S. Now we 
claim that (AvB)nD„(S) = (AnD„(S)) v (BnD„(S)) for A, BeF(S). Let 
<1, d(y(\))[t])e (A vB)nD„(S) so that (\, 6(y(\))[t]) 3* (a, 6(ip(a))[d]) A 
(b, 0(ip(b))[e]) and hence (tAdAe, dAr) e 6^(a/\b)) = d(ip(a)v^p(b)). 
Thus there exist a> /8Ay , /3e ^ ( a ) and y e V(^) such that rAdA^Aa = dAeAa. 
Now <1, 0(y(l))[dA/9]) e AnD„(S) and (1 , 6(ip(\))[e AY]) e BnD„(S) and 
<1, 0O//(1))[']>> <1, 0(V(l))[«Afl> A <1, 0(y(l))[eAy]>. Define ^p„(S): 
C„(S) -+ F(D„(S)) by ^p„(S) ((a, 6(y(a))[\])) = [(a, d(y(a))[\])) n D„(S). 
Since V is a 1-dual homomorphism it follows that ip„(S) is a 1-dual homomorphis-
m. Clearly the map o: C—*C„(S) defined by o(a) = (a, 6(ip(a))[\]) is an 
isomorphism and Q: D-+D„(S) defined by p(d) = ( 1 , 0(V»(l))[d]) is an 
isomorphism and (C, D, ^p), (C(S), D„(S), tp„(S)) are isomorphic generalized 
triples. The proof of the last statement is straightforward. q.e.d. 

Corollary 8 . If (B, D, ip) is a generalized B-triple, then there is a neutral strong 
pseudocomplemented semilattice S such that there are isomorphisms o: B—*B(S), 
Q: D-+D(S) and ip(S) a (0-1) dual homomorphism from B(S) into F(D(S)) 
satisfying F(g)(ip(c)) = *p(S)(o(c)) for each ceB, where F(Q) denotes the 
extension of Q to F(D). 
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Proof. Let S be the constructed semilattice as in the proof of the theorem 5. 
A routine verification shows that for x = (a, 8(y(a))[d]) e S, x* = (a', 
0(tp(a'))[l]) is a pseudocomplement of JC, and thus it is a pseudocomplemented 
semilattice. Now the proof of the corollary follows by observing the fact that the 
closure operator defined in the proof of the theorem S is precisely the closure 
operator JC—*x** on this pseudocomplemented semilattice S. 

Definition 8. A p-closure operator x on a semilattice S with 1 is said to be 
a (p-v) closure operator if G„(S) is a lattice. 

Lemma 1. Let n be a (p-v) closure operator on a semilattice S with 1. Ifxvy 
exists in S, then n(xvy) = Jtxvity. 

Proof. The proof is straightforward. 
In the following theorem a necessary and sufficient condition for the existence of 

a join of two elements in a semilattice with 1, admitting a (p-v) closure operator, is 
obtained. 

Theorem 6. Let n be a (p-v) closure operator on a semilattice S with 1. Let x, 
yeS. Then xvy exists in S if and only if there exist a n-dense element t^x, y and 
tA(nxvny)^f, for every n-dense element f such thatf^x, f^y. In this case xvy 
= (jtxvny)^t. 

Proof. First assume the condition. We show that xvy = (nxvny)At, where t 
satisfies the condition stated in the statement of the theorem. Clearly (JIXV ny)At 
is an upper bound of x and y. Let x^z and y^z and z = nz^f, where / is 
a ^-dense element so that nx^nz, Jiy^nz and hence jixvny^nz. We have 
x^z^f and y^z^f so that (jtxvsty)At^f. Thus (;-Jt v j-y) A t" « nzAf=z. 
Conversely, assume that x v y exists in S so that x v y = n(xvy)At = (jtxvny)At 
(by Lemma 1). Thus t is a JT-dense element such that t^x and t^y. Now if / is 
a .r-dense element such t h a t / » JC, f^y, then f^xvy = (jixvny)At. q.e.d. 

Corollary 9 . Let S be a strong pseudocomplemented semilattice. Let JC, yeS. 
Then x v y exists in S if and only if there is a dense element t^x, y and 
t*(x**vy**)^f, for every dense element f^x, y. In this case jrvy 
= (x**vy**)At. 

Remark 6. In [S] Ka trinak has obtained a necessary and sufficient condition 
for the existence of a join of two elements in a pseudocomplemented distributive 
semilattice in terms of triples (see Corollary 5.5 of [5]), which, however, is 
equivalent to the following "if S is a distributive pseudocomplemented semilattice, 
and x, yeS, then xvy exists in S if and only if there is a dense element t^x, 
y such that if / is a dense element, f^x, f&y, then (x**vy**)At^f. In this case 
xvy = (x**vy**)At". 

In line with Katrinak, Mederly has generalized this in [6] to modular 
pseudocomplemented semilattices. But the above theorem and corollary show that 
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this is true even in a more general class, namely in semilattices with 1 admitting 
(p-v) closure operators. 

Theorem 7. Let Cand D be semilattices with 1. If Chas more than one element, 
then there is a l-dual homomorphism from C into F(D) so that (C, D, iff) is 
a generalized triple. If C has 0, then it can be chosen so that (C, D, t/;) is 
a generalized 0- triple. 

Proof. Similar to the proof of theorem 2.6 of Cornish [1]. 

Corollary 10. Let B be a Boolean algebra and D be a semilattice with 1. Then 
there is a l-dual homomorphism ty from B into F(D) so that (B, D, t/>) is 
a B-tripIe. 

§3 

In this article results similar to the result of Mederly [6] are obtained for 
semilattices with 1, admitting neutral p-closure operators. However, the proofs of 
the theorems in this article are straightforward and are similar to the proof of 
Mederly in [6]. Hence in the following we just state the results. However in 
theorem 12 of this article we prove an interesting result, namely that if n is 
a neutral p-closure operator on a semilattice S with 1, then S is distributive 
(modular) if and only if C ( 5 ) and D„(S) are distributive (modular), which is 
a generalization of Theorem 7.3 of [6]. 

Theorem 8. Let (S, n) and (S,, n,) be semilattices with 1, admittingp-closure 
operators. Let h be a homomorphism from S into S, (i.e. a ' A ' homomorphism, 
preservingn and 1). 77»efi the restriction h\C(S) is a homomorphism from C„(S) 
into C , (s i ) and the restriction h\D„(S) is a homomorphism of D„(S) into D„,(S,) 
that preserves 1. Moreover h is onto ifand only ifh\C„(S) and h\D„(S) areonto. 

Corollary 11 . Let S and S, be strong pseudocomplemented semilattices and let h 
be a homomorphism of S into S,. Then the restriction h\B(S) is a homomorphism 
of B(S) into B(S,) and the restriction h\D(S) is a homomorphism of D(S) into 
D(S,) that preserves 1. Moreover h is onto if and only if h\B(S) and h\D(S) are 
onto. 

Definition 9 . Let (C, D, V) and (C,, D,, ip,) be generalized triples. 
A homomorphism of the generalized triples (C, D, ty) and (C, D,, xj>,) is a pair 
(f—g), where f is a homomorphism ofs into S,, g is a homomorphism ofD into D, 
such that for every ceC, g(ty(c)) c ip,(f(c)). A similar definition can be given in 
the case of generalized B-triples. 

Theorem 9 . Let (S, n) and (S,, n,) be semilattices with 1 admitting neutral 
p-closure operators and (C, D, %p), (C,, D,, i/>,) the associated generalized triples, 
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respectively. Let hbea homomorphism of S into S, andhc, hD be the restrictions of 
h to C and D, respectively. Then (hc, hD) is a homomorphism of the generalized 
triples. Conversely, every homomorphism (f—g) of the generalized triples uni­
quely determines a homomorphism h of S into S, with hc = f and hD = g. 

Corollary 12. Let S and S, be neutral strong pseudocomplemented semilattices 
and (B, D, t/>), (B\, D,, i/»i) the associated triples, respectively. Then (hB, hD) is 
a homomorphism of the generalized B-triples, where hB and hD are the restrictions 
of h to B and D, respectively. Conversely, every homomorphism (f — g) of the 
generalized B-triples uniquely determines a homomorphism h of S into S, with 
hB=f, hD = g. 

Theorem 10. Lef nbea neutral p-closure operator on a semilattice S with 1 and 
let S\ be a subalgebra of S. Then C, =S\nC„(S) is a subalgebra of C„(S) and 
D\=S\nD„(S) is a subalgebra of D„(S). The triple associated with S, is 
(C\, D\, xp\), where if>\ is given by il>\(a) = i//(a)nD, for a e G . 

Corollary 13. Lef S, be a subalgebra of a neutral strong pseudocomplemented 
semilattice S. Then B, = S\nB(S) is a subalgebra of B(S), and D, = S{nD(S) is 
a subsemilattice ofD(S) containing 1. The triple associated with S, is (B,, D,, xp\), 
where T/», is given by rp\(a) = ip(a)nD\ for aeB\. 

Definition 10. Lef x be a multiplicative closure operator on a semilattice S with 
1. Let a be a congruence on C„(S) and 0 be a congruence on D„(S). (a, /3) is said 
to be a congruence pair if, whenever a = 1(a) and deD„(S), d^a implies that 
(d, 1)6/5. 

Theorem 11. Let ^ be a congruence relation on a semilattice S with 1, admitting 
a p-closure operator n. Then (Bn(C„(S) X C„(S)), 0n(D„(S) x D„(S))) is 
a congruence pair. Conversely, if (/3C, fiD) is a congruence pair, then there is 
a congruence relation j8 on (S,n) such that /3n(C.(S) x C„(S)) = f$c and 
Pn(D„(S) x D„(S)) = 0D. 

Proof. The proof of the first part is straightforward. Conversely, let (/3C, (}D) be 
a congruence pair and g the natural mapping from D„(S) into D„(S)\pD defined by 
g(d) = pD(d). Now define 0 = {(x,y(eSx S\(xx, Jty)epc and (g(d), g(e))ed 
(g([nx)nD)) n 6(g[xy)nD)), where x = nx/\d and y = JiyAe). It is straightfor­
ward to verify that /3 has the required properties. 

Corollary 14. If fi is a congruence relation on a strong pseudocomplemented 
semilattice S, then (/3n(B(S) x B(S), 0n(D(S) x D(S))) is a congruence pair. 
Conversely, if (/3B, pD) is a congruence pair, then there is a congruence relation j8 
on S such that 0n(B(S) x B(S)) = 0B and 0n(D(S) x D(S)) = /3D. 

Proof. By the above theorem 11, together with a routine verification, the proof 
follows. 
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Lemma 2 . Let jcbea multiplicative closure operator on a semilattice S with 1. If 
S is distributive (modular), C(S) and D„(S) are distributive as well. 

Proof. The proof is routine. 

Theorem 12. Let nbea neutral p-closure operator on a semilattice S with 1. Sis 
a distributive (modular) semilattice if and only if C„(S) and D„(S) are distributive 
(modular). 

Proof. First suppose that C(S) and D„(S) are distributive; let x = nxt\d, 
y = jtyr\e, z = nzsfeS and z~&xt\y so that Jiz^n(xAy) = nxt\Tcy and hence 
nz = X\t\y\ where x^nx^x, y^jry^y and x,, y !eC(S) . There is also / > 
nxt\ityt\d/\e so that 

[/) c ([-cc) v [Jty) v [d) v [e))nD = ([xx)nD) v (l>y)nD) v [d) v [e). 

Thus />aA jSAdAe* where a»-cr , xeD and fi^ny, peD. Since D„(S) is 
distributive /=aiA/3 tAdiAei, a.>jr, /3i>/3, d\^d, <?,><?. Put JT' = JCI A a, A rfi 
and y' = yiA/3iAC|. Thus x ' ^ x , y ' ^ y and jc'Ay' = nzt\f=z- Thus S is 
a distributive semilattice. By a similar proof one can show that S is modular 
whenever C(S) and DJT(S) are modular. Since the converse follows from 
Lemma 2, the proof is complete. Q.E.D. 

Corollary 15. Let S be a neutral strong pseudocomplemented semilattice Then 
S is a distributive (modular) semilattice if and only if D(S) is one. 
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KOHCTPУKIДИЯ TPOEK ДЛЯ ПOЛУCTPУKTУP C 1 
И C HEЙTPAЛЬHЫM p-ЗAMЫKAHИEM 

П. B. Paмaнa Mypты и B. Paмaн 

Peзюмe 

Извecтнo, чтo вcякyю мoдyляpнyю (диcтpибyтивнyю) пoлycтpyктypy S c пceвдoдoпoлнeниями 
мoжнo oxapaктepизoвaть eй пpинaдлeжaщeй тpoйкoй (B(S), D(S), Џ(S)), гдe ß(S)-aлгeбpa Бyля 
зaмкнyтыx элeмeнтoв из S, «9(S)-фильтp плoтныx элeмeнтoв из S и y/-кo ъeктивнoe oтoб-
paжeниe из B(S) в F(D(S)), cтpyктypy вcex фильтpoв из D(S). Aвтopы oбoбщaют этoт peзyльтaт 
для пoлycтpyктyp c 1 и c нeйтpaльным p-эaмыкaниeм. 
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