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ON ISOMETRIES OF NON-ABELIAN 
LATTICE ORDERED GROUPS 

JAN JAKUBIK 

K. L. Swamy [5] defined an isometry of an abelian lattice ordered group G to 
be a one-to-one mapping / of G onto G such that the relation 

(1) \x-y\ = \f(x)-f(y)\ for each x, yeG is valid. Cf. also Swamy [6]. 
In [3] the isometry of a lattice ordered group G (that need not be abelian) has 

been defined as a one-to-one mapping of G onto G fulfilling the relation (1) and 
the relation 

(2) f([xAy, xvy]) = [f(x)Af(y), f(x)vf(y)] for each x, yeG. 
It has been shown in [3] that if G is abelian and if / is a one-to-one mapping of G 

onto G, then (1) implies (2). Thus in the case of abelian lattice ordered groups the 
above definitions of isometry are equivalent. 

An isometry / is said to be an 0-isometry if /(0) = 0. Each isometry can be 
represented as a composition of an 0-isometry and a translation. In [3] it has been 
shown that there exist a one-to-one correspondence between 0-isometries of G 
and direct factors of G. 

In this note it will be shown that for each lattice ordered group G and each 
one-to-one mapping / of G onto G the implication (1)=>(2) holds. Hence the 
condition (2) can be cancelled in the definition of isometry of a (non-abelian) 
lattice ordered group. 

For the terminology and denotations, cf. Conrad [1] and Fuchs [2]. Let G be 
a lattice ordered group. Let / be a one-to-one mapping of G onto G fulfilling (1). 

1. Lemma. Let a, beG, a^b, xeG. Then the following conditions are 
equivalent: 

(i) xe[a,b]; 
(ii) \a-b\ = \b-x\ + \x-a\. 
Proof. The implication (i)-=>(ii) is obvious. Suppose that (ii) is valid. Denote 

ai = aAx, bt = bAX, a2 = avx, b2 = bvx, r = avbx = bAa2. Then 

\a-b\ = \b-a\ = b-a = (b-r) + (r-a) = 
= (b2-a2) + (bl-al), 
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\b-x\ = b2-bi = (b2-a2) + (a2-bl), 
\x-a\ = a2-al = (a2- bx) + (bx - ax). 

From this and from (ii) we obtain a2 — bx = 0, whence x = r, and thus x e [a, b]. 

2. Lemma. Let a, beG, a^b, u=f~l(f(a)/\f(b)), v=f~l(f(a)vf(b)). Then 
UAV = a, uvv = b. 

Proof. We have \f(a)-f(b)\=f(b)-f(u) + f(a)-f(u), hence 

\f(a)~f(b)\ = \f(b)-f(u)\ + \f(u)-f(a)\ 

and thus \a - b\ = \b - u\ + \u — a\. In view of Lemma 1 we get ue[a, b]. Similarly 
we obtain ve[a, b]. Then b-a = \b-a\ = \f(b)-f(a)\ = \f(v)-f(u)\ 
= \v - u\ = v vu — v AW. On the other hand, from a^uAV^uvv ^b we obtain 

b — a = (b — u vv ) + (uvv — UAV) + (UAV — a), 

thus a = UAv, b = uvv. 
The relation (1) implies \x-y\ = \f~l(x)-f~l(y)\ (i.e., the mapping/"1 fulfils 

(1) as well). From this and from Lemma 1 we obtain immediately: 

3. Lemma. Let a, beG. Suppose that a^b and f(a)^f(b). Then f([a, b]) 
= U(a), f(b)]. 

4. Lemma. Let a, beG. Suppose that a^b and f(a)^f(b). Then f([a, b]) 
= \J(b), f(a)]. 

Proof. Since f1 fulfils (1) it suffices to verify that f([a, b]) c [f(b), f(a)] is 
valid. Let xe[a,b]. According to Lemma 2 there are u, veG such that 

uAv = a, uvv=x, 
f(a)Af(x) = f(u), f(a)vf(x) = f(v). 

Since v e[a, b], we have \b -a\ = \b - v\ + \v -a\, hence 

\f(b)-f(a)\ = \f(b)-f(v)\ + \f(v)-f(a)\ 
and thus 

f(a)-f(b) = f(v)-f(b) + f(v)-f(a), 
f(a)-f(b) = (f(v)~f(a)) + (f(a)-f(b)) + (f(v)-f(a)). 

If f(v) + f(a), then f(v)-f(a)>0 and hence 

f(a) - f(b) < (f(v)-f(a)) + (f(a) - f(b)) + (f(v) - f(a)), 

which is a contradiction. Therefore f(v) = f(a). This implies f(x) = f(u) and thus 
f(x)^f(a). 

The proof of the relation f(b)^f(x) is analogous. 
By summarizing, we obtain: 
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5. Lemma. Let a, beG,a^b. Suppose that f (a) andf(b) are comparable. Then 
f([a,b]) = [f(a)Af(b),f(a)vf(b)]. 

Let Mi be the set of all intervals [p,q]^G with f(p)^f(q). Further let M2 be 
the set of all intervals [pu q\] of G with f(qx)=/(pi). From Lemma 2 we obtain: 

6. Corollary. Let a, beG, a^b. There are elements u, ve[a, b] such that 
[a, v], [u, b]eMu [a, u], [v, b]eM2. 

7. Lemma. Let a, b,xeG,a^b, xe[a, b]. Let u, v be as in Lemma 2. Denote 
xAv = au xvv = bu xAU = a2, xvu^b2. Then [a2, b\]eM\ and [au b2]eM2. 

Proof. According to Corollary 6 there exists ye[a2, b\] such that [a2, y]eM2 

and [y, b\]eM\. Then for yx = vAy we have a^y^v, hence according to 
Lemma 5, [a, yi]eMi. On the other hand, y\e[a, y]eM2, thus (again by Lem
ma 5) we obtain [a,yx]eM2. Therefore a = yx and hence y = a2, implying 
[a2, b\]eMu Similarly, according to Corollary 6 there is ze[aub2] with 
[auz]eMu [Zyb2]eM2. Put ZAU = ZU Then [a,z]eMu [a, Z\]^[a, z], whence 
[a, Z\] e Mi. At the same time, [a, Z\] c [a, u] e M2, thus [a, Z\] e M2. Hence Z\ = a 
and so z = au Therefore [au b2]eM2. 

8. Lemma. Let a, beG, a = b, xe[a, b]. Let u, v be as in-Lemma 2. Then 
f(x)e[f(u),f(v)]. 

Proof. Let au a2 be as in Lemma 7. According to Lemma 7 and Lemma 5 we 
have 

/ ( M )g / (a 2 )S / (x )g / (a , )^ / (v ) . 

9. Lemma. Let au bteG, a\Ab\ = a, axvb\ = b. Let u, v be as in Lemma 2. 
Thenf(a\)Af(b\) = f(u), f(a\)vf(bx) = f(v). 

Proof. Put f(a\)Af(b\) = uu f(ax)vf(b\) = V\. According to Lemma 8 we have 
Mi, V\e[f(u), f(v)]. Assume that either f(u)<U\ or vx<f(v). Then 

\f(b\)-f(a\)\ = \b\-a\\ = \b-a\ = \f(b)-f(a)\=f(v)-f(u) = 
= (f(v)-v\) + (v\-u\) + (u\-f(u))>v\-u\ = \f(b\)-f(a\)\, 

which is a contradiction. Hence f(a\)Af(b\) = f(u) and f(ax)vf(b\) = f(v). 

10. Lemma. Let au b\eG. Then f([a\Ab\, a\vb\]) c [f(ax)Af(b\), 
f(a\)vf(b\)]. 

This is an immediate consequence of Lemma 8 and Lemma 9. 
Since f~l fulfils (1), by using Lemma 10 for the mapping f~l we obtain: 

11. Corollary. Let au bxeG. Then f~l([f(a\)Af(b\), f(ax)v f(b\)]) c [aiA^, 
a\vb\]. 

By summarizing, Lemma 10 and Corollary 11 yield: 

12. Proposition. Let Gbea lattice ordered group. Let f be a one-to-one mapping 
of G onto G fulfilling the condition (1). Then G fulfils the condition (2) as well. 
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For which types of lattice ordered groups are the conditions (1) and (2) 
equivalent ? A partial answer to this question is given by the following proposition: 

13. Proposition. Let G=£ {0} be a complete and completely distributive lattice 
ordered group. Then the following conditions are equivalent: 

(i) If f is a one-to-one mapping of G onto G, then (1)<^>(2). 
(ii) G is isomorphic with the additive group of all integers (with the natural 

linear order). 
Proof. In view of Proposition 12, the relation (l)<-=>(2) in (i) can be replaced by 

(2)--->(l). The proof of the implication (ii)-->(i) is easy. Assume that (i) is valid. 
Since G is complete, it can be expressed as G = A x B, where A is a singular lattice 
ordered group and B is a vector lattice (cf. e.g., Conrad [1]). For geGv/e denote 
by g(A) and g(B) the component of g in A or B9 respectively. For each g e G we 
put 

f(g) = g(A) + \g(B). 

Then / is a one-to-one mapping of G onto G fulfilling the condition (2). If B± {0}, 
then / would fail to fulfil the condition (1); thus B = {0} and so G = A. 

Let 0 < s be a singular element of G. Then [0, s] is a Boolean algebra. Since G is 
complete and completely distributive, the Boolean algebra [0, s] is complete and 
completely distributive. Hence [0, s] is atomic. Therefore for each 0<g e G there 
exists cii e G such that a^g and a, covers 0 in G. Let {«,•},• eJ be the set of all 
elements of G covering 0. For each i e I let A, = {ai}

66 be the polar of G generated 
by at (cf. §ik [7]). Then A, is linearly ordered; since it is complete and contains an 
element covering 0, A, is isomorphic with the additive group A0 of all integers with 
the natural linear order. Since G is archimedean, A, fails to be bounded and hence 
(cf. [4]) A, is a direct factor of G. 

Assume that c a r d / > l . Choose /, jel9 i+\. Then G can be written as 
G = Atx Aj x C. For g e G let g(Ak) (k e {/, /}) and g(C) be the corresponding 
components of g. Let cpk (k e {i, /}) be the isomorphism of Ak onto A0. For each 
g eG we set 

fi(g) = <PT\q>i(g(At)) + cpT\cpi(g(Ai)) + g(C). 

Then /i is a one-to-one mapping of G onto G fulfilling (2) that fails to fulfil the 
condition (1), which is a contradiction. Thus J is a one-element set, say / = { / } . 
From this it follows that G = Ai9 completing the proof. 
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ОБ ИЗОМЕТРИЯХ НЕАБЕЛЕВЫХ РЕШЕТОЧНО УПОРЯДОЧЕННЫХ ГРУПП 

Я. Якубик 

Резюме 

Пусть С-решеточно упорядоченная группа. Предположим, что / будет одно-однозначное 
отображение множества О на О такое, что |/(х) -/(у) | = \х - у | для всех х, у е О. (Отображения 
/ с этим свойством исследовал К.Л. Свами для случая абелевых решеточно упорядоченных 
групп.) В этой заметке доказано, что имеет место /([*лу, XVу]) - [/(*)л/(у), /(*)у/(у)] для 
всех х, уеС. 
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