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ON ISOMETRIES OF NON-ABELIAN
LATTICE ORDERED GROUPS

JAN JAKUBIK

K. L. Swamy [5] defined an isometry of an abelian lattice ordered group G to
be a one-to-one mapping f of G onto G such that the relation

(1) [x=yl=If(x)—f(y)| for each x, y € G is valid. Cf. also Swamy [6].

In [3] the isometry of a lattice ordered group G (that need not be abelian) has
been defined as a one-to-one mapping of G onto G fulfilling the relation (1) and
the relation

(2) f(xay, xvyD)=[f(x)Af(y), f(x)vf(y)] for each x, y e G.

It has been shown in [3] that if G is abelian and if f is a one-to-one mapping of G
onto G, then (1) implies (2). Thus in the case of abelian lattice ordered groups the
above definitions of isometry are equivalent.

An isometry f is said to be an 0-isometry if f(0)=0. Each isometry can be
represented as a composition of an 0-isometry and a translation. In [3] it has been
shown that there exist a one-to-one correspondence between 0-isometries of G
and direct factors of G.

In this note it will be shown that for each lattice ordered group G and each
one-to-one mapping f of G onto G the implication (1)=>(2) holds. Hence the
condition (2) can be cancelled in the definition of isometry of a (non-abelian)
lattice ordered group.

For the terminology and denotations, cf. Conrad [1] and Fuchs [2]. Let G be
a lattice ordered group. Let f be a one-to-one mapping of G onto G fulfilling (1).

1. Lemma. Let a, be G, a=b, xe€G. Then the following conditions are
equivalent:

(i) xela, b];

(i) la—b|=|b—x|+|x—al.

Proof. The implication (i)= (ii) is obvious. Suppose that (ii) is valid. Denote
ay=anx, by=bax,az=avx, b,=bvx, r=avb,=bnaa, Then

la—b|l=|b—al|=b—a=(b-r)+(r—a)=
=(b2—a2)+(b1—al),
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|6 —x|=b—by=(b,— a2) + (a.— by),
|x—a|=az—a1=(a2—b1)+(b,-—a;).

From this and from (ii) we obtain a, — b, =0, whence x =r, and thus x €[a, b].

2. Lemma. Let a, be G, a=b, u=f"'(f(a)af(b)), v=F"'(f(a)vf(b)). Then
uAv=a, uvv=>a.
Proof. We have |f(a) - f(b)|=f(b)— f(u) + f(a) — f(u), hence

f(a) - f(b)| = |f(b) - f(w)| + |f(u) - f(a)|
and thus |a — b|=|b — u| + |u — a|. In view of Lemma 1 we get u € [a, b]. Similarly
we obtain ve[a, b]. Then b—a = |b—a|l = |f(b)—f(a)l = |f(v)-f(u)|
= |v—u| = vvu—vAu.Ontheother hand, froma=uAv=uvv=b we obtain
b—a=(b-uvv)+(uvv—usv)+(uav—a),

thus a=unAv, b=uvv.

The relation (1) implies |x — y|=|f"'(x)-f'(y)| (i.e., the mapping f' fulfils
(1) as well). From this and from Lemma 1 we obtain immediately:

3. Lemma. Let a, be G. Suppose that a=b and f(a)=f(b). Then f([a, b])
= [f(a), f()].

4. Lemma. Let a, b e G. Suppose that a=b and f(a)Zf(b). Then f([a, b])

= [f(b), f(a)].
Proof. Since f~' fulfils (1) it suffices to verify that f([a, b]) < [f(b), f(a)] is
valid. Let x €[a, b]. According to Lemma 2 there are u, v € G such that

UAV=a, UVU=X,
f@nf(x)=f(), fla)vf(x)=f(v).

Since v €[a, b], we have |b—a|=|b—v|+|v—al, hence

|f(6) - f(@)| = |f(b) - f(v)| + f(v) - f(a)]

f(a)— f(b) = f(v) ~ f(b) + f(v) - f(a),
f(a)— F(b) = (f(v) - f(@)) + (f(a) — £(b)) + (f(v) — f(a)).

If f(v)# f(a), then f(v)—f(a)>0 and hence
f(a) - f(b)<(f(v) - f(a)) + (f(a) — f(b)) + (f(v) — f(a)),

which is a contradiction. Therefore f(v)= f(a). This implies f(x)=f(u) and thus
f(x)=f(a).

The proof of the relation f(b)=f(x) is analogous.

By summarizing, we obtain:

and thus
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5.Lemma. Leta, b € G,a=b. Suppose that f(a) and f(b) are comparable. Then
f(la, b)) = [f(a)Af(b), f(a)vf(b)].

Let M, be the set of all intervals [p, g]lc G with f(p)=f(q). Further let M, be
the set of all intervals [p, q.] of G with f(q.)=f(p,). From Lemma 2 we obtain:

6. Corollary. Let a, be G, a=b. There ére elements u, v €[a, b] such that
[a, v], [u, bleM,, [a, u], [v, bleM,.

7. Lemma. Leta,b,x€e G,a=b, x€la, b). Let u, v be as in Lemma 2. Denote
XAV=a, XVv=b,, xAu=a,, xvu=>b,. Then [a,, b,]€ M, and [a,, b.] € M.

Proof. According to Corollary 6 there exists y €[a., b,] such that [a,, y] e M,
and [y, b.]e M,. Then for y,=vAy we have a=y,=v, hence according to
Lemma 5, [a, y:] € Mi. On the other hand, y, €[a, y]€ M,, thus (again by Lem-
ma 5) we obtain [a, y|]J€e M,. Therefore a=y, and hence y=a,, implying
[a:, bi] € M,. Similarly, according to Corollary 6 there is ze€[a,, bo] with
[ai, z]e My, [z, b.]€ M,. Put zAu=z, Then [a, z]eM,, [a, z.]<[a, z], whence
[a, z:) € M,. At the same time, [a, z:] c [a, u] e M,, thus [a, z,]€ M,. Hence z,=a
and so z = a,. Therefore [a,, b,] e M,.

8. Lemma. Let a, be G, a=b, xela, b]. Let u, v be as in- Lemma 2. Then

f(x)elf(u), f(v)].
Proof. Let a,, a, be as in Lemma 7. According to Lemma 7 and Lemma 5 we
have

fW)=f(a)=f(x)=f(a) =f(v).

9, Lemma. Let a,, b1 G, aiAby=a, a,vb,=b. Let u, v be as in Lemma 2.

Then f(a)Af(by) = f(u), f(a))vf(by) = f(v).
Proof. Put f(a))Af(b,)=w, f(a)vf(b,)=v,. According to Lemma 8 we have
i, vy €[f(u), f(v)]. Assume that either f(u)<u, or v,<f(v). Then

If(b:)) - f(a)| = by —ar| = |b —a| = |f(b) - f(a)| = f(v) - f(w) =
=(f(v) = v) + (Vi —w) + (uy = f(u)) >vi— ur = |f(br) — f(a)|,
which is a contradiction. Hence f(a;)Af(b))=f(u) and f(a,)vf(b,)=f(v).

10. Lemma. Let a,, b,eG. Then f(lainby,, a;vb,]) < [f(a))Af(b,),
f(a)vf(by)].

This is an immediate consequence of Lemma 8 and Lemma 9.
Since f~! fulfils (1), by using Lemma 10 for the mapping f~' we obtain:

11. Corollary. Let a,, b, e G. Then f~'([f(a:) Af(by), f(a)v f(B))]) < [a1Aby,
al\/bll.
By summarizing, Lemma 10 and Corollary 11 yield:

12. Proposition. Let G be a lattice ordered group. Let f be a one-to-one mapping
of G onto G fulfilling the condition (1). Then G fulfils the condition (2) as well.
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For which types of lattice ordered groups are the conditions (1) and (2)
equivalent ? A partial answer to this question is given by the following proposition:

13. Proposition. Let G+ {0} be a complete and completely distributive lattice

ordered group. Then the following conditions are equivalent:
(i) If f is a one-to-one mapping of G onto G, then (1)< (2).

(ii) G is isomorphic with the additive group of all integers (with the natural

linear order). )

Proof. In view of Proposition 12, the relation (1) < (2) in (i) can be replaced by
(2)=>(1). The proof of the implication (ii)=> (i) is easy. Assume that (i) is valid.
Since G is complete, it can be expressed as G = A X B, where A is a singular lattice
ordered group and B is a vector lattice (cf. e.g., Conrad [1]). For g € G we denote

~ by g(A) and g(B) the component of g in A or B, respectively. For each g € G we
put

f(9)=9g(A)+19(B).

Then f is a one-to-one mapping of G onto G fulfilling the condition (2). If B+ {0},
then f would fail to fulfil the condition (1); thus B={0} and so G=A.

Let 0 <s be a singular element of G. Then [0, 5] is a Boolean algebra. Since G is
complete and completely distributive, the Boolean algebra [0, s] is complete and
completely distributive. Hence [0, s] is atomic. Therefore for each 0 <g € G there
exists a; € G such that ;=g and a; covers 0 in G. Let {a;};.: be the set of all
elements of G covering 0. For each i € I let A, = {a;}* be the polar of G generated
by a; (cf. Sik [7]). Then A, is linearly ordered ; since it is complete and contains an
element covering 0, A; is isomorphic with the additive group A, of all integers with
the natural linear order. Since G is archimedean, A, fails to be bounded and hence
(cf. [4]) A, is a direct factor of G.

Assume that card I>1. Choose i, jel, i#j. Then G can be written as
G=A,XA;xC.For geG let g(As) (ke{i, j}) and g(C) be the corresponding
components of g. Let ¢, (k € {i, j}) be the isomorphism of A, onto A,. For each
g€ G we set

£1(9) = o7 (@1(g(A)) + @7 (@i (g(A)) + g (C).

Then f, is a one-to-one mapping of G onto G fulfilling (2) that fails to fulfil the
condition (1), which is a contradiction. Thus I is a one-element set, say I = {i}.
From this it follows that G = A,, completing the proof.
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OB U3OMETPUAX HEABEJEBBIX PELIETOYHO YIIOPAOOYEHHBIX I'PYTII
5. Axy6uk
Pe3ome
ITycts G-pelieToyHo ynopsioueHHas rpymmna. IIpenmomoxum, 4to f 6ymer 6nH0-0nH03Haque
oTo6paxenue MHOXecTBa G Ha G Taxoe, uT0 |f(x) — f(¥)| = |x — y| ans Beex x, y € G. (OTo6paxenus
f ¢ aTum cBolictBoM uccaenosan K.JI. CBaMu ans ciiydyas aGel€BbIX PELIETOYHO YIOPSMOYEHHBIX

rpynn.) B aToit 3ameTke foKaszano, uto umeet Mecto f([x Ay, xvy]) = [F(X)AF(Y), fFx)VF(Y)] nas
Bcex x, yeG.
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