Mathematic Slovaca

Jozef Tvarožek

S-cubes

Mathematica Slovaca, Vol. 36 (1986), No. 1, 55--68

Persistent URL: http://dml.cz/dmlcz/132866

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

S-cubes

JOZEF TVAROŽEK

Introduction

Let I^{n} be the n-dimensional cube and J_{i}^{n} its i-th "double face". Let s_{i} : $\partial I^{n} \rightarrow \partial I^{n}$ be the symmetry of ∂I^{n} with respect to the hyperplane $x_{i}=0$. A group of transformations of ∂I^{n} generated by the set $\left\{s_{1}, \ldots, s_{n}\right\}$ will be denoted by G. To each n-touple $\left(u^{1}, \ldots, u^{n}\right) \in G^{n}$ we assign a factorspace as follows: Let S be the binary relation on I^{n} defined via

$$
\begin{gathered}
x S y \Leftrightarrow x=y \text { or there is an index } i \in\{1,2, \ldots, n\} \\
\text { such that } x, y \in J_{i}^{n} \text { and } x=u^{i}(y) .
\end{gathered}
$$

The space I^{n} / T, where T is the least equivalence relation on I^{n} containing S, will be denoted by $I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ and called an s-cube.

The aim of this paper is:

1) To prove some basic properties of s-cubes (part 1).
2) To discuss some special types of s-cubes and the irreducibility of s-cubes (part 2).
3) To give a necessary and a sufficient condition for an s-cube to be a manifold (part 3).

Notation

$N_{n}=\{1,2, \ldots, n\}, N_{0}=\emptyset$
$M^{[r]}=\{x-r ; x \in M\}$ where $M \subset N_{n}-N_{r}$ is a nonempty given set
$I^{n}=\left\{x \in R^{n} ;\left|x_{i}\right| \leqq 1, i \in N_{n}\right\}$ an n-dimensional cube
$\partial I^{n}=$ the boundary of I^{n}
$S^{n}=\left\{x \in R^{n+1} ; \sqrt{ }\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n+1}^{2}\right)=1\right\}$ an n-dimensional sphere
$J_{i}^{n}=\left\{x \in I^{n} ;\left|x_{i}\right|=1\right\}$ (briefly J_{i}) the i-th "double-face" of the cube I^{n}
$C X, S^{k} X$ a cone and a k-fold suspension over a topological space X
$s_{i}: \partial I^{n} \rightarrow \partial I^{n}, x \mapsto\left(x_{1}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n}\right)$ the symmetry of ∂I^{n} with respect to the hyperplane $x_{i}=0, i \in N_{n}$
G the subgroup of the group of all transformations of ∂I^{n} generated by the set $\left\{s_{i} ; i \in N_{n}\right\}$.

The group G is abelian, because $G \cong\left(Z_{2}\right)^{n}$. Each $u \in G, u \neq i d$, is the product of mutually different transformations $s_{i}, \ldots, s_{i_{k}}$ and may be uniquely written in the form

$$
s_{i_{i} i_{2} \ldots i_{k}}=s_{i_{1} \circ} \circ s_{i_{2} \circ \ldots \circ s_{i_{k}}, \text { where } i_{1}<i_{2}<\ldots<i_{k} .}
$$

Since to every $u \in G, u=s_{i_{1} \ldots i_{k}}$, there corresponds a unique subset $\left\{i_{1}, \ldots, i_{k}\right\} \in 2^{N_{n}}$, there is a bijective map

$$
\tau: G \rightarrow 2^{N_{n}}, \tau\left(s_{i_{1} \ldots i_{k}}\right)=\left\{i_{1}, \ldots, i_{k}\right\}, \tau(i d)=\emptyset .
$$

1. Basic properties of s-cubes

We start with an adapted definition of the s-cube since that given in the Introduction is not suitable for future proofs.

Definition 1.1. Let $u^{1}, \ldots, u^{n} \in G$. An s-cube $I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ is a factorspace I^{n} / T, where T is an equivalence relation on I^{n} defined as follows:
$x T y$ if $x=y$ or the'e are numbers $i_{1}, \ldots, i_{k} \in N_{n}$ such that $x, y \in \bigcap_{j=1}^{k} J_{i}$, and $x=u^{i_{1}} \circ u^{i_{2}} \ldots \ldots \circ u^{i_{k}}(y)$.

To simplify the notation, any given s-cube $I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ will be alternatively written in the form $I^{n} /\left(U_{1}, \ldots, U_{n}\right)$, where $U_{i}=\tau\left(u^{i}\right), i \in N_{n}$.

Now we give the basic information about the general properties of s-cubes.
Proposition 1.2. Every s-cube is a Hausdorff space.
Proposition 1.3. Let $I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ be an s-cube, $f: N_{n} \rightarrow N_{n}$ a bijection and $F: I^{n} \rightarrow I^{n}, F(x)=\left(x_{f(1)}, \ldots, x_{f(n)}\right)$. Then there is a map $\tilde{F}: I^{n} /\left(U_{1}, \ldots, U_{n}\right) \rightarrow I^{n} /$ $/\left(f\left(U_{f^{-1}(1)}\right), \ldots, f\left(U_{f^{\prime}(n)}\right)\right),[x] \mapsto[F(x)]$, which is a homeomorphism.

Lemma 1.4. Let $k, r \in N_{n}, k \neq r$ and let $I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ be such an s-cube that $u^{r}=s_{k}$. Then $I^{n} /\left(u^{1}, \ldots, u^{n}\right) \approx I^{n} /\left(v^{1}, \ldots, v^{n}\right)$, where $v^{i}=u^{i}$ for $i \neq r$ and $v^{r}=u^{k}$.

Proof. Without loss of generality we can suppose (see Prop. 1.3.) that $r=1$, $k=2$. We find the homeomorphism $I^{n} /\left(s_{2}, u^{2}, \ldots, u^{n}\right) \approx I^{n} /\left(u^{2}, u^{2}, u^{3}, \ldots, u^{n}\right)$ first in the case of $n=2$.

Let us denote $A=(-2,0), B=(2,0), S=(0,0), A_{1}=(-1,-1), A_{2}=(1,-1)$, $A_{3}=(1,1), A_{4}=(-1,1), B_{1}=(0,-1), B_{2}=(1,0), B_{3}=(0,1), B_{4}=(-1,0), S_{i}=$ $\frac{1}{2}\left(A_{i}-S\right), i \in N_{4}$. Now we define three PL-maps f_{1}, f_{2}, f_{3} :
f_{1} maps the square $A_{1} A_{2} A_{3} A_{4} \equiv I^{2}$ on the deltoid $A B_{1} B B_{3}$: it is the identity on the square $B_{1} B_{2} B_{3} B_{4}$, it is linear on the triangles $A_{1} B_{1} B_{4}, A_{2} B_{2} B_{1}, A_{3} B_{3} B_{2}$, $A_{4} B_{4} B_{3}$ and $f_{1}\left(A_{1}\right)=f_{1}\left(A_{4}\right)=A, f_{1}\left(A_{2}\right)=f_{1}\left(A_{3}\right)=B$.
f_{2} maps the deltoid $A B_{1} B B_{3}$ on the square $B_{1} B_{2} B_{3} B_{4}$: it is the identity on the segment $B_{1} B_{3}$, it is linear on the trianles $B_{1} B_{3} A, B_{1} B_{3} B$ and $f_{2}(A)=B_{4}, f_{2}(B)=$ B_{2}.
f_{3} maps the square $B_{1} B_{2} B_{3} B_{4}$ on the square $A_{1} A_{2} A_{3} A_{4}$: it is the identity on the segments $B_{1} B_{3}, B_{2} B_{4}$, it is linear on the triangles $B_{1} S B_{2}, B_{2} S B_{3}, B_{3} S B_{4}, B_{4} S B_{1}$ and $f_{3}\left(S_{i}\right)=A_{i}, i \in N_{4}$.

Now we define a map $F_{2}: I^{2} \rightarrow I^{2}, F_{2}=f_{3} \circ f_{2} \circ f_{1}$. The induced map $\tilde{F}_{2}: I^{2} /$ $/\left(s_{2}, u^{2}\right) \rightarrow I^{2} /\left(u^{2}, u^{2}\right),[x] \mapsto\left[F_{2}(x)\right]$, is a homeomorphism. Thus the assertion is proved for $n=2$. This result can be extended to the general case via the cartesian product; after a tedious computation it is possible to show that the map $\tilde{F}_{n}: I^{n} /$ $/\left(u^{1}, \ldots, u^{n}\right) \rightarrow I^{n} /\left(v^{1}, \ldots, v^{n}\right)$, induced by the map $F_{n}=F_{2} \times(i d)^{n-2}$, is the demanded homeomorphism $n \geqq 2$.

Proposition 1.5. Let $n, r \in N, 1 \leqq r<n$ and let $I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ be an s-cube such that

1) $U_{i} \subset N_{r}$ for $i \in N_{r}$,
2) $U_{i} \subset N_{n}-N_{r}$ for $i \in N_{n}-N_{r}$.

Then the map $h: I^{n} /\left(U_{1}, \ldots, U_{n}\right) \rightarrow I^{r} /\left(U_{1}, \ldots, U_{r}\right) \times I^{n-r} /\left(U_{r+1}^{[r]}, \ldots, U_{n}^{[r]}\right),[x] \mapsto$ ($\left.\left[\left(x_{1}, \ldots, x_{r}\right)\right],\left[\left(x_{r+1}, \ldots, x_{n}\right)\right]\right)$, is a homeomorphism.

Proof. Denote s-cubes $I^{n} /\left(U_{1}, \ldots, U_{n}\right), I^{r} /\left(U_{1}, \ldots, U_{r}\right), I^{n-r} /\left(U_{r+1}^{[r]}, \ldots, U_{n}^{(r)}\right)$ by $I^{n} / T, I^{r} / T_{1}, I^{n-r} / T_{2}$, respectively. It is not difficult to show that $T=T_{1} \times T_{2}$. Since s-cubes are compact Hausdorff spaces, the map h is a homeomorphism.

Example 1.6. Applying Lemma 1.4 and Proposition 1.5 to the s-cube $X=I^{8} /$ $/\left(s_{2}, s_{1}, s_{3}, s_{34}, s_{6}, s_{56}, s_{7}, s_{8}\right)$ we get:

$$
\begin{gathered}
X \approx I^{8} /\left(s_{1}, s_{1}, s_{3}, s_{34}, s_{56}, s_{56}, s_{7}, s_{8}\right) \approx \\
\approx I^{2} /\left(s_{1}, s_{1}\right) \times I^{2} /\left(s_{1}, s_{12}\right) \times I^{2} /\left(s_{12}, s_{12}\right) \times I /\left(s_{1}\right) \times I /\left(s_{1}\right) \approx \\
\approx S^{2} \times K b \times R P^{2} \times S^{1} \times S^{1}
\end{gathered}
$$

where $K b$ is the Klein bottle and $R P^{2}$ is the real projective plane.
Remark 1.7. Proposition 1.5 enables to represent any finite product of s-cubes as an s-cube. In [2] and [3] it was shown that $I^{n} /\left(s_{1}, \ldots, s_{1}\right) \approx S^{n}, I^{n} /\left(s_{12} \ldots n, \ldots\right.$, $\left.s_{12 \ldots n}\right) \approx R P^{n}$ and $I^{n} /\left(s_{1 \ldots n-k}, \ldots, s_{1 \ldots n-k}\right) \approx S^{k} R P^{n-k}$. Making use of these results we get immediatelly that every finite product of spheres, real projective spaces and their suspensions can be represented as an s-cube.

2. Special types of \boldsymbol{s}-cubes

In Example 1.6 we have seen an s-cube which was homeomorphic to a product of several s-cubes of lower dimensions. Such decompositions of x-cubes will now be introduced.

Let U_{1}, \ldots, U_{n} be given subsets of N_{n}. Define a binary relation $R\left(U_{1}, \ldots, U_{n}\right)$ on N_{n} via

$$
x R y \Leftrightarrow(x=y) \vee\left(x \in U_{y}\right) \vee\left(y \in U_{x}\right) \vee\left(\exists s \in N_{n}: x, y \in U_{s}\right)
$$

The least transitive relation on N_{n} containing $R\left(U_{1}, \ldots, U_{n}\right)$ is an equivalence relation and will be denoted by $E\left(U_{1}, \ldots, U_{n}\right)$, briefly E.

Definition 2.1. An s-cube $I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ is said to be combinatorially irreducible (c-irreducible) if $N_{n} / E\left(U_{1}, \ldots, U_{n}\right)$ consists of exactly one equivalence class, otherwise X is said to be combinatorially reducible (c-reducible).

Example 2.2. An s-cube $I^{n} /\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is c-reducible for $n>1, s$-cubes $I^{n} /\left(s_{1}, \ldots, s_{1}\right)$ and $I^{n} /\left(s_{12 \ldots n}, \ldots, s_{12 \ldots n}\right)$ are c-irreducible.

Theorem 2.3. Every c-reducible s-cube is homeomoprhic to a product of c-irreducible s-cubes.

Proof. For a given c-reducible s-cube $I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ denote $N_{n} /$ $/ E\left(U_{1}, \ldots, U_{n}\right)=\left\{A_{1}, \ldots, A_{q}\right\}, c_{i}=\operatorname{card} A_{i}, i \in N_{q}, q \geqq 2$. Let $h: N_{n} \rightarrow N_{n}$ be a bijection such that $A_{1}=\left\{h(1), \ldots, h\left(t_{1}\right)\right\}, A_{2}=\left\{h\left(t_{1}+1\right), \ldots, h\left(t_{2}\right)\right\}, \ldots$, $A_{q}=\left\{h\left(t_{q-1}+1, \ldots, h\left(t_{q}\right)\right\}\right.$, where $t_{i}=c_{1}+\ldots+c_{i}, i \in N_{q}$. Using Proposition 1.3 for $f=h^{-1}$ we get the homeomorphism $I^{n} /\left(I_{1}, \ldots, \quad U_{n}\right) \approx I^{n} /\left(h^{-1}\left(U_{h(1)}\right), \ldots\right.$, $h^{-1}\left(U_{h(n)}\right)$). To complete the proof it is sufficient to apply ($q-1$)-times Proposition 1.5.

A c-irreducible s-cube need not to be irreducible. For example, an s-cube $X=I^{3} /\left(s_{1}, s_{1}, s_{123}\right)$ is c-irreducible, but $X \approx I^{2} /\left(s_{1}, s_{1}\right) \times I /\left(s_{1}\right)$.

Definition 2.4. An s-cube $I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ is quasi-regular if there are not $i, j \in N_{n}, i \neq j$, such that $u^{i}=s_{j}$ and card $U_{j}>1$. An s-cube $I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ is regular if for every $i, j \in N_{n} u^{i}=s_{j}$ implies $u^{j}=s_{j}$. Regular s-cubes are called briefly r-cubes.

Lemma 2.5. Let $X=I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ be an s-cube. Suppose that there are i_{1}, \ldots, $i_{t} \in N_{n}$ such that $u^{i_{1}}=s_{i_{2}}, u^{i_{2}}=s_{i_{3}}, \ldots, u^{i_{t-1}}=s_{i_{t}}$. Then $I^{n} /\left(u^{1}, \ldots, u^{n}\right) \approx I^{n} /\left(v^{1}, \ldots, v^{n}\right)$, where $v^{i_{1}}=v^{i_{2}}=\ldots=v^{i_{i}}=u^{i_{i}}$ and $v^{i}=u^{i}$ otherwise.

Proof. By repeated application of Lemma 1.4 for $r=i_{t-1}, i_{t-2}, \ldots, i_{1}$ we get the homeomorphism $f, f: X \xrightarrow{\approx} X_{1} \xrightarrow[\rightarrow]{\approx} \ldots \xrightarrow{\approx} X_{t-1}, X_{j}=I^{n} /\left(u_{(i)}^{1}, \ldots, u_{(i)}^{n}\right)$, where $u_{(i)}^{i_{i}}=$ $u^{i_{4}}$ for $k=t-j, t-j+1, \ldots, t-1$ and $u_{(j)}^{i}=u^{i}$ otherwise, $j=1, \ldots, t-1$. For $j=t-1$ we have $u_{(l-1)}^{i_{1}}=u_{(t-1)}^{i}=\ldots=u_{(t-1)}^{i_{i}}=u^{i_{1}}, u_{(t-1)}^{i}=u^{i}$ for $i \neq i_{1}, i_{2}, \ldots, i_{t}$.

Let $\left.I^{n} / U_{1}, \ldots, U_{n}\right)$ be an s-cube. Let $\bar{U}_{j}=\left\{x \in N_{n} ; \exists i_{1}, \ldots, i_{k} \in N_{n}, k>1, i_{1}=x\right.$, $\left.i_{k}=j, u^{i_{1}}=s_{i_{2}}, u^{i_{2}}=s_{i_{3}}, \ldots, u^{i_{k-1}}=s_{i_{k}}\right\}$ for $j \in N_{n}$ such that card $U_{j}>1$ and $\bar{U}_{j}=\emptyset$ otherwise. It is not difficult to prove that for different $p, q \in N_{n}$ we have $\bar{U}_{p} \cap \bar{U}_{q}=\emptyset$. By a repeated application of Lemma 1.4 we obtain that $I^{n /}$ $/\left(U_{1}, \ldots, U_{n}\right) \approx I^{n} /\left(V_{1}, \ldots, V_{n}\right)$, where $V_{i}=U_{j}$ for $i \in \bar{U}_{j}, j \in N_{n}$ and $V_{i}=U_{i}$ otherwise. Further, the s-cube $I^{n} /\left(V_{1}, \ldots, V_{n}\right)$ is quasi-regular, because $u^{i}=s_{j}$ implies card $V_{j}=1, j \in N_{n}$. We have just proved

Proposition 2.6. Every s-cube is homeomorphic to some quasi-regular s-cube.
Let $X=I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ be an s-cube, $P_{U}=\bar{U}_{1} \cup \ldots \cup \bar{U}_{n} \cup\left\{j \in N_{n}\right.$; card $\left.U_{j}>1\right\}$ and $M_{U}=N_{n}-P_{U}$. Let $\tilde{R}\left(U_{1}, \ldots, U_{n}\right)$ be a binary relation on M_{U} defined via

$$
x \tilde{R}_{U} y \Leftrightarrow(x=y) \vee\left(x \in U_{y}\right) \vee\left(y \in U_{x}\right) .
$$

Suppose that $\tilde{E}\left(U_{1}, \ldots, U_{n}\right)$ (briefly $\left.\tilde{E}_{U}\right)$ is the least equivalence relation on M_{U} containing \tilde{R}_{U} and $M_{U} / \tilde{E}_{U}=\left\{A_{U}^{(1)}, \ldots, A_{U}^{(r)}\right\}$.

Let $X=I^{n} /\left(U_{1}, \ldots, U_{n}\right), \quad Y=I^{n} /\left(V_{1}, \ldots, V_{n}\right)$ be the s-cubes defined in Lemma 2.5 and let $f: X \rightarrow Y$ be the homeomorphism constructed in the proof of Lemma 2.5. Making use of Lemma 1.4 it is not difficult to prove the following

Lemma 2.7. If X is quasi-regular, then Y is quasi-regular. Further, $M_{U}=M_{V}$ and $M_{U} / \tilde{E}_{U}=M_{V} / \tilde{E}_{V}$.

Lemma 2.8. Let $s \in N_{r}$ and let $X=I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ be a quasi-regular s-cube such that $M_{U} / \tilde{E}_{U}=\left\{A_{U}^{(1)}, \ldots, A_{U}^{(r)}\right\}$. Then X is homeomorphic to a quasi-regular s-cube $I^{n} /\left(v^{1}, \ldots, v^{n}\right)$ such that

1) $M_{U}=M_{V}$ and $M_{U} / \tilde{E}_{U}=M_{V} / \tilde{E}_{V}$
2) There is $k_{s} \in A_{U}^{(s)}$, for which $v^{k_{s}}=s_{k_{s}}$ and $v^{i}=u^{i}$ for $i \notin A_{U}^{(s)}$.

Proof. Suppose that there is not $k_{s} \in A_{U}^{(s)}$ for which $u^{k_{s}}=s_{k_{s}}$. Then there are j_{1}, $\ldots, j_{t} \in A_{U}^{(s)}$ such that $u^{j_{1}}=s_{i_{2}}, u^{i_{2}}=s_{i_{3}}, \ldots, u^{j_{i}}=s_{j_{1}}, 2 \leqq t \leqq$ card $A_{U}^{(s)}$. By Lemma 2.5 we get that $X \approx I^{n} /\left(v^{1}, \ldots, v^{n}\right)$, where $v^{i_{1}}=v^{i_{2}}=\ldots=v^{j_{t}}=s_{j_{1}}$ and $v^{i}=u^{i}$ otherwise. Then $k_{s}=j_{1}$ and $v^{i}=u^{i}$ for $i \in A_{U}^{(s)}$. Condition 1) follows from Lemma 2.7.

Corollary. The s-cube X is homeomorphic to a quasi-regular s-cube $I^{n} /$ $/\left(v^{1}, \ldots, v^{n}\right)$ such that

1) $M_{U}=M_{V}$ and $M_{U} / \tilde{E}_{U}=M_{V} / \tilde{E}_{V}$
2) For every $i \in N_{r}$ there is $k_{i} \in A \cup \cup^{(i)}$ such that $v^{k_{i}}=s_{k_{i}}$
3) $v^{i}=u^{i}$ for $i \in P_{U}$.

Le 2.9. Let $I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ be a quasi-regular s-cube, $M_{U} / \tilde{E}_{U}=\left\{A_{U}^{(1)}, \ldots, A_{U}^{(r)}\right\}$. Let there for some $s \in N_{r} k_{s} \in A_{U}^{(s)}$ for which $u^{k_{s}}=s_{k_{s}}$. Then X is homeomorphic to a quasi-regular s-cube $I^{n} /\left(v^{1}, \ldots, v^{n}\right)$ such that

1) $M_{U}=M_{V}$ and $M_{U} / \tilde{E}_{U}=M_{V} / \tilde{E}_{V}$
2) $v^{i}=s_{k_{s}}$ for $i \in A \cup_{U}^{(s)}$ and $v^{i}=u^{i}$ otherwise.

Proof. Let $j \in A_{U}^{(s)}$ be such an index that $u^{i} \neq s_{k_{s}}$. Since $j, k_{s} \in A_{U}^{(s)}, u^{k_{s}}=s_{k_{s}}$, there are $i_{1}, \ldots, i_{t} \in A U_{U}^{(s)}$ such that $j=i_{1}, k_{s}=i_{t}$ and $u^{i_{1}}=s_{i_{2}}, u^{i_{2}}=s_{i_{3}}, \ldots, u^{i_{1-1}}=s_{i_{i}}$. By Lemma 2.5 we get that X is homeomorphic to an s-cube $I^{n} /\left(w^{1}, \ldots, w^{n}\right)$, where $w^{i_{1}}=w^{i_{2}}=\ldots=w^{i_{t}}=s_{k_{s}}$ and $w^{i}=u^{i}$ otherwise. With respect to Lemma 2.7 we have $M_{U}=M_{W}, M_{U} / \tilde{E}_{U}=M_{w} / \tilde{E}_{W}$ and the s-cube $I^{n} /\left(w^{1}, \ldots, w^{n}\right)$ is quasi-regular. In the case when $u^{j}=s_{k_{s}}$ for every $j \in A_{v^{(j)}}$ we finish. In the other case we continue in the outlined procedure until we get a quasi-regular s-cube $I^{n} /\left(v^{1}, \ldots, v^{n}\right)$ such that conditions 1), 2) are satisfied.

Corollary. Let $X=I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ be a quasi-regular s-cube such that for every $s \in N_{r}$ there is $k_{s} \in A_{U}^{(\xi)}$ with the property $u^{k_{s}}=s_{k_{s}}$. Then there is a regular s-cube $I^{n} /\left(v^{1}, \ldots, v^{n}\right)$ homeomorphic to X such that

1) $v^{i}=s_{k_{s}}$ for $i \in A_{U}^{(s)}, s \in N_{r}$
2) $v^{i}=u^{i}$ for $i \in P_{U}$.

Proposition 2.10. Every s-cube is homeomorphic to some r-cube.

Proof. Let $X_{U}=I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ be an s-cube. By Proposition 2.6 X_{U} is homeomorphic to a quasi-regular s-cube $X_{V}=I^{n} /\left(v^{1}, \ldots, v^{n}\right)$. Let $M_{V} / \tilde{E}_{V}=\left\{A_{V}^{(1)}\right.$, $\left.\ldots, A_{V}^{(r)}\right\}$. Then by Corollary of Lemma $2.8 X_{V}$ is homeomorphic to a quasi-regular s-cube $X_{w}=I^{n} /\left(w^{1}, \ldots, w^{n}\right)$, where $W_{i}=V_{i}$ for $i \in P_{V}, M_{W}=M_{V}, M_{V} / \tilde{E}_{V}=M_{w} /$ / \tilde{E}_{W} and for every $i \in N_{r}$ there is $k_{i} \in A_{V}^{i}$ such that $u^{k_{i}}=s_{k_{i}}$. Further, by Corollary of Lemma 2.9, X_{W} is homeomorphic to a regular s-cube $X_{Z}=I^{n} /\left(z^{1}, \ldots, z^{n}\right)$, where $z^{i}=s_{k_{j}}$ for $i \in A^{(i)}, j \in N_{r}, z^{i}=v^{i}$ for $i \in P_{V}$.

Example 2.11. Making use of Lemma 1.4 we find an r-cube which is homeomorphic to the s-cube $X=I^{5} /\left(s_{3}, s_{123}, s_{2}, s_{5}, s_{4}\right)$.

$$
\begin{gathered}
X \approx I^{5} /\left(s_{3}, s_{123}, s_{123}, s_{5}, s_{4}\right) \approx I^{5} /\left(s_{123}, s_{123}, s_{123}, s_{5}, s_{4}\right) \approx \\
\approx I^{5} /\left(s_{123}, s_{123}, s_{123}, s_{4}, s_{4}\right)=Y
\end{gathered}
$$

As we can see in Example 2.11, an s-cube is not homeomorphic to the unique r-cube in general, because $X \approx I^{5} /\left(s_{123}, s_{123}, s_{123}, s_{5}, s_{5}\right) \neq Y$.

Example 2.12. Let $X=I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ be an s-cube with card $U_{i}=1$ for $i \in N_{n}$. Then X is quasi-regular and $M_{U}=N_{n}$. Denote $N_{n} / \tilde{E}_{U}=\left\{A_{U}^{(1)}, \ldots, A_{U}^{(r)}\right\}$. By Corollary of Lemma 2.8 and by Corollary of Lemma $2.9 X$ is homeomorphic to a regular s-cube $Y=I^{n} /\left(v^{1}, \ldots, v^{n}\right)$, where $v^{i}=s_{k_{j}}$ for $i \in A_{U}^{(i)}, s_{k_{j}} \in A_{U}^{(j)}, j \in N_{r}$. Then in a way similar to that in the proof of Theorem 2.3, making use of Remark 1.7, we get the homeomorphism $Y \approx S^{c_{1}} \times \ldots \times S^{c_{r}}$, where $c_{i}=\operatorname{card} A_{\cup}^{(i)}$, $i \in N_{r}$.

3. Are all r-cubes manifolds?

In dimensions 1 and 2 it is evident that r -cubes are not manifolds in general. As examples we mention r-cubes $I /(i d), I^{2} /\left(i d, s_{2}\right) \approx S^{1} \times I$ (these r-cubess are manifolds with a boundary). In a higher dimension it is sometimes difficult to decide whether a given r -cube is or is not a manifold. For example, an r-cube $I^{3} /\left(s_{1}, s_{12}\right.$, $\left.s_{123}\right)$ is a manifold, but an r-cube $I^{3} /\left(s_{1}, s_{23}, s_{123}\right)$ is neither a manifold nor a manifold with a boundary.

The solution of the problem whether a given r-cube is a manifold is in Theorem 3.18.

Definition 3.1. An r-cube $X=I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ has the property " M " if for each nonempty subset $P \subset N_{n}$ such that
i) $\forall i, j \in P: i \neq j \Rightarrow u^{i} \neq u^{j}$
ii) $\forall i \in P$: card $U_{i} \neq 1$
we have

$$
\begin{equation*}
P \cap \tau\left(\prod_{j \in P} u^{i}\right) \neq \emptyset \tag{3}
\end{equation*}
$$

Example 3.2. r-cubes $I^{3} /\left(s_{1}, s_{12}, s_{123}\right), I^{4} /\left(s_{2}, s_{2}, s_{4}, s_{4}\right)$ have the property " M ",
r-cubes $I^{3} /\left(s_{1}, s_{12}, s_{12}\right), I^{4} /\left(s_{12}, s_{23}, s_{34}, s_{14}\right)$ have not. Not every r-cube $I^{n} /\left(U_{1}, \ldots\right.$, U_{n}) with card $U_{i}=\emptyset$ for some $i \in N_{n}$ has the property " M '.

Lemma 3.3. Let $I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ be an r-cube with the property " M "and let card $U_{k}>1$ for some $k \in N_{n}$. Then $k \in U_{k}$.

Proof. Suppose that $k \in U_{k}$. Then for $P=\{k\}$ we have $P \cap \tau\left(u^{k}\right)=\{k\} \cap U_{k}=\emptyset$.
Definition 3.4. An r-cube $I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ is cube-fibreable (briefly c-fibreable) as there is a set $Q, \emptyset \sqsubseteq Q \Phi N_{n}$, such that
(i) $Q \cap\left(\bigcup_{k \in N_{n}-Q} U_{j}\right)=\emptyset$
(ii) If $U_{i}=U_{j}$ for some $i, j \in N_{n}$, then $i, j \in Q$ or $i, j \in N_{n}-Q$.

An r-cube which is not c-fibreable is called c-nonfibreable.
Example 3.5. An r-cube $I^{3} /\left(s_{1}, s_{12}, s_{123}\right)$ is c-fibreable with $Q=\{3\}$ or $Q=\{2,3\}$, an r-cube $I^{2} /\left(s_{2}, s_{2}\right)$ is c-nonfibreable.

Lemma 3.6. Let $k \in N_{n}$ and let $I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ be an r-cube with $k \in U_{k}$. Then $I^{n} /\left(u^{1}, \ldots, u^{n}\right) \approx I^{n} /\left(v^{1}, \ldots, v^{n}\right)$, where $v^{i}=u^{i} \circ u^{k} \circ s_{k}$ for such $i \in N_{n}, i \neq k$, that $k \in U_{i}$ and $v^{i}=u^{i}$ otherwise.

Proof. First we define a map $h_{k}: I^{n} /\left(u^{1}, \ldots, u^{n}\right) \rightarrow I^{n} /\left(v^{1}, \ldots, v^{n}\right), h_{k}([x])$ $=\left[\left(x_{1}, \ldots, x_{k-1}, x_{k}+1, x_{k+1}, \ldots, x_{n}\right)\right]$ for $x_{k} \leqq 0, h_{k}([x])=\left[\left(\tilde{x}_{1}, \ldots, \tilde{x}_{k-1}, x_{k}-1\right.\right.$, $\left.\left.\tilde{x}_{k+1}, \ldots, \tilde{x}_{n}\right)\right]$ for $x_{k} \geqq 0$, where $\tilde{x}_{j}=x_{j}$ for $j \notin U_{k}$ and $\tilde{x}_{j}=-x_{j}$ for $j \in U_{k}, j \in N_{n}-$ $\{k\}$. It is not difficult to show that h_{k} is well defined and continuous. The map $g_{k}: I^{n} /\left(v^{1}, \ldots, v^{n}\right) \rightarrow I^{n} /\left(u^{1}, \ldots, u^{n}\right), g_{k}([x])=\left[\left(x_{1}, \ldots, x_{k-1}, x_{k}-1, x_{k+1}, \ldots, x_{n}\right)\right]$ for $x_{k} \geqq 0, g_{k}([x])=\left[\left(\tilde{x}_{1}, \ldots, \tilde{x}_{k-1}, x_{k}+1, \tilde{x}_{k+1}, \ldots, \tilde{x}_{n}\right)\right]$ for $x_{k} \leqq 0$, where $\tilde{x}_{j}=x_{j}$ for $j \notin V_{k}, x_{j}=-x_{j}$ for $j \in V_{k}, j \in N_{n}-\{k\}$, is also well defined, continuous and inverse to h_{k}. Hence both h_{k} and g_{k} are homeomorphisms.

Let $X=I^{n} /\left(u^{1}, \ldots, u^{n}\right), Y=I^{n} /\left(v^{1}, \ldots, v^{n}\right)$ be the s-cubes from Lemma 3.6. Then the s-cube Y is not an r-cube in general. Let $K=\left\{i \in N_{n} ; U_{i}=U_{k}, i \neq k\right\}$, $\alpha=$ card K. Then for each $i \in K$ we have $v^{i}=s_{k}$ and $v^{k}=u^{k}$. Now it is easy to see that the s-cube is not an r-cube if and only if $\alpha \geqq 1$ and $u^{k} \neq s_{k}$. To obtain an r-cube from the s-cube Y it is sufficient to apply α-times Lemma 1.4. Therefore we can strengthen Lemma 3.6 into

Proposition 3.7. Let $k \in N_{n}$ and let $X=I^{n} /\left(u^{1}, \ldots, u^{n}\right)$ be an r-cube with $k \in U_{k}$. Then the r-cube X is homeomorphic to an r-cube $Y=I^{n} /\left(w^{1}, \ldots, w^{n}\right)$, where $w^{i}=u^{i} \circ u^{k} \circ s_{k}$ for such $i \in N_{n}$ that $k \in U_{i}, U_{i} \neq U_{k}$ and $w^{i}=u^{i}$ otherwise.

Proof. Let $K=\left\{i_{1}, \ldots, i_{\alpha}\right\}, \alpha \geqq 1$. According to Lemma $3.6 I^{n} /\left(u^{1}, \ldots, u^{n}\right) \approx$ $I^{n} /\left(v^{1}, \ldots, v^{n}\right), v^{i}, i \in N_{n}$, are described in Lemma 3.6. Then using Lemma 1.4 successively for $r=i_{1}, \ldots, i_{\alpha}$ we get homeomorphisms $I^{n} /\left(v^{1}, \ldots, v^{n}\right) \stackrel{f_{1}}{\approx} I^{n} /\left(z_{(1)}^{1}, \ldots\right.$, $\left.z_{(1)}^{n}\right) \stackrel{f_{2}}{\approx} \ldots \stackrel{f_{\alpha}}{\approx} I^{n} /\left(z_{(\alpha)}^{1}, \ldots, z_{(\alpha)}^{n}\right)=I^{n} /\left(w^{1}, \ldots, w^{\dot{n}}\right)$, where $z_{(i)}^{i}=v^{k}$ for $i=i_{m}, m \leqq j$ and $z^{i}{ }_{(j)}=v^{i}$ otherwise. The map $\tilde{h_{k}}=f_{\alpha} \circ f_{\alpha-1} \circ \ldots f_{1 \circ} h_{k}$ is the demanded homeomorphism.

Lemma 3.8. Let $X=I^{n} /\left(u^{1}, \ldots, u^{n}\right), Y=I^{n} /\left(w^{1}, \ldots, w^{n}\right)$ be r-cubes defined in Proposition 3.7. Then the r-cube X has the property " M " if and only if the r-cube Y has the property " M ".

Proof. Let the r-cube X not have the property " M ". Then there is a nonempty set P, satisfying (1), (2), such that $P \cap \tau\left(\prod_{i \in P} u^{i}\right)=\emptyset$. We prove that the r-cube Y has not the property " M ". We shall discuss two cases:
i) card $P \geqq 2$, ii) card $P=1$.
i) Let $P=\left\{i_{1}, \ldots, i_{r}\right\}$ and let $s, 0 \leqq s \leqq r$, be such a number that $k \in U_{i}$ for $i \leqq s$ and $k \notin U_{i}$ for $i>s$.It is clear that s is even. Suppose that $k \in P$ (the other case will be discussed later). We show that for $\tilde{P}=P-\{k\}$ we have $\tilde{P} \cap \tau\left(\prod_{i \in P} w^{i}\right)=\emptyset$. In fact,

$$
\begin{gathered}
\prod_{i \in P} w^{i}=\left(\prod_{i \in P} u^{i}\right) \circ\left(u^{k} \circ s_{k}\right)^{s-1}=\left(\prod_{i \in \mathcal{P}} u^{i}\right) \circ\left(u^{k} \circ s_{k}\right) \circ\left(u^{k} \circ s_{k}\right)^{s}= \\
=s_{k} \circ \prod_{i \in P} u^{i}
\end{gathered}
$$

becausee for every $u \in G$ we have $u^{2}=i d$. Then $\tilde{P} \cap \tau\left(s_{k} \circ \prod_{i \in P} u^{i}\right)=\emptyset$, because $P \cap \tau\left(\prod_{i \in P} u^{i}\right)=\emptyset$.

In the case when $k \notin P$ we take $\tilde{P}=P$ for s even and $\tilde{P}=P \cup\{k\}$ for s odd.
ii) Let $P=\{p\}$. It is sufficient to take $\tilde{P}=P$ if $p \notin U_{p}, p \notin W_{p}$ and $\tilde{P}=P \cup\{k\}$ if $p \notin U_{p}, p \in W_{p}$.

Let now the r-cube $Y=I^{n} /\left(w^{1}, \ldots, w^{n}\right)$ not have the property " M ". Taking $X=Y$. in Proposition 3.7 we get $Y \approx Z=I^{n} /\left(z^{1}, \ldots, z^{n}\right)$, where $z^{i}=u^{i}$ for $i \in N_{n}$. By the first part of the proof we obtain that the r-cube $Z, Z=X$, has not the property " M ".

Lemma 3.9. Let $X=I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ be an r-cube without the property " M " such that for every $i \in N_{n} U_{i} \neq \emptyset$. Then there are an r-cube $Y=I^{n} /\left(V_{1}, \ldots, V_{n}\right)$, $X \approx Y$ and an integer $k \in N_{n}$ such that $k \notin V_{k}$ and card $V_{k}>1$.

Proof. Suppose that $i \in U_{i}$ for every $i \in N_{n}$ such that card $U_{1}>1$. Since X has not the property " M ", there is a nonempty set $P \subset N_{n}$ such that the conditions (1), (2) and $P \cap \tau\left(\prod_{j \in P} u^{j}\right)=\emptyset$ are satisfied. Without loss of generality we can suppose that $P=\{1,2, \ldots, r\}$. Let $\tilde{K}_{1}=\left\{i \in N_{n} ; 1 \in U_{i}\right\}, K_{1}=\tilde{K}_{1} \cap\{2, \ldots, r\}$, card $K_{1}=\alpha_{1}$. Denote $X=I^{n} /\left(U_{1}^{(0)}, \ldots, U_{n}^{(0)}\right)$. Then using Proposition 3.7 for $k=1$ we have $I^{n} /\left(U_{1}^{(0)}, \ldots, U_{n}^{(0)}\right) \approx I^{n} /\left(U_{1}^{(1)}, \ldots, U_{n}^{(1)}\right)$, where $u_{(1)}^{i}=u_{(0) \circ}^{i} u_{(0) \circ}^{1} s_{1}$ for $i \in \bar{K}_{1}-\{1\}$ such that $U_{i}^{(0)} \neq U_{1}^{(0)}$ and $u_{(1)}^{i}=u_{(0)}^{i}$ otherwise. Let $P_{k}=P-\{1, \ldots, k\}$. Then for $k=1$ the following conditions are satisfied:
i) $\forall i, j \in P_{k}: i \neq j \Rightarrow U_{i}^{(k)} \neq U_{i}^{(k)}$
ii) $\forall i \in P_{k}$: card $U_{i}^{(k)}>1$
iii) $P_{k} \cap \tau\left(\prod_{j \in P_{k}} u_{(k)}^{i}\right)=\emptyset$.

Conditions i), ii) are evident, we prove iii). Let $u_{(0)}^{1}=s_{1} \circ S_{i_{1}} \circ \ldots \circ s_{i_{m}}$. Then

$$
\begin{gathered}
\prod_{j \in P_{1}} u_{1}^{(j)}=\left(\prod_{j \in P_{1}} u_{(0)}^{1}\right) \circ\left(u_{(0) \circ}^{1} \circ s_{1}\right)^{\alpha_{1}}= \\
=\left(\prod_{j \in P} u_{(0)}^{j}\right) \circ u_{(0) \circ}^{1} \circ\left(u_{(0) \circ}^{1} \circ s_{1}\right)^{\alpha_{1}}=\prod_{j \in P} u_{(0) \circ}^{j} s_{1},
\end{gathered}
$$

because α_{1} is an odd integer and $u^{2}=i d$ for every $u \in G$. Since $P \cap \tau\left(\prod_{j \in P} u_{(0)}^{j}\right)=\emptyset$, we have

$$
P_{1} \cap \tau\left(\prod_{j \in P_{1}} u_{(1)}^{j}\right)=P_{1} \cap \tau\left(\left(\prod_{j \in P} u^{j} u_{(0)}\right) \circ s_{1}\right)=\emptyset .
$$

There are two possibilities: 1) $2 \notin U_{2}^{(1)}$, 2$) 2 \in U_{2}^{(1)}$.
In the case 1) the proof is finished. In the case 2) we continue in the outlined process until we get (by repeated application of Lemma 3.7) a number $k_{0} \in\{3, \ldots$, $r\}$ and an r-cube $I^{n} /\left(U_{1}^{\left(k_{0}-1\right)}, \ldots, U_{n}^{\left(k_{0}-1\right)}\right)$ such that $k_{0} \notin U_{k_{0}}^{\left.k_{0}-1\right)}$. Now we outline the proof of the existence of such k_{0}. Let for $k=3, \ldots, r k \in U_{k}^{(k-1)}$. It is possible to show that for $k=2, \ldots, r-1$ the conditions i), ii), iii) are satisfied. Then for $k=r-1$ we get from iii) that $\{r\} \cap \tau\left(u_{(r-1)}^{r}\right)=\{r\} \cap U_{r}^{(r-1)}=\emptyset$, a contradiction.

Lemma 3.10. Let $X=I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ be an r-cube such that for some $k \in N_{n}$ card $U_{k}=m>1$ and $k \notin U_{k}$. Then X is neither a manifold, nor a manifold with a boundary.

Proof. Let $a \in \partial I^{n}$ be such a point that $a_{k}=1$ and $a_{j}=0$ for $j \in N_{n}-\{k\}$. Let $U=\left\{x \in I^{n} ; \mathrm{d}(x, a) \leqq \frac{1}{2}\right\}$ (d is the symbol of the Euclidean metric), $\pi_{n}: I^{n} \rightarrow I^{n /}$ $/\left(U_{1}, \ldots, U_{n}\right)$ a projection, $V=\pi_{n}(U) . V$ is a neighbourhood of the point $b=\pi_{n}(a), V \approx C\left(I^{n-1} /\left(s_{12 \ldots m}, \ldots, s_{12} \ldots m\right)\right)$, the point b corresponds to the top of the cone in this homeomorphism. Using [2] we get $V \approx C\left(S^{n-m-1} R P^{m}\right)$. Since V is contractible,

$$
H_{q}(V, V-\{b\}) \cong \tilde{H}_{q-1}(V-\{b\}) \cong \tilde{H}_{q-1}\left(S^{n-m-1} R P^{m}\right) \cong \tilde{H}_{q-n+m} R P^{m}
$$

for every $q \in N$ (the symbol \tilde{H} denotes the reduced homology with Z coefficients). Then using [1], Proposition 3.2, page 59, it can be proved that there is not a neighbourhood of the point b homeomorphic to \boldsymbol{R}^{n} or to $\boldsymbol{R}_{+}^{n}\left(\boldsymbol{R}_{+}^{n}=\left\{x \in \boldsymbol{R}^{n}\right.\right.$; $\left.x_{n} \geqq 0\right\}$).

Now we describe some simple properties of c-nonfibreable r-cubes. Let $X=I^{n} /$ $/\left(U_{1}, \ldots, U_{n}\right)$ be a c-nonfibreable r-cube. By M_{k} we shall denote the set $\left\{i \in N_{n}\right.$; $\left.U_{i}=U_{k}\right\}, k \in N_{n}$.

Lemma 3.11. If $U_{k}=\{k\}$ for some $k \in N_{k}$, then $X=I^{n} /\left(s_{k}, \ldots, s_{k}\right)$.
Proof: Suppose that $M_{k} \neq N_{n}$. Then X is c-fibreable with $Q=N_{n}-M_{k}$.
Lemma 3.12. If the r-cube X has the property " M " and card $U_{i}>1$ for some $i \in N_{n}$, then $M_{i}=N_{n}$ or there is $p_{i} \in U_{i}$ such that $p_{i} \notin M_{i}$ and $U_{p_{i}} \cap M_{i}=\emptyset$.

Proof. Let $M_{i} \neq N_{n}$. If $U_{i}=M_{i}$, then X is c-fibreable with $Q=N_{n}-M_{i}$, a contradiction. Hence $M_{i} \varsubsetneqq U_{i}$. Let $p_{i} \in U_{i}-M_{i}$. We show that $U_{p_{i}} \cap M_{i}=\emptyset$. Let $j \in U_{p_{i}} \cap M_{i}$. Since card $U_{k}>1$ for every $k \in N_{n}$ (Lemma 3.11), we have $j \in U_{p_{i}} \cap M_{i} \subset U_{p_{i}} \cap U_{j}, p_{i} \in U_{p_{i}} \cap U_{j}$ and $\left\{j, p_{i}\right\} \cap \tau\left(u^{j} \circ u^{p_{i}}\right)=\emptyset$. Hence the r-cube X has not the property " M ", a contradiction.

Now we are going to describe c-nonfibreables r-cubes with the property " M '.
Proposition 3.13. Let $X=I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ be a c-nonfibreable r-cube with the property " M ". Then exactly one of the following conditions is satisfied:
i) There is $k \in N_{n}$ such that $X=I^{n} /\left(s_{k}, \ldots, s_{k}\right)$
ii) $X=I^{n} /\left(s_{12 \ldots n}, \ldots, s_{12 \ldots n}\right)$.

Proof. Suppose that $X \neq I^{n} /\left(s_{k}, \ldots, s_{k}\right), k \in N_{n}, X \neq I^{n} /\left(s_{12, n}, \ldots, s_{12}, n\right)$. As usually we denote $M_{j}=\left\{i \in N_{n} ; U_{i}=U_{j}\right\}, j \in N_{n}$ and let $t=\operatorname{card}\left\{M_{j} ; j \in N_{n}\right\}$. According to Lemma 3.11 card $U_{i}>1$ for $i \in N_{n}$. Making use of Lemma 3.12 for $i=p_{0}=1$ we obtain an integer $p_{1} \in U_{p_{0}}$ such that $p_{1} \notin M_{p_{0}}$ and $U_{p_{1}} \cap M_{p_{0}}=\emptyset$. Let r be such an integer, $1 \leqq r \leqq t-1$ that there are integers $p_{0}, p_{1}, \ldots, p_{r}$ for which the conditions

1) $p_{i} \in U_{p_{i}}-M_{p_{i}}, i=0,1, \ldots, r-1$
2) $U_{p_{j}} \cap\left(M_{p_{0}} \cup M_{p_{1}} \cup \ldots \cup M_{p_{1-1}}\right)=\emptyset, j=1,2, \ldots, r$
are satisfiesd. We shall prove that there is $p_{r+1} \in U_{p_{r}}-M_{p_{r}}$ such that $U_{p_{r+1}} \cap\left(M_{p_{0}} \cup M_{p_{1}} \cup \ldots \cup M_{p_{r}}\right)=\emptyset$. There are two possibilities:
i) For every $x \in U_{p_{r}}$ there is $x \in M_{p_{0}} \cup M_{p_{1}} \cup \ldots \cup M_{p_{r}}$. Then with regard to 2) the r-cube is c-fibreable with $Q=M_{p_{r}}$.
ii) There is $p_{r+1} \in U_{p_{r}}$ such that $p_{r+1} \notin M_{p_{0}} \cup M_{p_{1}} \cup \ldots \cup M_{p_{r}}$. We prove that the set $S=U_{p_{r+1}} \cap\left(M_{p_{0}} \cap M_{p_{1}} \cup \ldots \cup M_{p_{r}}\right)$ is empty. Let $S \neq \emptyset$ and let $q \in\{0,1, \ldots, r\}$ be the greatest index such that there is $s \in S$ with the property $s \in M_{p_{q}}$. By Lemma 3.12 we have $q<r$. Let now $q_{1}, q \leqq q_{1} \leqq r$ be the least index such that $p_{r+1} \in U_{p_{q, 1}, 1}$, let q_{2}, $q \leqq q_{2}<q_{1}$ be the least index such that $p_{q_{1}} \in U_{p_{q, 2},}, \ldots$, let $q_{m}, q=q_{m}<q_{m-1}$ be the least index such that $p_{q_{m-1}} \in U_{p_{q, m}}, 1 \leqq m \leqq r+1$, where $p_{q, j}$ is used instead of $p_{q,}$. Then

$$
\left\{p_{r+1}, p_{q_{1}}, p_{q_{2}}, \ldots, p_{q_{m}}\right\} \cap \tau\left(u^{p_{r+1}} \circ u^{\left.p_{q .1} \circ \ldots \circ u^{p_{q, m}}\right)=\emptyset}\right.
$$

and the r-cube X has not the property " M ", a contradiction. Hence there are integers $p_{0}, p_{1}, \ldots, p_{t-1}$ such that the conditions (1), 2) are satisfied for $i=0,1, \ldots$, $t-2, j=1,2, \ldots, t-1$. Then for $j=t-1$ we have

$$
U_{p_{t-1}} \cap\left(M_{p_{0}} \cup M_{p_{1}} \cup \ldots \cup M_{p_{t-2}}\right)=\emptyset
$$

and $U_{p_{t-1}}=M_{p_{t-1}}$. We see that the r-cube X is c-fibreable with $Q=M_{p_{t}-1}$, a contradiction.

Let $X=I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ be a c-fibreable r-cube with the property " M ". Without loss of generality we can take $Q=N_{r}$ for some $r, 1 \leqq r<n$. To the projection $p: I^{n} \rightarrow I^{r},\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{r}\right)$ there is the induced map $\tilde{p}: X \rightarrow I^{r} /\left(U_{1} \cap N_{r}\right.$, $\left.\ldots, U_{r} \cap N_{r}\right)=B_{U},[x] \mapsto[p(x)]$, such that the Diagram 1 commutes. The r-cube

Diagram 1.
$B_{U}=I^{r} /\left(U_{1} \cap N_{r}, \ldots, U_{r} \cap N_{r}\right)$ will be denoted in what follows briefly by $I^{r} /\left(\tilde{U}_{1}, \ldots\right.$, $\left.\tilde{U}_{r}\right)$ or by $I^{r} /\left(\tilde{u}^{1}, \ldots, \tilde{u}^{r}\right)$.

Lemma 3.14. For every $t \in I^{r}$ we have $\pi_{n} \circ p^{-1}(t)=\tilde{p}^{-1} \circ \pi_{r}(t)$.
Proof. Let $[x] \in \pi_{n} \circ p^{-1}(t)$. Then $\tilde{p}[x]=\tilde{p} \circ \pi_{n}(x)==\pi_{r} \circ p(x)=\pi_{r}(t)=[t]$, hence $[x] \in \tilde{p}^{-1} \circ \pi_{r}(t)$. Let $[x] \in \tilde{p}^{-1} \circ \pi_{r}(t)$. We find such $z \in p^{-1}(t)$ that $[x]=[z]$ Since $\tilde{p}[x]=[p(x)]=[t]$, there are $i_{1}, \ldots, i_{s} \in N_{r}$ such that $p(x), t \in \bigcap_{j=1}^{s} J_{i j}^{r}$ and $p(x)=\tilde{u}^{i_{1}} \circ \ldots \circ \tilde{u}^{i_{s}}(t)\left(t=\left(t_{1}, \ldots, t_{r}\right), x=\left(x_{1}, \ldots, x_{n}\right)\right)$. Let us define $z \in I^{n}, z=\left(t_{1}, \ldots\right.$, t_{n}) by $x=u^{i_{1}} \circ u^{i_{2}} \ldots \circ u^{i_{s}}(z)$. Since $p(z)=t$ and $x, z \in \bigcap_{j=1}^{n} J_{i j}^{n}$, we have $[x]=[z]$ and $z \in p^{-1}(t)$. Hence $[x] \in \pi_{n} \circ p^{-1}(t)$.

Now using the property " M " of the r-cube X we shall show that $\tilde{p}^{-1}[t] \approx I^{n-r} /$ $/\left(U_{r+1}^{[r]}, \ldots, U_{n}^{[r]}\right)=I^{n-r} / \Omega$ for each point $[t] \in B_{U}$. With regard to Lemma 3.14 is is sufficient to prove that $\pi_{n}\left(p^{-1}(t)\right) \approx I^{n-r} / \Omega$ for every $t \in I^{r}$. This fact is the direct cololiary of the following

Lemma 3.15. Let $x, y \in p^{-1}(t), t \in I^{r}$. Then $[x]=[y]$ if and only if $\left(x_{r+1}, \ldots\right.$, $\left.x_{n}\right) \Omega\left(y_{r+1}, \ldots, y_{n}\right)$.

Proof. Let $[x]=[y]$. Then there are $i_{1}, \ldots, i_{k} \in N_{n}$ such that $x, y \in \bigcap_{j=1}^{k} J_{i_{j}}^{n}$ and $y=u^{i_{1}} \ldots \ldots u^{i_{k}}(x)$. We can suppose that $u^{i_{p}} \neq u^{i_{q}}$ for $p \neq q$ (if $u^{i_{p}}=u^{i_{q}}$, the term $u^{i_{p}} u^{i_{q}}=i d$ can be omitted). Let $s \in N_{n}$ be such an integer that $i_{j} \leqq r$ for $j \leqq s$ and $i_{j}>r$ for $j>s$. Since $\left(x_{1}, \ldots, x_{r}\right)=\left(y_{1}, \ldots, y_{r}\right)$, we have

$$
\begin{equation*}
\tau\left(u^{i_{1}} \circ u^{i_{2}} \circ \ldots \circ u^{i_{s}}\right) \cap N_{r}=\emptyset . \tag{6}
\end{equation*}
$$

Further, because X is c-fibreable with $Q=N_{r}$, (6) implies that $s=0$ or there is
$j \in\left\{i_{1}, \ldots, i_{s}\right\}$ such that card $U_{j}>1$. Let $S=\left\{j \in\left\{i_{1}, \ldots, i_{\mathrm{s}}\right\}\right.$; card $\left.U_{j}>1\right\}$. With regard to (6) we have

$$
\begin{equation*}
S \cap \tau\left(\prod_{j \in S} u^{i}\right)=\emptyset . \tag{7}
\end{equation*}
$$

Since the r-cube X has the property " M " and the set S satisfies conditions (1), (2), we have with regard to (7) $S=\emptyset$ and $s=0$. Hence $\left(x_{r+1}, \ldots, x_{n}\right) \Omega\left(y_{r+1}, \ldots, y_{n}\right)$.

The converse implication is trivial.
Corollary. $\tilde{p}^{-1}[t] \approx I^{n-r} /\left(U_{r+1}^{|r|}, \ldots, U_{n}^{|r|}\right)=F_{U}$ for every $t \in I^{r}$.
Lemma 3.16. The r-cubes $B_{U}=I^{r} /\left(\tilde{U}_{1}, \ldots, \tilde{U}_{r}\right), F_{U}=I^{n-r} /\left(U_{r+1}^{[r]}, \ldots, U_{n}^{[r]}\right)$ have the property " M ".

Proof. We prove the assertion for B_{U}, the proof for F_{U} is similar. Let P, $\emptyset \sqsubseteq P \subset N_{r}$ be such a set that the conditions (1), (2) are satisfied. Since the r-cube X has the property " M ", $P \cap \tau\left(\prod_{j \in P} u^{j}\right) \neq \emptyset$. But then $P \cap \tau\left(\prod_{j \in P} \tilde{u}^{j}\right) \neq \emptyset$, because $\tilde{U}_{1}=$ $U_{i} \cap N_{r}$ for $j \in N_{r}$.

The r-cube B_{U} can be embedded into X, an embedding i_{U} is given by $i_{U}\left[\left(t_{1}, \ldots, t_{r}\right)\right]=\left[\left(t_{1}, \ldots, t_{r}, 0, \ldots, 0\right)\right]$. Suppose now that the r-cube X is homeomorphic to an r-cube $Y=I^{n} /\left(V_{1}, \ldots, V_{n}\right)$ by Proposition 3.7 for some $k \leqq r$. Then the r-cube Y is c-fibreable with the same Q. Let us define a map $\bar{h}_{k}: I^{r} /\left(\tilde{U}_{1}\right.$, $\left.\ldots, \tilde{U}_{r}\right) \rightarrow I^{r} /\left(\tilde{V}_{1}, \ldots, \tilde{V}_{r}\right)$ by $\bar{h}_{k}=\tilde{p}_{v} \circ \tilde{h}_{k} \circ i_{U}$, where $\tilde{p}_{v}: I^{n} /\left(V_{1}, \ldots, V_{n}\right) \rightarrow I^{r} /\left(\tilde{V}_{1}\right.$, $\left.\ldots, \tilde{V}_{r}\right)$ is the induced map by $p: I^{n} \rightarrow I^{r}$. The map \bar{h}_{k} is a homeomorphism and Diagram 2 commutes $\left(i: I^{r} \rightarrow I^{n},\left(x_{1}, \ldots, x_{r}\right) \mapsto\left(x_{1}, \ldots, x_{r}, 0, \ldots, 0\right)\right.$). Further, the

Diagram 2.
map \tilde{h}_{k} preserves fibres in such a way that the fibre over a point $[t] \in I^{r} /\left(\tilde{U}_{1}, \ldots, \tilde{U}_{r}\right)$ maps homeomorphically on the fibre over the point $\bar{h}_{k}[t] \in I^{r} /\left(\tilde{V}_{1}, \ldots, \tilde{V}_{r}\right)$

Lemma 3.17. The fibration (X, \tilde{p}_{U}, B_{U}) is locally trivial with the fibre $F_{U}=I^{n-r}$ $I\left(U_{r+1}^{[r]}, \ldots, U_{n}^{[r]}\right)$.

Proof. We can suppose that there is an integer $s, 0 \leqq s \leqq r$ such that card $U_{i}=1$ for $i \leqq s$ and card $U_{i}>1$ for $s<i \leqq r$. In the case when $s=r$, the fibration (X, \tilde{p}_{U}, B_{U}) is trivial (Proposition 1.5). Now we give a local trivialization of the fibration $\left(X, \tilde{p}_{U} ; B_{U}\right)$. Let $[a] \in B_{U}$.

1) If $a \notin \partial I^{r}$, then the set $A=\left\{[x] \in B_{U} ; x \notin \partial I^{r}\right\}$ is a neighbourhood of $[a]$. We have $\tilde{p}_{U}^{-1}(A) \approx A \times F_{U}$ via $\left.\left[\left(x_{1}, \ldots, x_{n}\right)\right] \mapsto\left(\left[x_{1}, \ldots, x_{r}\right)\right],\left[\left(x_{r+1}, \ldots, x_{n}\right)\right]\right)$.
2) If $a \in \partial I^{r}$, then we shall discuss two cases:
I) $a_{i} \neq \pm 1$ for $i>s$. The set $A=\left\{[x] \in B_{U} ; x_{j} \in\langle-1,1\rangle\right.$ for $j \in N_{s}, x_{j} \in(-1,1)$ for $\left.j \in N_{r}-N_{s}\right\}$ is a neighbourhood of $[a]$ and the map $f: \tilde{p}_{U}^{-1}(A) \rightarrow A \times F_{U}$, $\left.[x] \mapsto\left(\left[x_{1}, \ldots, x_{r}\right)\right],\left[\left(x_{r+1}, \ldots, x_{n}\right)\right]\right)$ is a homeomorphism.
II) $a_{i}= \pm 1$ for some $i>s$. Let $S=\left\{i \in N_{r}-N_{s} ; a_{i}= \pm 1\right\}=\left\{i_{1}, \ldots, i_{t}\right\}$. Denote $I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ by $I^{n} /\left(u_{(0)}^{1}, \ldots, u_{(0)}^{n}\right)$. Then applying Proposition 3.7 for $k=i_{1}, \ldots, i_{1}$ we get the hemeomorphisms $\tilde{h}_{i j}: I^{n} /\left(u_{(j-1)}^{1}, \ldots, u_{(j-1)}^{n}\right) \rightarrow I^{n} /\left(u_{(j)}^{1}, \ldots, u_{(j)}^{n}\right), j=1$, \ldots, t, where $u_{(j)}^{m}=u_{(j-1)}^{m} \circ u_{(j-1) \circ}^{i_{i}} S_{i_{j}}$ for such m that $i_{j} \in U_{m}^{(i-1)}, U_{i_{j}}^{(i-1)} \neq U_{m}^{(i-1)}$ and $u_{(j)}^{m}=u_{(j-1)}^{m}$ otherwise. Let $\tilde{h}=\tilde{h}_{i_{1}} \circ \tilde{h}_{i_{1}-1} \circ \ldots \circ \tilde{h}_{i_{1}}, \quad \tilde{h}\left(I^{n} /\left(U_{1}, \ldots, U_{n}\right)\right)=I^{n}$ $/\left(V_{1}, \ldots, V_{n}\right), \bar{h}[a]=[c]$, see Diagram 2 , where \bar{h} is substituted for $\overline{h_{k}}\left(\bar{h}: B_{U} \rightarrow B_{V}\right.$ is the map induced by $\tilde{h})$. Then $c_{k}=0$ for $k \in S$, the set $C=\left\{[x] \in I^{r} /\left(\tilde{V}_{1}, \ldots, \tilde{V}_{r}\right)\right.$; $x_{j} \in\langle-1,1\rangle$ for $j \in N_{s}, x_{j} \in(-1,1)$ for $\left.j \in N_{r}-N_{s}\right\}$, is a neighbourhood of the point $[c] \in B_{V}$ a the map $f_{C}: \tilde{p}_{v}^{-1}(C) \rightarrow C \times I^{n-r} /\left(V_{r+1}^{[r]}, \ldots, V_{n}^{[r]}\right),\left[\left(x_{1}, \ldots, x_{n}\right)\right] \mapsto\left(\left[\left(x_{1}, \ldots\right.\right.\right.$, $\left.\left.\left.x_{r}\right)\right],\left[\left(x_{r+1}, \ldots, x_{n}\right)\right]\right)$ is a homeomorphism. Further, $I^{n-r}\left(\left(U_{r+1}^{[r]}, \ldots, U_{n}^{[r]}\right)=I^{n-r}\right.$ $/\left(V_{r+1}^{[r]}, \ldots, V_{n}^{(r)}\right)$ Let $A=\left\{[x] \in I^{r} /\left(\tilde{U}_{1}, \ldots, \tilde{U}_{r}\right), x_{j} \in\langle-1,1\rangle\right.$ for $j \in N_{s}$, $x_{j} \in\langle-1,0) \cup(0,1\rangle$ for $j \in S, x_{j} \in(-1,1)$ for $\left.j \in N_{r}-N_{s}, j \notin S\right\}$. We see that A is a neighbourhood of the point $[a] \in B_{U}$ and the map $\left.\bar{h}\right|_{A}: A \rightarrow C$ is a homeomorphism. The map $f_{A}=f_{C} \circ\left(\tilde{h} \mid \tilde{p}_{U}^{-1}(A)\right): \tilde{p}_{U}^{-1}(A) \rightarrow C \times I^{n-r}\left(\left(V_{r+1}^{r r)}, \ldots, V_{n}^{r r]}\right)\right.$ is also a homeomorphism and the required local trivialization.

Theorem 3.18. An r-cube $X=I^{n} /\left(U_{1}, \ldots, U_{n}\right)$ is a manifold if and only if it has the property " M ".

Proof. Let X not have the property " M ". If $U_{i}=\emptyset$ for some $i \in N_{n}$, then X is not a manifold. If $U_{i} \neq \emptyset$ for all $i \in N_{n}$, then according to Lemma 3.9 and Lemma $3.10 X$ is neither a manifold nor a manifold with a boundary.

Let now X have the property " M "; there are two possibilities:

1) X is c-confibreable. Then by Proposition 3.13 and Remark $1.7 X \approx S^{n}$ or $X \approx R P^{n}$.
2) X is c-fibreable. To prove that X is a manifold, it is sufficient to use Lemmas 3.16, 3.17, Proposition 3.13, Remark 1.7 and the induction.

REFERENCES

[1] DOLD, A.: Lectures on Algebraic Topology. Springer Verlag, Berlin-Heidelberg-New York 1972.
[2] DUDÁŠIKOVÁ, H.: Priestor $I^{n} /\left(s_{12 \ldots k} \ldots, s_{12 \ldots k}\right), k>1$, je suspenzia nad $R P^{k}$; In: Záverečná správa fakultnej výskumnej úlohy UK 364, Bratislava 1976.
[3] KULICH, I., TVAROŻEK, J.: Priestor $I^{n} /\left(s_{i}, \ldots, s_{i n}\right)$ je súčinom sfér; In: Záverečná správa FVÚ UK 364, Bratislava 1976.

S-КУБЫ

Jozef Tvarožek

Резюме

В статье исследуются некоторые фактор-пространства n-мерного кубл I^{n}, которые возникают отождествлением определенных точек на его границе. Возникающие пространствı назвыны s-кубами.

В нервой части статьи установлены основные свойства s-кубов. Во второй части изучс ются проблемы разложения s кубов. В третьей части найдено необходимое и достаточное условие для того, чтобы s-куб был многообразием.

