Vladimir Berezovskij; Josef Mikeš On special almost geodesic mappings of type π_1 of spaces with affine connection

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 43 (2004), No. 1, 21--26

Persistent URL: http://dml.cz/dmlcz/132950

Terms of use:

© Palacký University Olomouc, Faculty of Science, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

On Special Almost Geodesic Mappings of Type π_1 of Spaces with Affine Connection *

VLADIMIR BEREZOVSKY¹, JOSEF MIKEŠ²

¹Department of Mathematics, Agricultural Academy of Uman' Institutskaya 2, Uman', Ukraine

> ²Department of Algebra and Geometry Faculty of Science, Palacký University Tomkova 40, 779 00 Olomouc, Czech Republic e-mail: Mikes@inf.upol.cz

> > (Received February 23, 2004)

Abstract

N. S. Sinyukov [5] introduced the concept of an almost geodesic mapping of a space A_n with an affine connection without torsion onto \overline{A}_n and found three types: π_1 , π_2 and π_3 . The authors of [1] proved completness of that classification for n > 5.

By definition, special types of mappings π_1 are characterized by equations

$$P^h_{ij,k} + P^{\alpha}_{ij}P^h_{\alpha k} = a_{ij}\delta^h_k,$$

where $P_{ij}^h \equiv \overline{\Gamma}_{ij}^h - \Gamma_{ij}^h$ is the deformation tensor of affine connections of the spaces A_n and \overline{A}_n .

In this paper geometric objects which preserve these mappings are found and also closed classes of such spaces are described.

Key words: Almost geodesic mappings, affine connection space.

2000 Mathematics Subject Classification: 53B05, 53B99

^{*}Supported by grant No. 201/02/0616 of The Grant Agency of the Czech Republic.

1 Introduction

In this paper the theory of almost geodesic mappings of type π_1^* of spaces with affine connection without torsion is studied. These mappings are a special case of almost geodesic mappings of type π_1 introduced by N. S. Sinyukov [5].

General properties of mappings π_1^* are shown and invariant objects with respect to these mappings are found. Mappings π_1^* of spaces of constant curvature and affine spaces are studied.

First we recall basic formulas and properties of the theory of almost geodesic mappings of spaces A_n with affine connection which are described in [5], [6].

A curve ℓ defined in a space with affine connection A_n is called *almost* geodesic if there exists a two-dimensional parallel distribution along ℓ , to which the tangent vector of this curve belongs at every point.

A diffeomorphism $f: A_n \to \overline{A}_n$ is an *almost geodesic mapping* if, as a result of f, every geodesic of the space A_n passes into an almost geodesic curve of the space \overline{A}_n .

A mapping f from A_n onto \overline{A}_n is almost geodesic if and only if, in a common coordinate system $x \equiv (x^1, x^2, \dots, x^n)$ with respect to the mapping f, the connection deformation tensor $P_{ij}^h(x) \equiv \overline{\Gamma}_{ij}^h(x) - \Gamma_{ij}^h(x)$ satisfies the relations [5]

$$A^{h}_{\alpha\beta\gamma}\lambda^{\alpha}\lambda^{\beta}\lambda^{\gamma} \equiv a P^{h}_{\alpha\beta}\lambda^{\alpha}\lambda^{\beta} + b \lambda^{h},$$

where $A_{ijk}^h \equiv P_{ij,k}^h + P_{ij}^{\alpha}P_{\alpha k}^h$, Γ_{ij}^h ($\overline{\Gamma}_{ij}^h$) are components of the affine connection of spaces A_n (\overline{A}_n), λ^h is any vector, a and b are some functions of variables x^h and λ^h . Hereafter "," denotes the covariant derivative with respect to the connection of the space A_n .

Three types of almost geodesic mappings, π_1 , π_2 and π_3 , were found in [5]. We proved [1] that for n > 5 other types do not exist. Almost geodesic mappings of type π_1 are characterized by the following conditions

$$A^{h}_{(ijk)} = \delta^{h}_{(i} a_{jk)} + b_{(i} P^{h}_{jk)},$$

where a_{ij} is a symmetric tensor, b_i is a covector, δ_i^h is the Kronecker symbol, (ijk) is the symmetrization of indices.

Many papers are dedicated to study of mappings π_2 and π_3 (see [5], [6], [4]) in contrast to mappings π_1 . The reason is that basic equations of these mappings are difficult to study. Therefore in this paper we deal with a special case of mappings π_1 . This special case does not imply that geodesic mappings are either π_2 or π_3 mappings.

2 Almost geodesic mappings π_1^*

Let a diffeomorphism from A_n onto \overline{A}_n satisfy

$$P_{ij,k}^h + P_{ij}^\alpha P_{\alpha k}^h = a_{ij} \,\delta_k^h,\tag{1}$$

where a_{ij} is a symmetric tensor.

Diffeomorphisms of this kind are a special case of almost geodesic mappings of type π_1 . We denote them by π_1^* .

Let us derive the integrability condition arising from (1). We differentiate (1) covariantly by x^m and then alternate with respect to the indices k and m. Next in the integrability condition of (1) we contract with respect to the indices h and m. After editing we have

$$(n-1)a_{ij,k} = P^{\alpha}_{ij}R_{\alpha k} - P^{\beta}_{\alpha(i}R^{\alpha}_{j)\beta k} - (n-1)P^{\alpha}_{ij}a_{\alpha k}, \qquad (2)$$

where R_{ijk}^h is the Riemannian tensor in A_n , $R_{ij} \equiv R_{ij\alpha}^{\alpha}$ is the Ricci tensor, (ij) denotes the symmetrization of indices.

Evidently, equations (1) and (2) represent a system of differential equations of Cauchy type in the space A_n which is solvable with respect to unknown functions $P_{ij}^h(x)$ and $a_{ij}(x)$, which, naturally, satisfy the algebraic conditions

$$P_{ij}^{h}(x) = P_{ji}^{h}(x), \quad a_{ij}(x) = a_{ji}(x).$$
(3)

We have

Theorem 1 The space A_n with affine connection admits an almost geodesic mapping π_1^* onto \overline{A}_n if and only if there exists a solution P_{ij}^h and a_{ij} of system of Cauchy type (1) and (2) satisfying (3).

Integrability conditions of this system have the form

$$-P_{ij}^{\alpha}R_{\alpha km}^{h} + P_{\alpha(i}^{h}R_{j)km}^{\alpha} = \frac{1}{n-1} \left[(P_{ij}^{\alpha}R_{\alpha m} - P_{\alpha(i}^{\beta}R_{j)m\beta}^{\alpha})\delta_{k}^{h} - (P_{ij}^{\alpha}R_{\alpha k} - P_{\alpha(i}^{\beta}R_{j)k\beta}^{\alpha})\delta_{m}^{h} \right],$$
$$(n-1)a_{\alpha(i}R_{j)km}^{\alpha} = P_{ij}^{\alpha}R_{\alpha[k,m]}^{h} + P_{\alpha(i}^{\beta}R_{j)mk,\beta}^{\alpha} + R_{[mk]}a_{ij} + P_{\gamma[m}^{\beta}R_{[i|k]\beta}^{h}P_{\alpha j}^{\gamma} + P_{ij}^{\alpha}P_{\alpha \gamma}^{\beta}R_{[km]\beta}^{\gamma} - P_{ij}^{\alpha}P_{\gamma[k}^{\beta}R_{[\alpha|m]\beta}^{\gamma},$$

where [i j] denotes the alternation of indices.

3 Invariant object of mappings π_1^*

If P_{ij}^h is the deformation tensor ([5]) then Riemannian tensors R_{ijk}^h and \overline{R}_{ijk}^h of spaces A_n and \overline{A}_n satisfy the following condition

$$\overline{R}_{ijk}^{h} = R_{ijk}^{h} + P_{i[k,j]}^{h} + P_{i[k}^{\alpha} P_{j]\alpha}^{h}.$$
(4)

Using formulas (1) and (4) we obtain

$${}^{*}\overline{W}^{h}_{ijk} = {}^{*}W^{h}_{ijk}, \tag{5}$$

where

$${}^{*}W^{h}_{ijk} \equiv R^{h}_{ijk} - \frac{1}{n-1}R_{i[j}\delta^{h}_{k]}, \qquad {}^{*}W^{h}_{ijk} \equiv \overline{R}^{h}_{ijk} - \frac{1}{n-1}\overline{R}_{i[j}\delta^{h}_{k]}.$$
(6)

Clearly, $\overset{*}{W}_{ijk}^{h}$ and $\frac{\overset{*}{W}}{W}_{ijk}^{h}$ is a tensor of type $\binom{1}{3}$ in the space A_n and \overline{A}_n , respectively.

Condition (5) shows that this tensor is invariant with respect to almost geodesic mappings π_1^* .

We contract condition (5) in indices h and i to obtain the equality

$$W_{ij} = \overline{W}_{ij},\tag{7}$$

where

$$W_{ij} \equiv R_{[ij]}, \qquad \overline{W}_{ij} \equiv \overline{R}_{[ij]},$$
(8)

Subtract (7) from (5) to write

$$W^{h}_{ijk} = \overline{W}^{h}_{ijk},\tag{9}$$

where W_{ijk}^h and \overline{W}_{ijk}^h are Weyl projective curvature tensors of spaces A_n and \overline{A}_n , respectively. We get

Theorem 2 The Weyl projective curvature tensor W_{ijk}^h and tensors \tilde{W}_{ijk}^h and W_{ij} , which are defined by (6) and (8), are invariant with respect to almost geodesic mappings π_1^* .

4 Mappings π_1^* of affine and projective-euclidean spaces

From Theorem 2 it follows

Theorem 3 If a projective-euclidean space or equiaffine space admits an almost geodesic mapping π_1^* onto \overline{A}_n then \overline{A}_n is also a projective-euclidean space or an equiaffine space.

The proof of Theorem 3, evidently, follows from the condition $W_{ijk}^h = 0$ in the projective-euclidean space and from the condition $W_{ij} = 0$ in the equiaffine space.

It means that projective-euclidean spaces and equiaffine spaces make up closed classes with respect to mappings π_1^* .

Clearly, the Riemannian tensor is preserved by mappings π_1^* if and only if the tensor a_{ij} vanishes. In this case basic equations have the form

$$P^h_{ij,k} = -P^{\alpha}_{ij}P^h_{\alpha k}.$$
(10)

Equations (10) are completely integrable in the affine space. Evidently, these equations have a solution for any initial conditions $P_{ij}^h(x_o)$.

If the initial conditions are such that $P_{ij}^h(x_o) \neq \delta_{(i}^h \psi_{j)}(x_o)$ then every solution generates a mapping π_1^* which is not a geodesic mapping of the affine space A_n onto the affine space $\overline{A_n}$. Therefore we can write

Theorem 4 Mappings π_1^* of an affine space A_n onto itself exist. All lines map into planar curves (not necessary lines).

Moreover, integrability conditions (1) and (2) in affine space are always true. We obtain

Theorem 5 Riemannian spaces V_n with non constant curvature admit non geodesic mappings π_1^* which are necessarily mappings of type π_3 and preserve the quadratic complex of geodesics.

Proof Let a Riemannian space V_n with non constant curvature K admit a non geodesic mapping π_1^* . Integrability conditions (1) then have the form

$$K(P_{k(i}^{h}g_{j)l} - P_{l(i}^{h}g_{j)k}) + \delta_{l}^{h}B_{ijk} - \delta_{k}^{h}B_{ijl} = 0,$$
(11)

where $B_{ijk} \equiv a_{ij,k} + P_{ij}^{\alpha}(a_{\alpha k} + K g_{\alpha k}), g_{ij}$ is the metric tensor of the space V_n . From the last formula it follows

$$P_{ij}^h = P^h g_{ij} \tag{12}$$

where P^h is a vector. Then the mapping is *F*-planar [4]. Clearly, on the basis of results in [1], such mappings are almost geodesic mappings of type π_3 . It is proved in the paper [1] that mappings $\pi_1 \cap \pi_3$ preserve the quadratic complex of geodesics [3].

After substituting (12) in (1) we have

$$P^h_{,k} + P^h P_k = \alpha \delta^h_k,$$

where α is a function, P_k is a covector.

These conditions characterize concircular vector fields P^h , which always exist in spaces with constant curvature.

5 Examples of almost geodesic mappings π_1^*

We present an example of an almost geodesic mapping of type π_1^* of an affine space A_n onto an affine space \overline{A}_n .

Let x^1, x^2, \ldots, x^n and $\overline{x}^1, \overline{x}^2, \ldots, \overline{x}^n$ be affine coordinate in A_n and \overline{A}_n , respectively.

The mapping

$$\overline{x}^{h} = \frac{1}{2} C^{h}_{\alpha} (x^{\alpha} - C^{\alpha})^{2} + x^{h}_{o}, \qquad (13)$$

where C_i^h , C^h , x_o^h are some constants, $x^h \neq C^h$, and the determinant det $|C_i^h| \neq 0$, defines an almost geodesic mapping π_1^* of the space A_n onto \overline{A}_n .

We can prove directly that the deformation tensor P_{ij}^h in the coordinate system x^1, x^2, \ldots, x^n has the form

$$P_{ii}^i = \frac{1}{x^i - C^i}, \qquad i = \overline{1, n},$$

and the other components are equal to zero.

Evidently, the tensor P_{ij}^h corresponds to equations (10). This mapping is not of type π_2 or π_3 .

Lines in the space A_n which are defined by equations $x^h = a^h + b^h t$ where t is the parameter, map into parabolas (or lines) of the space \overline{A}_n , which are defined by equations

$$\overline{x}^h = D^h + E^h t + F^h t^2$$

where

$$D^{h} = \frac{1}{2}C^{h}_{\alpha}(a^{\alpha} - C^{\alpha})^{2}, \quad E^{h} = C^{h}_{\alpha}(a^{\alpha} - C^{\alpha})b^{\alpha}, \quad F^{h} = \frac{1}{2}C^{h}_{\alpha}(b^{\alpha})^{2}$$

in this mapping.

The image is a line if vectors E^h and F^h are collinear.

Finally we remark that formula (13) generates a system of almost geodesic mappings of type π_1 of planar spaces if the coefficients C_i^h , C^h and x_o^h are continuous.

References

- Berezovsky, V. E., Mikeš, J.: On the classification of almost geodesic mappings of affineconnected spaces. In: Proc. Conf., Dubrovnik (Yugoslavia) 1988, 41–48 (1989).
- [2] Berezovsky, V. E., Mikeš, J.: On almost geodesic mappings of the type π₁ of Riemannian spaces preserving a system n-orthogonal hypersurfaces. Suppl. Rend. Circ. Mat. Palermo, II. Ser. 59, 103–108 (1999).
- Chernyshenko, V. M.: Räume mit einem speziellen Komplex von geodätischen Linien. Tr. Semin. Vektor. Tenzor. Anal. 11 (1961), 253–268 (in Russian).
- Mikeš, J.: Holomorphically projective mappings and their generalizations, J. Math. Sci., New York 89, 3 (1998), 1334–1353.
- [5] Sinyukov, N. S.: On geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979 (in Russian).
- [6] Sinyukov, N. S.: Almost geodesic mappings of affine connected and Riemannian spaces. Itogi Nauki Tekh., Ser. Probl. Geom. 13 (1982), 3–26 (in Russian); J. Sov. Math. 25 (1984), 1235–1249.