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ON INDEPENDENT SETS 

A. D. F O R B E S — M. J. GRANNELL — T. S. G R I G G S 

(Communicated by Martin Skoviera ) 

ABSTRACT. In a general set-theoretic context, an independent set is defined as 
a set which avoids certain specified structures called blocks. A formula is given 
for the number of independent sets of cardinality k in terms of the numbers of 
configurations (i.e. non-empty collections) of blocks. 

This paper is concerned with a formula for counting sets which avoid certain 
structures. The formula was originally produced in the context of Steiner triple 
systems [1] but is capable of considerable generalization. The authors believe 
that the result may be of some wider interest. Accordingly, we here present a 
version of the result in a more general setting. The proof relies on an application 
of the inclusion-exclusion principle. 

Consider a finite set of points S with | 5 | = s. Define Sx = V(S) and, for 
i = 1,2, 3 , . . . , put Si+1 = SiUV(Si), where V(X) denotes the set of all subsets 

oo 

of the set X. Then put S = (J S{. We will say that a set X G S covers the 

point a G S if a G X0 G X1 G • • • G Xn = X for some sequence of sets 
XQ, Xx,..., Xn G S. If X G S, then the set {a G S : X covers a} will be called 
the foundation of X and denoted by X_. Let B = {B1,B2,..., Bm} be a fixed 
finite set of elements of S, each having a non-empty foundation; we will call the 
elements of B blocks. 

As an example of these definitions, we might take B to be a set of 4-cycles 
on the set S. Note that a 4-cycle (a, b, c, d) may be equated with the set 
{{a, b}, {b, c}, {c, d} , {d, a}} G S. The block B = (a, b, c, d) covers the points 
a,b,c,d G S and B_ = {a, b, c, d}. By a similar method, we may describe any 
undirected graph by listing its edges, and any directed graph by representing a 
directed edge (a, b) by {{a},{a,b}}. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 05A19; Secondary 03E05, 05A05, 
05B30. 
K e y w o r d s : independent set. 
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An independent set in S is a subset of S which does not contain the foun

dation of any block B G B. A configuration X is any non-empty set of blocks. 

Two configurations Xx and X2 are called isomorphic if one may be obtained 

from the other by means of a bijective mapping from the points of X1 to the 

points of X2. We denote by b(X) the number of blocks in X and by p(X) the 

number of points in X . 

Continuing our earlier example, if a, b,... ,g are distinct points of S, then 

the configuration of two 4-cycles Xx = {(a, b, c, a7), (a, e, /, g)} is isomorphic to 

X2 = {(a, b, c, d),(b, e, / , # ) } , but not to K3 = {(a, b, c, d), (a, e ,c,a)} . We also 

have b(XJ = b(X>) = b(X3) = 2, and p(X x ) = p(X 2 ) = 7, p(X3) = 6. 

Next consider any k-element set W C S with k > 1. Denote by n(X, TV) 
the number of isomorphic copies of the configuration X with foundation in the 
set W. If there are exactly / blocks with foundation in W, then 

1 = 0 => ^2(-l)b{x)n(X,W)=0, 
x 

i>i => ^(-D^)n(x, ^ ) = - [̂  - Q + Q + • • •+(-1)'-1 QI 
X 

= - 1 , 

where the sums extend over all isomorphism classes of configurations X with 
p(X) <k. 

It follows that the number of independent sets of cardinality k in S, denoted 
by Ik(S), is given by 

м*) = (?)+ £ £(-Dьw»(-ү,wo 

W V I Ш U Ł X |VV|=fc 

However, ^ ^ ( ^ , W) is evaluated by listing the k-element sets W C S and 
|W |=fc 

scoring + 1 for every copy of X with foundation in each such W. This is the same 
number as that found by taking each configuration X and extending its founda
tion in all possible ways to form a k-element subset of 5 , i.e. n(X, S)(l_(x\) • 
In consequence, we arrive at the following formula, which we state formally as 
a theorem. 
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THEOREM 1. The number of independent sets of cardinality k > 1 in the set 
S is given by 

k-p(X)J' 

where s = \S\ and the summation extends over all isomorphism classes of con
figurations X with p(X) < k. 

In the case of a Steiner triple system on a point set S, the blocks are those 
triples of points which form the system. In this case the formula is efficacious for 
low values of k (k < 8) because it is possible to determine or to estimate the 
values of n(X, S) for configurations covering at most k points. By this method 
we were able to determine the spectrum of maximum independent set sizes and 
of chromatic numbers for Steiner triple systems of order 21 . Both of these results 
are presented in [1]. We offer the more general version of the formula here in the 
hope that it will prove useful in other contexts. 

We conclude by remarking that if B and B1 are collections of blocks whose 
elements have identical foundations (i.e. if for each B G B there is a B' G B1 

such that B = L?', and vice-versa), then the independent sets corresponding to 
B are identical to those corresponding to B'. In other words, the number Ik(S) 
depends on the foundations of the blocks rather than on the blocks themselves. A 
consequence of this observation is that there is no need to consider the possibility 
of repeated blocks either in B or in the configurations X C. B. 
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