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OSCILLATORY PROPERTIES OF SOLUTIONS 
OF SECOND ORDER NONLINEAR DELAY 

DIFFERENTIAL EQUATIONS 

PAVEL SOLTES 

Oscillatory properties of solutions of second order differential equations with 
argument delay are investigated by numerous authors. As a rule the methods 
applicable to ordinary differential equations are generalized and used to find 
criteria of oscillatoriness and non-oscillatoriness of solutions of differential equa­
tions with argument delay as in [1], [2], [4] and [5], where properties of solutions of 
a differential equation 

y"(t)+p(t)y(Q(t)) = o (l) 

with p(t)l=0, Q(t)^t, £(t)-»°° for t—>oo are investigated. 
The first part of the present paper deals with generalizations of certain results of 

[3], where equation (1) is investigated for p ( t )<0 ; the second part deals with 
generalizations of certain results of [1]. 

L 

Consider the nonlinear differential equation 

y"(t)+P(t)f(y(g1(t)))h(y'(g2(t))) = 0, (2) 
where 

1. P(t)<0 and continuous for every t = t0; 
2. f(x) is continuous and nondecreasing in j te ( -°° , <»), */(*)>0 for x=/=0; 
3. h(y)>0 and continuous for every ye(—<*>, o°); 
4. for every tr=t0 Qt(t) is continuous, Qi(t)-+<n for t—><*>, i = l, 2, Qi(t)<t, 

Q2(t)^t. 

We restrict our consideration to those solutions y(t) of (2) which exist on some 
ray (to, °°) and satisfy 

sup{|yCs)|: t=^<oo}>0 
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for any te(t0, oo). Such a solution is said to be oscillatory if the set of zeros of y(t) 
is not bounded from the right. Otherwise the solution y(t) is said to be nonoscil-
latory. 

Then we have 

Theorem 1. Suppose that 

J tp(0dt=-oo. (3) 

Then for every nonoscillatory solution y(t) of (2) either 

|y(t)|-> + °° for t->oo _ ^ 
or 

limy(t) = limy'(t) = 0. 
»—»oo f—»oo 

Proof. Let y(t) be a nonoscillatory solution of (2). Then there exists U = to such 
that y(t)±0 for all t = h. Then 

y,,(t) = -p(t)f(y(Ql(t)))h(y'(Q2(t)))>o 

for every t = t2 = h where t2 > 0 is such that y(Qi(t)) >0lort = t2. Evidently y'(t) is 
increasing; we have to investigate the following cases: 

1° y'(t)<0 for every t = t2. 
2° There exists t3^t2 such that for t^t3 y'(t)>0. 
If case 2° obtains, then for t = t3 y'(t) = y'(h), which means that 

y(t) = y(t3) + y'(h)(t-t3) 

and therefore lim y(t) = +oo. 
t—»-oo 

Suppose that 1° obtains. Define 

y(*>) = Y\my(t\ y'(co) = lim y'(t). 
t—+oo t—*oo 

Evidently y(°°)^0, y'(«>)=^0. Suppose that y(<x>)>0. Then (2) yields 

ty'(t) - y(t) = t2y'(t2) - y(t2) - [' sp(s)f(y(Ql(s)))h(y'(Q2(s))) ds g 
Jt2 

= k0-f(yM)fsp(s)h(y'(Q2(s)))<is, 
jt2 

(4) 

where kQ=t2y'(t2)-y(t2). 
Since h(y) is continuous, there exists a e (y'(92(h)), 0) such that for t = t2 

h(a) = h(y'(Q2(t))) 

and therefore (4) implies 
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ty'(t)Шk0-h(a)f(y(c°))( sp(s)ds-
Jt2 

.+00 

for t-» oo, which contradicts the fact that y'(t) < 0 for all t = t2. Therefore y(oo) = 0. 
Let y'(°°)<0. Since y"(t)>0, we have y'(t)<y'(*>) so that for t = t2 

y(t)<y(t2) + y'(«>)(t-t2)9 • 

which again contradicts the fact that y(t)>0. 
Assuming that y(0<0 the proof is analogous. 
Remark 1. For f(x)=x, g(t) = t-T with r > 0 a constant, h(x) = \ we obtain 

— as a special case of Theorem 1 — Lemma 2.1 of [3], 
In the sequel we shall assume that in addition 

a) f(x) and h(y) are differentiable and for each JC, )>€(-<», oo) /'(*)__;0, 
h'(y)y = 0; 

p) for each i = t0 and i = 1, 2 g,(t) is differentiable and g'i(t) = 0. 
Then we have 

Theorem 2. Let p(t) be differentiable, p'(t) = 0 for t = t0 and let there exist 
a number k>0 such that 

If for every t = t0 

H m ^ > A : . (5) 
y-o У 

PІt)--kh(0)(Ql(t)-tf> ( 6 ) 

then any bounded solution y(t) of (2) is oscillatory. 
Proof. Let y(t) be an arbitrary bounded and nonoscillatory solution of (2). 

From (6) we get 

ФШ- -_: —-
2 1 

* !»(0 ) te i (0-0 2 ~ kh(0)t' 

and therefore, from the proof of Theorem 1 we have 

y(t)y'(t)<0 

for t^t2^:t0, y(<x,) = y'(co) = 0. 
Suppose, e.g., that y(Qi(t))>0 for t^t2. Then by the proof of Theorem 1 we 

have: y'(i*)<0, y"(t)>0 for t^t2. 
Consider the function y'(s), s^t2. Since y"(s)>0 and 

(y'(s))"=-p'(s)f(y(Q1(s)))h(y'(02(s)))-
-p(s)f'(y(Q1(s)))h(y'(Q2(s)))y'(0l(s))Q'i(s) -

-p(s)f(y(Qi(s)))h'(y'(Q2(s)))y"(Q2(s))Q2(s)<0 
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for s = t2, y'(s) is concave. If we construct a tangent to the curve y'(s) at an 
arbitrary point (t, y'(t)) with t=^t2, we have 

yf(t)-p(t)f(y(Ql(t)))h(y'(g2(t)))(s-t)^y'(s) for s,t^t2 

and integrating with respect to s from Qi(t) to t>£i(t) we obtain 

(7) 

(t-Q,(t))y'(t) + p(t)f(y(Ql(t)))h(y'(g2(t)))
 i0l{t\ f) = 

^y(t)-y(01(t)). 

Since y'(Q2(t))<0 and h'(y)y^0, h'(y'(Q2(t)) = 0, which means that 

h(y'(Q2(t)) = h(0). 

Using (5) we see that there exists t3 = t2 such that for every t=^t3 

/(y(e.(0))->... 
y(Qi(t)) ~ 

and therefore from (7) we have 

(t-Qi(t))y'(t)+[\ kh(0)p(t)(Ql(t)-t)
2+ l ] y(Ql(t))*y(t). 

This leads to a contradiction with assumption (6). 
If we assume that y (t) < 0 is a bounded solution of (2), the proof is analogous. 
Remark 2. For f(x)=x, h(y) = l, Qi(t) = t — r, r > 0 a constant, we obtain 

Theorem 2.1 or 2.2 of [3] as a special case. 

Corollary. Suppose that g(t) is continuous on (t0, °°), g(t) < t, lim g(t) = GO. Jt /s 
J - * 00 

a consequence of Theorem 2 that if for every t = to=0 

p(t)--(olh7> p'-0' 
then every bounded solution y(t) of the equation 

y"(t)+P(t)ya(g(t)) = o, 

with a =—, where n, m are odd natural numbers and ae(0, 1), is oscillatory. 

Remark 3. The condition (6) for the oscillatoriness of a bounded solution y(t) 
of (2) is necessary. For example the equation 

/'(0-7-r<14'V/5(!') = o 
V2 

does not satisfy (6) and has a nonoscillatory bounded solution y(t) = t~2. 
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II. 

The next part of the present paper is concerned with the investigation of 
oscillatoriness of the differential equation 

(r(t)y'(t)Y + P(t)f(y(QV)))h(y'(Q2(t))) = 0, (8) 

where h(y) satisfies assumption 3 from part I. Moreover, suppose that 
a) p(0 = 0, r ( 0 > 0 and continuous for all t^/0; 
b) f(x) is continuous and /(JC)JC>0 for each JC^O; 

c) Qi(t) is continuous for every t.= to, £,(t)->oo for t->oo, Q((t)^t, i = 1, 2. 
Then we have 

Theorem 3. Let f(x) be nondecreasing on (—oo, oo) and h(y) nonincreasing on 
(-oo, 0) and nondecreasing on (0, oo). / / 

/ яk=í p(s)ds=+x> (9) 

then any solution y(t) of (8) is oscillatory. 
Proof. Suppose that (8) has a nonoscillatory solution, e.g. that y(0>0, 

y(pi(0)>0 for all ti=ti^t0. From equation (8) we get 

( r ( t ) / (0 ) ' = 0 (10) 

and therefore one of the following two cases must hold: 
1° There exists t2=^ such that y'(t2)<0. 
2° For each t^h y ' ( t )^0 . 

If 1° holds, then y ' ( t)<0 for each t=^t2 and relation (10) yields 

r(t)y'(t)^r(t2)y'(t2)<0. 

Using (9) we see that y(t)—» -oo for t—>oo, which contradicts the positivity of y(t) 
for t^t2. 

2° Let y(0>0, y'(0 = 0 and let U be such that y'(Q2(t))^0 for each t^h. 
Considering the hypotheses of the theorem, equation (8) yields 

(r(t)y'(t))' +/(y(Pi(tO))/i(0)p(0=o 

and therefore r(t)y'(0-»-oo for t-»oo, which is again a contradiction. The proof 
that equation (8) has no nonoscillatory solution y(t)<0 is analogous. 

Theorem 4. Suppose that for each t =; t0 r(t) is differentiable, r'(t)^0 andf(x) is 
nondecreasing on ( - oo, oo). J/ (9) holds, then any solution y(t) of (8) is oscillatory. 

Proof. Suppose that there exists a nonoscillatory solution y(t) and such that 
y(t)>0, y(Qi(t))>0 for ti=7i=^0. Analogously as for Theorem 3 we show that 
y'(t)=-0, y'(p2(0) = 0 for t.= ti. However, from equation (8) We see that y"(t)^0 
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so that y'(t) is bounded and there exists a number a e (0, y'(Q2(ti))) such that for 
t^h 

h(a)^h(y'(Q2(t))). 

Since for all t^h y(QV)) = y(QiOi)), equation (8) yields 

(r(t)y'(t)Y + h(a)f(y(Ql(ti)))p(t)^0, 

which leads to a contradiction. 
The proof is analogous if we assume the existence of y( t)<0 . 
Remark 4. Evidently if r(t) = l9 f(x) = x, h(y) = l9 Qi(t) = t-i(t) with 0 = 

r (0 = m in equation (8), Theorem 1 of [1] is a consequence of Theorems 3 and 4. 

Theorem 5. Suppose that for every t^t0 

p(0=Po>0 

where p0 is a constant, and that moreover r(t) is differentiable and Qi(t) twice 
differentiable; suppose further that for every t^t0 

r'(0=of ei(0=o, (r(OeJ(0)'=o. 
If (9) holds and 

lim F(y)= hm ff(s) ds = + °o, (11) 
|y|_>ao |y |— OO J Q 

tfien any solution y(t) of (8) is oscillatory. 
Proof. Suppose that y(0>0, y(<Oi(0)>0 for every t^t^to. Then y '(0 = 0, 

y"(0 = 0 for every t^h. Suppose that tx is such that besides this y'(£>2(0) = 0, 
y,(Li1(0) = 0 for t^h. Multiplying (8) by y'(Pi(0)p!(0> we obtain after some 
rearrangements 

r(t)y"(t)y'(QV))Q'V) + h(a)p(t)^tF(y(Ql(t)))^0, (12) 

or 

y'(QVi))r(t)QV)y"(t) + h(a)p0 f( F(y(Ql(t)))^0. 

Integrating this from u to (S( , w e obtain 

y'(QVi))r(t)Ql(t)y'(t)-

-y'(QVi))[ [r(s)Ql(s)]'y'(s) ds + h(a)p0F(y(Ql(t)))£ (13) 

^y'(QVx))r(U)Q[(U)y'(u) + h(a)p0F(yQl(t1))) = K» 

where a s (0, y'(Q2(ti))) is a number such that for every t^t1 

h(a)^h(y'(Q2(t))). 
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From (13) we see that 
K0 F(y(Єl(t)))ž 

h(a)p0 

for every t^U. From the last inequality and (11) we get that y(t) is bounded on 
<'i, °°) . 

Suppose now that /J 6 (y(ti), lim y(t)) is a number such that for every t^t! 

f(y(gi(t)))mP). 
Then (8) yields 

(r(t)y'(t))'+f(P)h(a)p(t)^0 

and therefore r(t)y'(t)-* — °° as t—> °°, which contradicts the positivity of y'(t) for 
t^U. 

For y(t)<0 the proof is analogous. 

Theorem 6. The hypotheses of this theorem are the same as those for Theorem 5 
except that instead of 

r'(t)Q[(t) + r(t)Q'l(t)^0 

we suppose that 0 < r(t) ^ r0, r0 — const, and g[(t) is nonincreasing for t ̂  0. Then 
any solution y(t) of (8) is oscillatory. 

Proof. The theorem is proved analogously as for Theorem 5. From (12) we get 

r*Q'i(ti)y'(Qi(ti))\y'(t) ~ / ( t i ) ] + Poh(a)F(y(Ql(t)))^ 
^p0h(a)F(y(Ql(tl))), 

from which the boundedness of y(t) can be proved. 

Theorem 7. Suppose that for every t ̂  t0 r(t) ^r0>0, where r0- const, and that 
f(x) is nondecreasing on (-<», <»). If (9) holds, then every solution of (8) is 
oscillatory. 

Proof. Suppose that (8) has a nonoscillatory solution y(t), e.g. that y(t)>0, 
y (t?i(0) > 0 for all t ̂  ti ̂  t0. Analogously as for Theorem 3 we show that y' (t) ^ 0, 
y'(Q2(t))^0 for t^t!. Integrating (10) from U to t^h we get 

r(t)y'(t)^r(u)y'(h) 

and therefore for each t^h 

Q ^ v , m ^r( t i )y ' ( l . ) ^r(u)y'(u) 
u=>-W= r(() - fQ 

so that y'(t) is bounded on (I*., °°). 
The rest of the proof is analogous to the proof of Theorem 4. 

213 



Theorem 8. Suppose that for every t ^ t0 r(t) § r0 > 0, where r0 is a constant and 
that for every 8>0 

inf f-&>0. 
6-EM<OO X 

If (9) holds, then every solution y(t) of (8) is oscillatory. 
Proof. Evidently if (8) has a nonoscillatory solution, e.g. that y( t)>0, then 

there exists U ^ t0 such that 

y(0>o, y(ei(0)>o, o^y'(t)^K<^. 

Then (8) yields 

(r(t)y'(t))' + h(a)p(t)f(y(Ql(t)))^0 

and therefore 

(jmm+Ha)p0)nmmS(t. ( M ) 
y(QM) y(ei(0) 

Since for f^f, (r(r)y'0'))' = 0, we have from (14) that 

yjoh) W'»'<'»'+ *<«>'« *J8U *T=°-
Integrating this from tx to t^tu we prove that r(t)y'(t)—>-°° as f—•», which 
contradicts the positivity of y'(t) for t^tt. 

The proof is analogous if we assume the existence of a nonoscillatory solution 
y(t) of (8) such that y( t)<0. 
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OCЦИЛЛЯЦИOHHЫE CBOЙCTBA PEШEHИЙ HEЛИHEЙHOГO 
ДИФФEPEHЦИAЛЬHOГO УPABHEHИЯ 2-OГO ПOP1ДKA C ЗAПAЗДЫBAHИEM 

Пaвeл Шoлтec 

Peзюмe 

B paбoтe пpивeдeны дocтaтoчныe ycлoвия для ocцилляции peшeний диффepeнциaльнoгo 
ypaвнeния c зaпaздывaниeм видa 

mym'+p(t)MQШћ(y'Ыt)))=0' 
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