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OSCILLATORY PROPERTIES OF SOLUTIONS
OF SECOND ORDER NONLINEAR DELAY
DIFFERENTIAL EQUATIONS

PAVEL SOLTES

Oscillatory properties of solutions of second order differential equations with
argument delay are investigated by numerous authors. As a rule the methods
applicable to ordinary differential equations are generalized and used to find
criteria of oscillatoriness and non-oscillatoriness of solutions of differential equa-
tions with argument delay as in [1], [2], [4] and [5], where properties of solutions of
a differential equation

y'(®)+p(®)y(e(®))=0 1

with p(£)=0, o(t)=t, o(t)— = for t— x are investigated.

The first part of the present paper deals with generalizations of certain results of
[3], where equation (1) is investigated for p(z) <0; the second part deals with
generalizations of certain results of [1].

L

Consider the nonlinear differential equation

y'(®)+ p(®)f(y(e:1()))h(y'(0:(2))) =0, ()

where

1. p(t) <0 and continuous for every t=t,;

2. f(x) is continuous and nondecreasing in x € (—, ®), xf(x)>0 for x+0;

3. h(y)>0 and continuous for every y € (— o, ©);

4. for every t=t, 0:i(t) is continuous, g;(¢)—>® for t—x, i=1,2, 0,(t)<t,
0:()=t. '

We restrict our consideration to those solutions y(¢) of (2) which exist.on some
ray (t, ®) and satisfy

sup {|ly(s)|: tSs<»}>0
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for any ¢ € (%, ®). Such a solution is said to be oscillatory if the set of zeros of y(t)
is not bounded from the right. Otherwise the solution y(¢) is said to be nonoscil-
latory.

Then we have

Theorem 1. Suppose that
f tp(t) dt = —oo. (3)

Then for every nonoscillatory solution y(t) of (2) either

ly(®)| >+~ for t—o -
or
lim y(t)=!iq_’1 y'(£)=0.

Proof. Let y(¢) be a nonoscillatory solution of (2). Then there exists ¢, =, such
that y(¢)#0 for all t=¢,. Then

y"(©)=—pOf (y(@:(A (Y’ (0x(1)))>0

for every t=t,=t, where t,>0 is such that y(0.(¢)) >0 for ¢t =¢,. Evidently y'(¢) is
increasing ; we have to investigate the following cases:

1° y'(£)<O0 for every t=1t,.

2° There exists ts=t, such that for t=¢ y'(¢)>0.

If case 2° obtains, then for t=¢, y'(tf)Zy'(%), which means that

YO Zy(ts)+y' (6)t—1)
and therefore !iI‘E y(t)=+oo,
Suppose that 1° obtains. Define
y(@)=lim y(e), y'(®)=limy'(r).
Evidently y(®)=0, y’(*)=0. Suppose that y(»)>0. Then (2) yields

' () =yt) =6y (t)—y(t) - f sp($)f (y(e:(N)A(y' (02(s))) ds =
. @
2 ko— f(y()) f sp(s)h(Y' (a(s))) ds,
where ko= 6y'(t;) — y(t).
Since A(y) is continuous, there exists a € {¥'(0:(%)), 0) such that for t=t,
h(a)=h(y’'(0:(1)))

and therefore (4) implies
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b/ (0Z ko= h(@f(y (@) [ 5p(s) ds >+

* for t— o, which contradicts the fact that y’(¢) <O for all = ¢,. Therefore y () =0.
Let y’'(®)<0. Since y"(t)>0, we have y'(#)<y’(«) so that for t=¢,

y(O)<y(t)+y'(e)(t—t), -

which again contradicts the fact that y(¢)>0.
Assuming that y(¢) <0 the proof is analogous.
Remark 1. For f(x)=x, o(t)=t— 1 with 7>0 a constant, A(x)=1 we obtain
— as a special case of Theorem 1 — Lemma 2.1 of [3].
In the sequel we shall assume that in addition
a) f(x) and h(y) are differentiable and for each x, ye(—x, ©) f'(x)=0,
h'(y)y=0;
B) for each ¢=1 and i=1, 2 g:(¢) is differentiable and p/(¢)=0.
Then we have :

Theorem 2. Let p(¢) be differentiable, p'(t)=0 for t=t, and let there exist
a number k>0 such that

lim f—(;f)> k. (5)
If for every t=t,
< 2
PO= " Goen- ©

then any bounded solution y(t) of (2) is oscillatory.
Proof. Let y(t) be an arbitrary bounded and nonoscillatory solution of (2).
From (6) we get '

()= -2 t  _ 2
P(O= =10 @ == O

and therefore, from the proof of Theorem 1 we have

y(0)y'()<0

1
t’

for t%tzgto, y(OO) = y'(m) =0.

Suppose, e.g., that y(0:(¢))>0 for t=¢,. Then by the proof of Theorem 1 we
have: y'(£) <0, y"(t)>0 for t=t,. ~

Consider the function y’(s), s =t,. Since y"(s)>0 and

(' (8))"=—p"($)f (y(e:1())A(y’(02(s))) —
= p(S)f' (y(0:1(sh (Y (02(5)))y’ (0:1(s))0i(5) -
—P()f(y(e:(s)))h' (¥’ (02(s)))y"(02(s))0x(s) <0
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for s=1t, y'(s) is concave. If we construct a tangent to the curve y’(s) at an
arbitrary point (¢, y'(t)) with t=¢,, we have

y' ()= pOf(e(ONA(Y (e2(N)(s—1)Zy'(s) for s,tZt,
and integrating with respect to s from g.(¢) to ¢> p,(¢) we obtain
(1= 20y O+ PO @ ODA(y (ox(ty) @=L 2

7
Zy(1) - y(0:(2)). @

Since y'(02(1))<0 and A'(y)y =0, k'(y'(0:(t))=0, which means that
h(y’'(02()) = h(0).
Using (5) we see that there exists #; =1, such that for every t=¢,

6@
Ye®) =

and therefore from (7) we have
(1= 00y O+ [3 K OP O - ¥ +1] Y@ Zy(®)

This leads to a contradiction with assumption (6).
If we assume that y(z) <0 is a bounded solution of (2), the proof is analogous.
Remark 2. For f(x)=x, h(y)=1, 0.(t)=t—1, T>0 a constant, we obtain

Theorem 2.1 or 2.2 of [3] as a special case.

Corollary. Suppose that o(t) is continuous on (t,, ©), o(t)<t, !im o(t)=oo. Itis
a consequence of Theorem 2 that if for every t=t,=0

2

p()=——~—, p'Z0,

(o()=1)*’
then every bounded solution y(t) of the equation
y" () +p()y®(e(0))=0,
with a =-’%, where n, m are odd natural numbers and a € (0, 1), is oscillatory.
Remark 3. The condition (6) for the oscillatoriness of a bounded solution y(¢)
of (2) is necessary. For example the equation
" __3_ —(14/5)_ 3/5 l —
y'(0) == "y (31)=0
V2

does not satisfy (6) and has a nonoscillatory bounded solution y(#)=¢"2.
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The next part of the present paper is concerned with the investigation of
oscillatoriness of the differential equation

(r@®y’ () + p(Of (y(@:(DA(y' (02())) =0, ®)

where h(y) satisfies assumption 3 from part I. Moreover, suppose that

a) p(t)=0, r(t)>0 and continuous for all t=¢,;

b) f(x) is continuous and f(x)x >0 for each x#0;

c) 0i(¢) is continuous for every t=to, 0i(t)—> > for t—> o, gi()=t, i=1, 2.
Then we have

Theorem 3. Let f(x) be nondecreasing oni (—, ») and h(y) nonincreasing on
(—, 0) and nondecreasing on (0, ). If

j,() jp(s)ds_+oo ©)

then any solution y(t) of (8) is oscillatory.
Proof. Suppose that (8) has a nonoscillatory solution, e.g. that y(z)>0,
y(0:(¢)) >0 for all t=¢,=1t,. From equation (8) we get

(r@y’ (1))’ =0 : (10)

and therefore one of the following two cases must hold:
1° There exists =1, such that y'(£;)<O.
2° For each t=¢, y'(1)=0.
If 1° holds, then y’(¢)<O0 for each t=t, and relation (10) yields

r()y'()=r(t)y’()<O0.

Using (9) we see that y(f)— — o for t— o, which contradicts the positivity of y(t)
for t=t,.

2° Let y(£)>0, y'(t)=0 and let ¢, be such that y'(0.(¢))=0 for each t=t,.
Considering the hypotheses of the theorem, equation (8) yields

(r(@®y’ ()" +f(y(e:(6)))R(0)p()=0

and therefore r(t)y’(t)— — for t— =, which is again a contradiction. The proof
that equation (8) has no nonoscillatory solution y(#)<O0 is analogous.

Theorem 4. Suppose that for each t Zt, r(t) is differentiable, r'(t)=0 and f(x) is
nondecreasing on (—o, »). If (9) holds, then any solution y(t) of (8) is oscillatory.
Proof. Suppose that there exists a nonoscillatory solution y(¢) and such that
y()>0, y(0:(t))>0 for t=t,=0. Analogously as for Theorem 3 we show that
y'(£)Z0, y'(02(t)) =0 for t =t,. However, from equation (8) we see that y"(£)<0
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so that y’(¢) is bounded and there exists a number a € (0, y'(02(#1))) such that for
t=t,

h(a)=h(y'(0:(1))).
Since for all t=¢, y(0.(2)) = y(0.(t)), equation (8) yields
(r(®)y’ () + h(a)f(y(0:(t)))p (1) =0,

which leads to a contradiction.

The proof is analogous if we assume the existence of y(z)<0.

Remark 4. Evidently if r(t)=1, f(x)=x, h(y)=1, 0.(t)=t—1t(¢t) with 0=
7(¢t) = m in equation (8), Theorem 1 of [1] is a consequence of Theorems 3 and 4.

Theorem 5. Suppose that for every t=t,
p(t)=po>0

where p, is a constant, and that moreover r(t) is differentiable and 0.(t) twice
differentiable ; suppose further that for every t =1,

r'(0z0, oi()20, (r()oi(?)) =0.
If (9) holds and
y
lim F(y)=lim ff(s) ds=+o, (11)
yl—e yl== Jo
then any solution y(t) of (8) is oscillatory.

Proof. Suppose that y(#)>0, y(0:(¢))>0 for every tZt,=¢, Then y'()=0,
y"(£)=0 for every t=t. Suppose that ¢, is such that besides this y'(02(2))=0,
y'(0:(1))Z0 for t=¢,. Multiplying (8) by y'(0.(t))oi(t), we obtain after some
rearrangements

n ’ ! d
r(0)y"()y'(e:(1)oi(t) + h(a)p(t) 4; FO(ei(0))=0, (12)
or

Y (@) (DDY'(1) + h(a)po 3: Fy(@i(1) SO0,

Integrating this from ¢, to 1=+, we obtain
Y @)reiy (-
-y (@) [F©)ei)'y () ds+h@poF(eNE (1)
=y @) (1)0(0)Y (1) + h{c)poF (y0:(1))) = Ko

where a € (0, y'(02(#))) is a number such that for every t =1,
h(a)=h(y'(0:(1))).
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From (13) we see that

FO@(O)S

for every t=t,. From the last inequality and (11) we get that y(¢) is bounded on

(ll’ 00)_

Suppose now that B e (y(t), !im y(2)) is a number such that for every t=¢,

fy(@®N=£(B).
(r(@y' ()" +f(B)r(a)p()=0

and therefore r(f)y’(t)— — as r— %, which contradicts the positivity of y'(¢) for
t=t,.

For y(#) <0 the proof is analogous.

Then (8) yields

Theorem 6. The hypotheses of this theorem are the same as those for Theorem 5
except that instead of

r'(Hei(t)+r(t)ei(H)=0

we suppose that 0<r(t)=r,, ro — const. and 91(t) is nonincreasing for t =0. Then
any solution y(t) of (8) is oscillatory.
Proof. The theorem is proved analogously as for Theorem 5. From (12) we get

ro01()y'(0:(t))y’ (8) — y'(t)] + poh(@)F(y(0:(t))) =
= poh(a)F(y(0:1(t))),

from which the boundedness of y(¢) can be proved.

Theorem 7. Suppose that for every t = t, r(t) = ro>0, where ro— const. and that
f(x) is nondecreasing on (—o, ). If (9) holds, then every solution of (8) is
oscillatory.

Proof. Suppose that (8) has a nonoscillatory solution y(t), e.g. that y(¢)>0,
y(0:(¢))>0for all t=t, =1, Analogously as for Theorem 3 we show that y'(£)=0, -
y'(02(¢)) =0 for t=¢,. Integrating (10) from ¢, to t=t, we get

r()y' (O=r(t)y'(t)

and therefore for each t=1¢,

Oéy'(t)é'("r)(yt ')(")g’(")r’; ()

so that y’(¢) is bounded on (¢,, «).
The rest of the proof is analogous to the proof of Theorem 4.
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Theorem 8. Suppose that for every t Zt, r(t) = ro>0, where ro is a constant and
that for every 6 >0
int {350
d=x|<wo X
If (9) holds, then every solution y(t) of (8) is oscillatory.
Proof. Evidently if (8) has a nonoscillatory solution, e.g. that y(¢)>0, then
there exists ¢, =1, such that

y()>0, y(e:«(1))>0, 0=y'()=SK<c.
Then (8) yields
(r@)y' () + h(a)p()f(y(e:(1))) =0

and therefore

Oy )Y 1) -
) THOPOTG 0y =0 (14)

Since for t=1¢, (r(t)y’(t))’éO, we have from (14) that

s Oy O +h@p) it Do

Integrating this from ¢, to t=¢,, we prove that r(¢t)y’(t)— — as t— o, which
contradicts the positivity of y’(¢) for t=¢,.

The proof is analogous if we assume the existence of a nonoscillatory solution
y(t) of (8) such that y(¢)<O.
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OCHWUISILIMOHHBIE CBONCTBA PEUIEHUM HEJIMHEWHOI'O
IN®PEPEHIIMAJIIBHOI'O YPABHEHHA 2-OI'O IOP1JKA C 3AIMMA3[IIBAHMEM

IMaBen Ulontec
Pe3ome

B pa60Te NPHUBEACHBI AOCTATOYHBLIE YCIOBHUA AJA OCLMILIALMA pelIeHn#H IIHWDCHHHEUIBHOFO
YPaBHCHHA C 3aMa3qbIBAaHUCM BHUIA

(DY) + p(OF (@ ()A(y (0:2)) = 0.
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