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Math. Slovaca 34,1984, No. 2,177—184 

ON ISOMETRIES OF LATTICES 

JAN JAKUBlK 

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday 

Metrics defined on lattices with values in an abelian partially ordered group are 
dealt with in this note. S m a r d a [7] investigated metrics defined on lattice ordered 
groups with values in an abelian lattice ordered group. Swamy [6] studied a metric 
d(x, y) on an abelian lattice ordered group G with values in G, where d(x, y) = 
|x — y | for each x, y eG. 

1. Preliminaries 

Let L be a lattice and let H be an abelian partially ordered group. Let v be 
a mapping of L into H such that 

v(x) — v(x Ay) = v(xv y) — v(y) 

is valid for each pair of elements x, y e L. Then v is said to be a H-valuation on L. 
If v(x)<v(y) whenever x<y, then v is called a positive H-valuation. 

Let d be a mapping of L x L into H which satisfies the following conditions for 
each x, y, zeL: 

(i) d(x, y) = d(y, x); 
(ii) d(x, y) ^ 0, and d(x, y) = 0 iff x = y ; 

(hi) d(x,y) + d(y,z)^d(x,z)\ 
(iv) d(xAz, yAz) + d(xvz, yvz)=\d(x, y). 

Then d is called an H-metric on L. 

1.1. Lemma. Let v: L^>H be a positive H-valuation. Then the lattice L is 
modular. 

The proof is the same as in [1], p. 232, Thm. 2. 
The relation between H-metrics and positive H-valuations is given by the 

following propositions 1.2 and 1.3. 

1.2. Proposition. Lef v be a positive H-valuation on L. Put 

d(x, y) = v(xvy)- v(x Ay) 

for each x, y eL. Then d is an H-metric on L. 
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The proof can be performed by using the same steps as in [1], p. 230, Thm. 1 (cf. 
also [1], p. 234, Exercise 4). 

1.3. Proposition. Ler d be an H-metric on L. Let JC() e L. For each x eLwe set 

v(x) = d(xo, x0vx) — d(jc()vJC, JC). 

Then v is a positive H-valuation on L. 
Proof. At first we verify that 

(a) JC = z = y =-> d(x, z)*+ d(z, y) = d(x, y) 

is valid. In fact, from (iv) and from x = z = y we obtain 

d(x,z) + d(z,y) = d(x,y), 

and hence in view of (iii), d(x, z) + d(z, y) = d(x, y) holds. 
Now we prove that for each pair x, yeL the relation 

(P) d(x,x/\y) = d(xvy,y) 

is valid. Namely, from (iv) we infer (by putting vx = xvy and w, = xAy that 

d(v\/\y, XAy) + d(v\vy, xvy) = d(vx, x) 
d(u\Ax, yAx) + d(uxvx, yvx) = d(ux, y), 

hence d(y, U\) = d(vx, x) and d(x, vx) = d(ux, y), implying that ((3) holds. 
From (a) it follows that for each teL with t = XoVx the relation 

(Y) v(x) = d(xo, t)-d(t,x) 

is valid. Moreover, (a) and (Y) imply that whenever jc<y, then 

v(y)-v(x) = d(x, y)>0 

holds. Therefore in view of ((3), 

v(xvy)- v(y) = d(xvy,y) = d(x, xAy) = v(x)- v(y). 

We have verified that v is a positive H-valuation on L. 

1.4. Lemma. Lerd be an H-metric on L. Ler JC, yeL, ux=xAy, v\=xvy. Then 
d(x, y) = d(x, U\) + d(u\, y) = d(x, vx) + d(v\, y) and d(x, y) = d(u{, V\). 

Proof. From (iv) we obtain (by putting x = z) 

d(x, y) = d(x, u\) + d(x, V\). 

Hence in view of (P) and (iii), 

d(x, y) = d(x, u\) + d(u\, y) = d(x, y). 
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The relation d(jc, y) = d(x, vx) + d(vx, y) can be verified analogously. From (a) 
and (|3) we infer d(ux, vx) = d(ux, x) + d(x, vx) = d(ux, x) + d(ux, y) = d(x, y). 

Let L' be a lattice and let d' be a H-metric on L \ Suppose that h: L—>L' is 
bijection such that 

d(x,y) = d'(h(x),h(y)) 

is valid for each JC, yeL. Then h is said to be an H-isometry. 
If the abelian partially ordered group H is fixed, then we use the term valuation 

instead of H-valuation, and in a similar sense we apply the notions of metric and 
isometry. 

The results of this section will be applied below without quotation. 

2. Basic properties of isometries 

Let L, L', d, d' and H be as in § 1 and let h be an isomery of L onto L'. For 
each JC e L we put h(x) = x'. (If z' eL', then z is the element of L with h(z) = z'.) 

2.1. Lemma. Let JC, y, aeL, x^a^y, jc'l^y'. Then x'^a'^y'. 
Proof. We have d(x, a) +d(a, y) = d(x, y), hence 

d'(x',a') + d'(a',y') = d'(x',y'). 

Put x'/\a' = u', y'va' = v'. Then 

d'(jc\ y')^d'(u', v') = d'(u', a') + d'(a', v')^ 
^d'(x', u') + d'(u', a') + d'(y', v') + d'(a', v') = 

= d'(x',a') + d'(a',y') = d'(x',y'), 

whence d'(x', u') = 0 and d'(y',v') = 0. Therefore u' = x' and v' = y'; thus 
x'^a'^y'. 

Analogously we can prove 

2.1'. Lemma. Ler JC, y, aeL, x^a^y, x'^y'. Then x'^a'^y'. 

2.2. Lemma. Ler JC, yeL, x^y, x' Ay' = u'. Then x^u^y. 
Proof. Put XAU = UX, yvv = vx. We have d'(jc', u') + d'(u', y') = d'(x', y'), 

hence d(jc, u) + d(u, y) = d(x, y). Thus 

d(jc, y)^d(ux, vx) = d(ux, u) + d(u, vx)^d(x, ux) + d(ux, u) + 
+ d(y, vx) + d(vx, u) = d(x, u) + d(u, y) = d(x, y), 

whence d(jc, M,) = 0 and d(y, vx) = 0, implying x = ux and y = vx. Therefore 
x^u^y. 

Similarly we can prove 
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2.2.'. Lemma. Let x, y eL, x = y, jc 'vy ' = v'. Then x = v = y. 

2.3. Lemma. Lef JC, y,u,v be as in 2.2 and 2.2'. Then UAV =x anduvv = y. 
Proof. Put u AV = JCI, uvv = yx. In view of 2.2 and 2.2' we have JC,, y, E [JC, y]. 

Hence 

d(x, y) = d(x, xx) + d(x\, y,) + d(yx, y) = 
= d(x, xx) + d(u, v) + d(y{, y) = d(x, X\) + d'(u', v') + d(yx, y) = 

= d(x, X\) + d(x, y) + d(yx, y). 

Thus d(x, JCi) = 0 and d(y, yi) = 0; hence JC = JC, and y = y,. 

2.4. Lemma. Let a, b eL, aAb = u, avb = v, a' = u', u' = b'. Then u' AV' = a' 
and u'vv' = b'. 

Proof. We have a' = b'. From 2.3 we obtain (if h is replaced by h l) that 
u'Av' = a' and u'vv' = b' is valid. 

2.5. Lemma. Let a, b eL, aAb = u, avb = v, u' = a', u' = b'. Then a'Ab' = u' 
and a'vb' = v'. 

Proof, a) Denote a' Ab' = u[. In view of 2.1 (if we replace h by h~x) the relation 
U\ e [u, a]n[u* b] must be valid, hence u = ux. 

b) Denote a[ = a'vv', b[ = b'vv'. According to 2.2' we have a\e[a, v] and 
b\e [b, v]. Put u0 = a\Ab{. In view of 2.1 (with h replaced by h l) the relations 
u' = u0 = a[, u0=b[ are valid; hence from a) we obtain u'0 = a[Ab[. Further we 
have v' = a[, v' = b[, thus v' = u'0. Because of u0 = a\ = v, from 2.1' (and with h 
replaced by h l) we infer that v' = a[ = u'0 must be valid. Thus u0 = a,. Similarly we 
obtain bx = u0. In view of u0e[a, v]n[b, v] we get u0 = v, hence a' = v' and 
b' = v'. Thus according to the dual of a), v' = a'vb' is valid. 

The assertions dual to 2.4 and 2.5 can be proved analogously. 

2.6. Lemma. Let JC, y, zeL, xi = JC vz , yi = y vz , x = y, x' = y'. Then x[ = y[. 
Proof. Put xiAy=p, p'vx[ = v'. In view of 2.2' we have p = i;^jci. Next, 

lemma 2.1 (with h replaced by h~l) yields p'^y'. Denote vx = yvv. According to 
2.5, v[ = y'vv'. 

From the relations v = V\, v' = v[, v =X\, v'=x[ we infer (using 2.1 and the dual 
of 2.1) that î iAJCi = v is valid. Thus (since UiVxi = yx) in view of 2.4 jc l^y! holds. 

3. Direct product decompositions corresponding to isometries 

Again, let L, L ' , d, d', H and h be as above. 
Let x, y eL, u = x Ay, v = xvy.lf u' = v' (or u' = u', respectively), then we put 

xR\y(xR2y). 
From 2.6 (and using duality) we obtain: 
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3.1. Lemma. Lef JC, y, z eL, i e {1, 2}, xRty. Then x vzRty vz andx A zR*y A Z. 
Both R\ and R2 are obviously reflexive and symmetric. 

3.2. Lemma. The relation R\ is transitive. 
Proof. Let JC, y, zeL, xR\y, yR\Z. Put xAy = u{, xvy = v\, yAz = u2, 

yvz = v2, U\Au2 = u3, V\W2 = v3. 
In view of 2.1, we have U\R\y and u2Rxy, hence U\Rx(u\ v u2) and u2Rx(u\ vu2). 

From this and from the dual of 2.5 we infer that u3Rxux and u3Rxu2 holds. We have 
U\R{x and u2R\Z, thus u3R\X and u3R\Z. Since u3=\x AZ, using 2.1 again we obtain 
that (JCAZ)' = JC' is valid. By a dual argument, x'=\(xvz)' holds. Hence xR\Z. 

Similarly we can verify that R2 is transitive. Hence according to 3.1, both R\ and 
R2 are congruence relations on L. 

3.3. Lemma. Lef JC, y eL, xR\y and xR2y. Then x = y. 
Proof. We have (xAy)'S(jc v y ) ' and, at the same time, (jcAy)'i^(jc vy ) ' . Thus 

jcAy=jcvy and hence jc = y. 

3.4. Lemma. R\vR2 is the greatest congruence relation on L. 
Proof. Let a, beL; we have to verify that aR\vR2b holds. Put x = aAb, 

y = avb, u' = x'Ay'. In view of 2.2, the relations xR2u, uRxy are valid, hence 
xR\vR2y holds. Thus aR\vR2b. 

3.5. Lemma. The congruence relations R\ and R2 are permutable. 
Proof. Let x,y eL, x=\y, u' = x'Ay', v' = x'vy'An the proof of 3.4 we have 

already verified that xR2u and uRxy is valid. In view of 2.2', the relations xRxv and 
vRxy hold. Now it suffices to apply Ex. 10, p. 163, [1]. 

For JC eL and ie {1, 2} we denote {zeL: zRtx} =x(Ri). Let qp,: L-+L/Rt be 
the mapping defined by (JPI(JC) = JC(JRI) for each JCGL. From 3.3, 3.4, 3.5 and [1], 
Thm. 5, Chap. VII we obtain: 

3.6. Theorem. The mapping cp': L-*L/R\XL/R2 defined by q)(x) = (q)\(x), 
<p2(jc)) for each xeL is an isomorphism of the lattice L onto the lattice L/R\ x 
L/R2. 

Now we introduce analogous notions and denotations for the lattice L ' . 
Let JC', y'eL', u' = x'Ay', v' = x'vy'. If u=\v (or u=\v), then we put x'R[y' 

(x'R2y'). Analogously as we did for Rt and R2 we can verify that R[ and R2 are 
congruence relations on the lattice L ' ; if cp[, cp'2 and cp' are defined similarly as cpx, 
cp2 and cp, then we have 

3.6'. Theorem. The mapping cp: L'^>L'/R[xL'/R2 defined by cp'(x') = 
(cpi(x'), cpi(x')) for each x' eL' is an isomorphism of L' onto L'/R\XL'/R2. 

3.7. Lemma. Let x, yeL. Then xR\y iff x'R[yf. 
Proof. Let jcKiy, w = x A y , u = j c v y . Hence u'=\v'. From 2.1 and from the 
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assertion that we obtain from 2.1 if we replace h by h'x it follows that the mapping 
h maps isomorphically the interval [u, v] of L onto the interval [ M \ V'] of L ' ; in 
particular, the relations u'=x'Ay' and v'=x'vy' are valid. Thus x'RIy'. The 
inverse implication can be verified similarly. 

Analogously we can prove (by applying 2 .1 ' ) : 

3.7'. Lemma. Lef x, yeL. Then xR2y iff x'R'2y'. 

For each lattice K, we denote by K~ the lattice dual to K. 

Let us consider the mappings \px: L'/R[-*L/Ri and \p2: L'/R2-+L/R2 defined 

by \px(x'(R[)) = x(Rx) and \p2(x'(R2)) = x(R2). From 3.7 and 3.7 ' it follows that \px 

and \p2 are correctly defined; moreover, from the definitions of Rt and R \ (i = V 2) 

we infer that \px is a dual isomorphism and \p2 is an isomorphism . Therefore from 

3 .6' we obtain 

3.8. Theorem. Lef \p: L'^>L/RxxL/R2 be the mapping defined by \p(x') = 

(x(Ri), x(R2)) for each x' eL'. Then (i) \p is an isomorphism of the lattice L onto 

the lattice (L/R^X^/RJ; (ii) cp = ho\p. 

Theorems 3.8 and 3.6 yield: 

3.9. Corollary. Lef h be an isometry of a lattice L onto a lattice L'. Then there 

exist lattices A, B and direct product representations fx: L — > A x B , f2: L'--> 
AxB, such that fx = hof2. 

Let R be the additive group of all reals with the natural linear order. 
R-isometries of lattices were investigated in [2]. The method of proving theorem 1 
in [2] essentially differs from the direct method applied above (in [2] a result of 
M. K o l i b i a r [5] on the betweenness relation in lattices was used). 

4. Isometrics of/-groups 

Let G and G' be abelian lattice ordered groups and let H be an abelian partially 
ordered group. The corresponding lattices (i .e. , the structures that we obtain from 
G and G ' if the group operations are not taken under consideration) will be 
denoted by L(G) and L(G'). Let h, d and d' be as in § 1 with the difference that L 
and L ' are replaced by L(G) and L(G'). Then Corollary 3.9 is valid (with L and 
L ' replaced by L(G) and L(G')). 

Let us introduce the following denotation. Let L , P , Q be lattices and let us have 
a direct product representation / : L^>PxQ. Let z 0 e L , f(z0) = (po, qo)- We 
denote by PL[z0] the set of all elements zeL such that f(z) = ( p , q) with q = q0. 

The set QL[z0] is defined analogously. Both PL[z0] and QL[zo] are sublattices of L . 
For each z e L w e put f[zo](z) = (px, <7i), where (under the above denotat ions) we 
have P I G P L [ Z 0 ] , aieQL[z0], f(Pi) = (p, qo) and f(qx) = (po, q)- Then f[z0]: L - * 
PL[Z0]XQL[ZO] is a direct product representation of the lattice L . 

If G is an /-group and L=L(G), then we write PG[zo] instead of PL(G)[zo]. 
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4.1. Proposition. Assume that we have a direct product representation f: 
L(G)-+ PxQ. Then PG[0] and QG[0] are l-subgroups of G and the mapping f[0]: 
G—>PG[0] x QG[0] is a direct product representation of the I-group G. 

This was proved in [4] (Thm. 3) (under different denotations). 
From 4.1 and 3,9 we infer: 

4.2. Theorem. Let h be an H-isometry of an l-group G onto an l-group G'. (i) 
There are lattices A, B and direct product representations f\: L(G)^>A xB, f2: 
L(G')^>A~xB such that fx = hof2. (ii) AG[0] and BG[0] are l-subgroups of G, 
and AG'[0], B G [ 0 ] are l-subgroups of G'; for the l-groups G and G' we have direct 
product representations 

/ i [0 ] :G->Ao[0]xB o [0 ] , 
/ 2[0]:G'-+A3'[0]xBo . [0] . 

If we put H=G, then the 'simplest' positive H-valuation v0 on G is the identity. 
The H-metric d0 corresponding to v0 (cf. Lemma 1.2) is defined by 

d0(x, y) = xvy-xAy = \x-y\ 

for each x, y eG. In the particular case when also G' = G we have the following 
result: 

4.3. Proposition (Cf. [3]). Let h: G^>G be a bijection such that h(0) = 0 and 
d0(h(x), h(y)) = d0(x, y) for each pair of elements x, yeG. Then there exists 
a direct product representation f: G-^>AxB such that, whenever xeG and 
f(x) = (a,h), thenf(h(x)) = (-a,b). 

Let us now return to the general case dealt with in Theorem 4.2 above. The 
lattices L(AG[0]) and L(AG[0]) are isomorphic, and so are the lattices L(BG[0]) 
and L(BG [0]). Motivated by Proposition 4.3 we can now consider the question 
whether AG[0] and AG[0] must be also isomorphic as groups, and similarly for 
BG[0] and BG[0]. The following example shows that the answer is negative. 

Let R0 and N0 be the additive group of all rational numbers or of all integers, 
respectively; both R0 and N0 are considered with the natural linear order. Let G be 
the lexicographic product R0oN0 (the elements of G are pairs (x, y) with x e R0, 
y 6No, the group operation is performed coordinatewise, and (xi, yi) = (x2, y2) if 
either yx < y2, or yi = y2 and Xi ^x 2 ) . Put G' = H = R0. There exists an isomorphism 
h of L(G) onto L(G'). For zi, z2e G and xu x2e G' we put 

d(zu z2) = \h(zi)-h(z2)\, d'(xu x2)= | x i - x 2 | . 

Then d is a H-metric on G, d' is a H-metric on G' and h is an H-isometry of G 
onto G'. Both G and G' are directly indecomposable and they fail to be 
isomorphic. 
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ОБ ИЗОМЕТРИЯХ РЕШЕТОК 

]ап 1 а к и Ы к 

Р е з ю м е 

В статье исследуются метрики на решетках со значениями в частично упорядоченной абелевой 
группе. Найдены соотношения между изометриями и прямыми разложениями. 
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