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ON ISOMETRIES OF LATTICES

JAN JAKUBIK

Dedicated to Academician Stefan Schwarz on the occasion of his 70th birthday

Metrics defined on lattices with values in an abelian partially ordered group are
dealt with in this note. Smarda [7] investigated metrics defined on lattice ordered
groups with values in an abelian lattice ordered group. Swamy [6] studied a metric
d(x, y) on an abelian lattice ordered group G with values in G, where d(x, y)=
|x —y| for each x, ye G.

1. Preliminaries

Let L be a lattice and let H be an abelian partially ordered group. Let v be
a mapping of L into H such that

v(x)—v(xAy)=v(xvy)=v(y)

is valid for each pair of elements x, y € L. Then v is said to be a H-valuation on L.
If v(x)<w{y) whenever x <y, then v is called a positive H-valuation.

Let d be a mapping of L XL into H which satisfies the following conditions for
each x, y, zeL:

(i) d(x, y)=d(y, x);

(ii) d(x, y)=0, and d(x, y)=0iff x=y;

(iil) d(x, y)+d(y, z)=d(x, 2);

(v) d(xAaz, yAz2)+d(xvz,yvz)=d(x, y).
Then d is called an H-metric on L.

1.1. Lemma. Let v: L— H be a positive H-valuation. Then the lattice L is
modular.

The proof is the same as in [1], p. 232, Thm. 2.

The relation between H-metrics and positive H-valuations is given by the
following propositions 1.2 and 1.3.

1.2. Proposition. Let v be a positive H-valuation on L. Put
d(x,y)=v(xvy)—v(xAy)
for each x, ye L. Then d is an H-metric on L.
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The proof can be performed by using the same steps as in [1], p. 230, Thm. 1 (cf.
also [1], p. 234, Exercise 4).

1.3. Proposition. Let d be an H-metricon L. Let x,€ L. For each x € L we set
U(x) = d(X(), X()Vx) - d(x()\/x, x).

Then v is a positive H-valuation on L.
Proof. At first we verify that

(@) x=z=y > d(x, 2)+d(z, y)=d(x, y)
is valid. In fact, from (iv) and from x =z=y we obtain
d(x,2)+d(z, y)=d(x, y),

and hence in view of (iii), d(x, z) + d(z, y)=d(x, y) holds.
Now we prove that for each pair x, y € L the relation

B d(x,xny)=d(xvy,y)
is valid. Namely, from (iv) we infer (by putting v,=xvy and u,=xAy that

d(vinay, xAY)+d(vivy, xvy)=d(vi, x)
d(uiax, yAx)+d(uvx, yvx)=d(ui, y),

hence d(y, u,)=d(v,, x) and d(x, v;)=d(u,, y), implying that ($) holds.
From (o) it follows that for each te L with t=x,vx the relation

() v(x)=d(xo, t) = d(t, x)
is valid. Moreover, (a) and (y) imply that whenever x <y, then

v(y)—v(x)=d(x, y)>0

holds. Therefore in view of (),

v(xvy)—v(y)=d(xvy, y)=d(x, xAy)=v(x) = v(y).
We have verified that v is a positive H-valuation on L.
1.4. Lemma. Let d be an H-metricon L. Letx, ye L, u;=xAy, v,=xvy. Then

d(x, y)=d(x, u)+d(u, y)=d(x, vi)) + d(vi, y) and d(x, y)=d(u,, v1).
Proof. From (iv) we obtain (by putting x = z)

d(x, y)=d(x, w)+d(x, v).
Hence in view of (B) and (iii),
d(x, y)=d(x, u))+d(u, y)=d(x, y).
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The relation d(x, y)=d(x, v:)+ d(vi, y) can be verified analogously. From (a)
and (B) we infer d(u,, vi)=d(u,, x)+d(x, vi)=d(u,, x)+ d(u,, y)=d(x, y).

Let L’ be a lattice and let d’ be a H-metric on L'. Suppose that h: L—> L’ is
bijection such that

d(x, y)=d'(h(x), h(y))

is valid for each x, ye L. Then h is said to be an H-isometry.

If the abelian partially ordered group H is fixed, then we use the term valuation
instead of H-valuation, and in a similar sense we apply the notions of metric and
isometry.

The results of this section will be applied below without quotation.

2. Basic properties of isometries

Let L,L’, d,d’ and H be as in § 1 and let h be an isomery of L onto L’. For
each x e L we put h(x)=x'. (If z' e L', then z is the element of L with h(z)=172".)

2.1. Lemma. Let x, y,aeL, x=a=y, x'=y'. Thenx'=a’'=y’'.
Proof. We have d(x, a)+ d(a, y)=d(x, y), hence
&, )+, y)=d'(x y').

Put x'Aa’=u’, y'va'=v'. Then
d'(x',y)=dW,v)=d'(u',a)+d'(a',v)=
Sd'(x',u)+d'(u',a)+d'(y',v')+d'(a',v)=
=d'(x’,a")+d'(a’, y)=d'(x", y'),
whence d'(x’, u’)=0 and d'(y’, v')=0. Therefore u’'=x' and v'=y’; thus

x'=a'sy'.
Analogously we can prove

2.1'. Lemma. Let x, y, aeL, x=a<y, x'=Zy’'. Then x'Za'Zy’.

2.2. Lemma. Let x, yeL, x=y, x'Ay’'=u’'. Then x=u=sy.
Proof. Put xAu=u,, yvv=v,. We have d'(x’, u')+d'(u', y')=d'(x’', y'),
hence d(x, u)+ d(u, y)=d(x, y). Thus

d(x, y)=d(u, vi)=d(u, u)+d(u, vi)=d(x, u)+ d(u,, u)+
+d(y, vi)+d(vi, u)=d(x, u) +d(u, y)=d(x, y),

whence d(x, u,)=0 and d(y, v,)=0, implying x=u, and y=v,. Therefore
xSu=y.
Similarly we can prove
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2.2.. Lemma. Let x, yeL, x=y, x'vy'=v'. Then x=v=y.

2.3.Lemma. Letx, y,u,vbeasin2.2and2.2’. ThenuAnv=xanduvv=y.
Proof. Put unv=x, uvv =y, Inview of 2.2 and 2.2’ we have x,, y, €[x, y].
Hence

d(x’ Y)= d(x’ X()+ d(xl’ yl)+d(y1’ Y) =
=d(x, x))+d(u,v)+d(y, y)=d(x, x)+d'(u', v')+d(y, y)=
=d(x, x\)+d(x, y)+d(y, y).

Thus d(x, x,)=0 and d(y, y.)=0; hence x=x, and y=y,.

2.4.Lemma. Leta,beL,anb=u,avb=v,a'=Su’',u'Sb’'. Thenu'nv'=a’
and u'vv'=b".

Proof. We have a’'=b’. From 2.3 we obtain (if h is replaced by h ') that
u'Av'=a’ and u'vv’'=>b’is valid.

2.5.Lemma. Leta,beL, anb=u,avb=v,u'=a’,u'=b’'. Thena'Ab' =u’
and a'vb' =v'.

Proof.a) Denote a’ Ab’ = ui. In view of 2.1 (if we replace h by h™"') the relation
u, €[u, aln[u. b] must be valid, hence u =u,.

b) Denote aj=a’vv’, bi=b'vv'. According to 2.2’ we have a,€[a, v] and
b, e[b, v]. Put uy=a,Ab,. In view of 2.1 (with h replaced by h ') the relations
u'=u,=aj, uy=>b| are valid; hence from a) we obtain uj=ajAbi. Further we
have v'=ai, v'=b{, thus v'=u(. Because of u,=a,=v, from 2.1’ (and with h
replaced by h ') we infer that v’ = a{ = u{ must be valid. Thus u, = a,. Similarly we
obtain b,=u,. In view of u,€[a, vln[b, v] we get uo=v, hence a’=v’ and
b’'=v’. Thus according to the dual of a), v'=a’'vb’ is valid.

The assertions dual to 2.4 and 2.5 can be proved analogously.

2.6. Lemma. Let x, y, zeL, x,=xvz, y1y=yvz, x=y, x'=y'. Then x|=y;.
Proof. Put x,Ay=p, p’vxi=v'. In view of 2.2’ we have p=v =x,. Next,
lemma 2.1 (with h replaced by h™") yields p’ =y’. Denote v, =y vv. According to
2.5, vi=y'vo'.
From the relations v = v, v' = vi, v =x;, v' = x; we infer (using 2.1 and the dual
of 2.1) that v, Ax, = v is valid. Thus (since v, v x; = y;) in view of 2.4 x{ = y{ holds.

3. Direct product decompositions corresponding to isometries

Again, let L, L', d, d’, H and h be as above.

Letx,yeL,u=xaAny,v=xvy.lf u'=v' (or u’Zu’, respectively), then we put
xR, y(xR,y).

From 2.6 (and using duality) we obtain:
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3.1.Lemma. Letx,y,zeL,ie{1,2}, xRiy. ThenxvzRiyvzandxAzRiyAz.
Both R, and R, are obviously reflexive and symmetric.

3.2. Lemma. The relation R, is transitive.

Proof. Let x, y, zeL, xRy, yRiz. Put xAy=u;, xvy=v,, yAz=u,,
YVZ =12 UiAU;= U3, V1V VU= Vs.

In view of 2.1, we have u; R,y and u,R,y, hence u; R,(u;v u,) and u, R, (u; v u,).
From this and from the dual of 2.5 we infer that u;R,u;, and usR,u, holds. We have
u R x and u;R,z, thus u;R;x and u;R,z. Since u; = x A z, using 2.1 again we obtain
that (xAz)'=x' is valid. By a dual argument, x’=(xvz)’ holds. Hence xR,z.

Similarly we can verify that R, is transitive. Hence according to 3.1, both R, and
R, are congruence relations on L.

3.3. Lemma. Let x, ye L, xR,y and xR,y. Then x =y.
Proof. We have (x Ay)'=(xvy)’ and, at the same time, (x Ay)’'=(xvy)'. Thus
xAy=xvy and hence x=y.

3.4. Lemma. R,V R; is the greatest congruence relation on L.

Proof. Let a, beL; we have to verify that aR,v R,b holds. Put x=aAb,
y=avh, u'=x'Ay’. In view of 2.2, the relations xR,u, uR,y are valid, hence
xR, v R,y holds. Thus aR;VvR;b.

3.5. Lemma. The congruence relations R, and R, are permutable.

Proof. Letx,yeL,x=y,u’'=x'Ay’,v'=x"vy’. In the proof of 3.4 we have
already verified that xR,u and uR,y is valid. In view of 2.2, the relations xR,v and
vR,y hold. Now it suffices to apply Ex. 10, p. 163, [1].

For xeL and i€ {1, 2} we denote {zeL: zRx}=x(R)). Let ¢: L—>L/R; be
the mapping defined by @;(x)=x(R;) for each xe L. From 3.3, 3.4, 3.5 and [1],
Thm. 5, Chap. VII we obtain:

3.6. Theorem. The mapping @': L—L/R,XL/R, defined by ¢(x)=(¢i(x),
@2(x)) for each x € L is an isomorphism of the lattice L onto the lattice L/R; X
L/R,.

Now we introduce analogous notions and denotations for the lattice L’.

Letx',y'eL’,u'=x'Ay’,v'=x'vy'. If u=v (or u=v), then we put x'Riy’
(x'R3y’). Analogously as we did for R, and R, we can verify that R{ and R} are
congruence relations on the lattice L' ; if @1, @5 and @' are defined similarly as ¢,
@, and @, then we have

3.6'. Theorem. The mapping ¢: L'—>L’'/R{XL'/R; defined by @'(x')=
(®i(x’). @3(x’)) for each x'e L’ is an isomorphism of L" onto L'/RyXL"/R,.

3.7. Lemma. Let x, ye L. Then xR,y iff x'R1y’.
Proof. Let xRy, u=xAy, v=xvy. Hence u'=v’. From 2.1 and from the
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assertion that we obtain from 2.1 if we replace h by h™" it follows that the mapping
h maps isomorphically the interval [u, v] of L onto the interval [u’, v'] of L'; in
particular, the relations u’=x"Ay" and v'=x'vy’ are valid. Thus x'Riy’. The
inverse implication can be verified similarly.

Analogously we can prove (by applying 2.1'):

3.7'. Lemma. Let x, ye L. Then xR,y iff x'R;y’.

For each lattice K, we denote by K~ the lattice dual to K.

Let us consider the mappings ¢,: L'/Ri— L/R, and y,: L'/R;— L/R, defined
by ¥:(x'(R1))=x(R;) and ¥,(x'(R3)) = x(R;). From 3.7 and 3.7’ it follows that ,
and 1, are correctly defined ; moreover, from the definitions of R, and R} (i =1, 2)
we infer that v, is a dual isomorphism and v, is an isomorphism. Therefore from
3.6’ we obtain

3.8. Theorem. Let y: L'—>L/RXL/R, be the mapping defined by y(x')=
(x(R,), x(R;)) for each x' e L'. Then (i) ¥ is an isomorphism of the lattice L onto
the lattice (L/R,)™X(L/R;); (ii) @ =hovy.

Theorems 3.8 and 3.6 yield:

3.9. Corollary. Let h be an isometry of a lattice L onto a lattice L’. Then there
exist lattices A, B and direct product representations f,: L—-A XB, f,: L'—
ATXB, such that f,=hof,.

Let R be the additive group of all reals with the natural linear order.
R-isometries of lattices were investigated in [2]. The method of proving theorem 1
in [2] essentially differs from the direct method applied above (in [2] a result of
M. Kolibiar [5] on the betweenness relation in lattices was used).

4. Isometries of I-groups

Let G and G’ be abelian lattice ordered groups and let H be an abelian partially
ordered group. The corresponding lattices (i.e., the structures that we obtain from
G and G’ if the group operations are not taken under consideration) will be
denoted by L(G) and L(G'). Let h, d and d’ be as in § 1 with the difference that L
and L’ are replaced by L(G) and L(G’). Then Corollary 3.9 is valid (with L and
L’ replaced by L(G) and L(G')).

Let us introduce the following denotation. Let L, P, Q be lattices and let us have
a direct product representation f: L—>P X Q. Let zoe L, f(z0) =(po, qo). We
denote by P.[zo] the set of all elements z € L such that f(z)=(p, q) with g = qo.
The set Q.[zo] is defined analogously. Both P.[z0] and Q¢[zo] are sublattices of L.
For each z € L we put f[z0](z) = (p1, 1), where (under the above denotations) we
have p, € P.[zo], q:€ Qc[z0], f(p1)=(p, qo) and f(q:) = (po, q). Then f[zo]: L —
Pr[20]XQL[z0] is a direct product representation of the lattice L.

If G is an [-group and L =L(G), then we write Pg[zo] instead of Py c)[z0]-
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4.1. Proposition. Assume that we have a direct product representation f:
L(G)— P x Q. Then P5[0] and Qg[0] are [-subgroups of G and the mapping f[0]:
G — Pg[0] X Qg[0] is a direct product representation of the I-group G.

This was proved in [4] (Thm. 3) (under different denotations).

From 4.1 and 3.9 we infer:

4.2. Theorem. Let h be an H-isometry of an l-group G onto an [-group G’. (i)
There are lattices A, B and direct product representations fi: L(G)— A X B, fz:
L(G')— A~ X B such that fi=hof,. (ii) As[0] and Bg[0] are I-subgroups of G,
and Ag[0], Bs/[0] are [-subgroups of G’; for the I-groups G and G’ we have direct
product representations

f1[0]: G— Ag[0] X Bs[0],
f2[0]: G'— A5[0] X Bs[0].

If we put H = G, then the ‘simplest’ positive H-valuation v, on G is the identity.
The H-metric d, corresponding to v, (cf. Lemma 1.2) is defined by

do(x, y)=xvy—xny=|x—yl|

for each x, y € G. In the particular case when also G’ = G we have the following
result:

4.3. Proposition (Cf. [3]). Let h: G— G be a bijection such that h(0)=0 and
do(h(x), h(y))=do(x, y) for each pair of elements x, y e G. Then there exists
a direct product representation f: G— A X B such that, whenever x € G and
f(x)=(a, b), then f(h(x))=(—a, b).

Let us now return to the general case dealt with in Theorem 4.2 above. The
lattices L(Ag[0]) and L(Ag/[0]) are isomorphic, and so are the lattices L(Bg[0])
and L(Bg/[0]). Motivated by Proposition 4.3 we can now consider the question
whether Ag[0] and Ag/[0] must be also isomorphic as groups, and similarly for
Bs[0] and Bg[0]. The following example shows that the answer is negative.

Let R, and N, be the additive group of all rational numbers or of all integers,
respectively ; both R, and N, are considered with the natural linear order. Let G be
the lexicographic product RooNy (the elements of G are pairs (x, y) with x € R,,
y € Ny, the group operation is performed coordinatewise, and (x1, y1) = (xz, y2) if
either y, <y,, or y, =y, and x, = x,). Put G’ = H = R,. There exists an isomorphism
h of L(G) onto L(G'). For z,, z2€ G and x;, x€ G’ we put

d(z1, 22) = |h(z)) — h(z2)], d'(x1, x2) = |x1— x2]|.

Then d is a H-metricon G, d' is a H-metric on G’ and h is an H-isometry of G
onto G'. Both G and G’ are directly indecomposable and they fail to be
isomorphic.
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OB N30OMETPUAX PEIIETOK
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Pe3iome

B craTbe HCCNIEAYIOTCA METPHKH Ha pe€LIETKaX CO 3HAYECHUSMH B HaCTUHHO ynopsmoqemloﬁ abeneBon
rpynmne. HajineHbl COOTHOUIEHUS MEXTY H3OMETPHAMH H NPSAMBIMH pPA3JIOKECHUSMH.
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