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A NOTE ON MAXIMAL fc-DEGENERATE GRAPHS 

Z. FlLAKOVA — P . MlHOK — G . SEMANISIN 

(Communicated by Martin Skoviera ) 

ABSTRACT. A graph G is said to be A:-degenerate whenever every subgraph of 
G has minimum degree at most A:. A k-degenerate graph G is called maxi
mal k -degenerate if there is no k-degenerate graph H of the same order, 
which properly contains G. In this paper, we investigate the structure of maxi
mal k-degenerate graphs emphasing to various graph theoretical characteristics 
and degree constraints. The correspondence between the structure of maximal 
k -degenerate graphs and the structure of generalized a-critical graphs is charac
terized. 

1. Introduc t ion 

All graphs considered in this paper are undirected, finite, loop less and without 
multiple edges. For undefined concepts, we refer the reader to [4]. 

Let us denote by X the set of all mutually non-isomorphic graphs. If V is a 
non-empty subset of X, then V will also denote the property that a graph is a 
member of the set V. 

A property V is called hereditary if it follows from G E ? , and H is a 
subgraph of G that H E V. The sets of graphs 

O = {G E X | G is edgeless graph} , 

Sk = [G G X | the maximum degree A(G) < fc} 

are examples of hereditary properties. 
The set S of vertices of G is said to be V- independent in G if the induced 

subgraph (S)G belongs to V. We shall use the notation av(G) for the maximum 
size of a ^-independent set in G (for the vertex independence number a0(G) 
we prefer the notation a(G)). 

A graph G is called k-degenerate (we write G £ Vk) for fc, a non-negative in
teger, if for each subgraph H of G, the minimum degree of H does not exceed k. 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 05C15. 
Key words : maximal k-degenerate graph, hereditary properties. 
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The following value plays a fundamental role in the theory of fc-degenerate 
graphs: 

5(G) = max min degrr(v). 
V ' HCGvEV(H) & i / v ' 

This number is called the Szekeres-Wilf number, and it is easy to see that 
G is fc-degenerate if and only if s(G) < k (see [5], [7], [8], [9]). A survey of 
fc-degenerate graphs was given in [10]. 

It is easy to check that the properties O, Sk and Vk are hereditary. A 
hereditary property V can be uniquely characterized by the set of P-maximal 
graphs. A graph G E V is V-maximal if for every edge e of the complement of 
G, the graph G + e does not belong to V. 

It can be seen immediately that a graph G of order at most k + 1 is 
2^-maximal (we shall prefer the term maximal fc-degenerate) if and only if G is 
complete. Therefore, we restrict our attention mainly to maximal fc-degenerate 
graphs with at least fc + 2 vertices. 

The basic properties of maximal fc-degenerate graphs have been studied in 
[2], [3], [6]. Let us recall those of them which we shall use in what follows. 

PROPOSITION 1. ([5]) A graph G of order k + m is k-degenerate if and only 
if the vertex set V(G) can be labelled v1,v2,... ,vk+Tn in such a way that in the 
subgraph ({v{, v i + 1 - . . . , vk+m}) of G, deg(tt.) < fc for each i = 1, 2 , . . . , m - 1. 

COROLLARY 1. A graph G is k-degenerate if and only if the vertex set 
V(G) can be labelled vx,v2,...,vk^_m in such a way that in the subgraph 

( K ' ^ + i ' - ' - ^ k + m } ) °f G> d e g ( ^ ) >™>-i for each i = 1,2, . . . , m - 1. 

PROPOSITION 2. ([5]) Let G be a maximal k-degenerate graph of order p, 
p>k + l. Then 

(1) the number of edges of G is equal to kp — ( "£ ) ; 
(2) the minimum degree of G is equal to fc; 
(3) G is k-connected. 

PROPOSITION 3 . ([5]) Let G = (V, E) be a graph of order p, p>k + l, and 
let v G V be a vertex of degree fc. Then G is a maximal k-degenerate graph if 
and only if G — v is maximal k-degenerate. 

PROPOSITION 4. Let G = (V,E) be a maximal k-degenerate graph of order 
k + m, m > 2, k>0, and A= {v G V(G) \ degG(i;) = fc} . Then 

(1) (A)G is totally disconnected; 
(2) \A\<m. 

The following can be obtained by an easy observation. 
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PROPOSITION 5. Let G be a graph of order p, p > k + 1, and A = 
{v E V(G) | degG(v) < k} . Then a graph G of order p>k + \ is Sk-maximal 
if and only if A(G) = k, and either (A)G is complete, or A = 0. 

THEOREM 1. ([3]) Let nk,nk+l,... , n r . r > k, be non-negative integers and 

r 

i=k 
i^2k 

T 

Then the numbers ni, i 6 U {j} U {2k} determine the numbers of vertices of 
j=k 

r 
degree d, d G | J {j} U {2k}, respectively of a maximal k-degenerate graph if 

j=k 

and only if the following conditions hold 
(i) if 2k <r, then n2k > r — t + 1 ; 

(ii) nk + n f c + 1 + • • • + n f c + j > j + 1 for j = 0 , 1 , . . . , r - k; 

(hi) J2ni(2k-i) = k2 + k. 
i=k 

2. The structure of maximal k-degenerate graphs 

If we consider a maximal fc-degenerate graph G of order k + m for m > 1, 
but not too large, its complement G contains many isolated vertices. We show 
that under some conditions, the structure of non-trivial components of the com
plements of maximal fc-degenerate graphs and maximal Z-degenerate graphs of 
order k + m and / + m respectively is the same. 

LEMMA 1. Let G = (V, E) be a maximal k-degenerate graph of order k + m, 

m > 2, k > 0, and B = {v G V(G) \ deg^(i;) > l } . Then \B\ < m 2 + m ~ 2 . 

P r o o f . According to statement (1) of Proposition 2, the number of edges of 
2 

G is equal to m ~ m . Since G is fc-degenerate, by an application of Corollary 1, 
the vertices of G can be labelled vx, t>2 , . . . ,vk+m suc^ that in the induced sub
graph ({vvvi+1,...,vk+m}) of G, deg(^) >m-i for each i = 1, 2 , . . . , m - 1. 
Thus we have 

2 ^ \ - ^ 2 ( m - 2 ) ( m - l ) m 2 - m - 2 
\B\ < m2 - m - 22(m - i - 1) = m2 - m - ^ = . 

i = l 

• 

491 



Z. FILAKOVA — P. MIHOK — G. SEMANlSlN 

LEMMA 2. If m>\, then G = Km U Kk is a complement 0f some maximal 
k-degenerate graph of order k + m. 

The proof follows by the definition of maximal fc-degenerate graphs. 
Let M(q,m) denote the set of the complements of all maximal g-degenerate 

graphs of order q+m, and N(q,m) = {G | G has no isolated vertices and there 
exists a p such that the graph G U Kp belongs to M(q, ra)} . 

THEOREM 2. Let k, I, m be non-negative integers such that m2-m-2 < & < / . 
Then N(k, ra) = N(l, ra). 

P r o o f . We use induction on ra. 
(i) For ra = 1, we have N(k, 1) = N(l, 1) = 0. 

(ii) Let us suppose that N(k,q) = N(l,q) for q < ra and -12~9~2 < k < I. 
Let (™+i)2-(™+i)-2 < k < L S i n c e 

2 

(m + l ) 2 - (m + 1) - 2 _ m 2 + m - 2 ^ - - m - 2 

2 - 2 > 2~ ' 

we have N(k, m) = N(l, m ) . Let G* G N(k, m +1) is a graph of order p. Then, 
by Lemma 1, p < {"i+i)2+(m+i)~2 ^ & n d w e p u t 

. , , , ^ ( m + l ) 2 - ( m + l ) - 2 , t , (m + l ) 2 + (m + l ) - 2 n r = k+m+l-p > + hm+1- -^ i !—'- = 0 . 

Obviously, G± = G*UKr € M(k, ra+1), and there exists a vertex v G V(G) such 
that degG (v) = ra (because the complement Gx of Gx must have a vertex of 
degree fc and (fe + ( r a + l ) —l) —k = ra). If G' is the graph obtained from G1—v 
by deleting its isolated vertices, then G1 € N(k,m). But N(k,m) = N(l,m), 
and therefore G ; € N(l,m). For 5 = / + ra + 1 - £ > 0, G2 = (G* - v) U 
iCs € M(l,m), and degG + u^-(t ;) = ra. Hence G* U JF.T5 € M(l,m + 1), and this 
implies that G* E N(l,m + 1). Similarly, we can prove the opposite inclusion 
iY(/,ra + l ) C / V ( f c , r a + l ) . • 

In the next, our method will aim to establish some graph theoretical charac
teristics of maximal fc-degenerate graphs. 

THEOREM 3 . Let G be a maximal k-degenerate graph of order p = k + m, 

where 1 < ra < 1 + < ™ . Then A(G) = p - 1. 

P r o o f . Let us denote by B and C the following two sets: 

B={veV(G)\ deg^ t ; ) > 1 } , 

C = {veV(G)\ degG(v)=p-l}. 
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Clearly, \C\ = p — \B\ = k + m — \B\. By Lemma 1, we have 

,^. , l n l K , m2+m-2 2fc + m-m2+2 
\C\ = k + m-\B\>k + m = — 

Since m < 1±^SR, w e get 2k+m-m2+2 > j . w h i c h i m p l i e s t h a t |G| ^ 0. D 

E X A M P L E 1. This example shows that the result of Theorem 3 is the best poss
ible. 

Let m be an integer, m > 3, and let k = (m) — 1 — s, where s G { 0 , 1 , . . . 

. . . , m - 2} . Evidently, (m~1) < k < (m) - 1. 
Let us consider the numbers 

n k = n k+i = • • • = nk+m-4 = 1, 
n k+m-3 = -s + 1, 

nk+m-2 = k — S + 2. 

It is not difficult to verify that the numbers nk,nk+lJ... , n f c + m _ 2 satisfy 
the conditions (i)-(i i i) of Theorem 1, and therefore there exists a maximal 
fc-degenerate graph G of order k + m such that nk,nk+1,... ,nk+m_2 determine 
the numbers of vertices of degrees fc, fc + l , . . . , f c + m — 2, respectively. 

Since m < l±y^E±l jf a n d only if (m) < fc, and the graph G described 
above has order p = k + m , (m^"1) < k < (m) — 1, and the maximum degree 
A(G) = k + m — 2 = p — 2, the previous result cannot be improved. 

The following two theorems state some graph theoretical invariants of maxi
mal fc-degenerate graphs. 

THEOREM 4. Let k>\, m > 2 be integers, and let G = (V, E) be a maximal 
k-degenerate graph of order k + m. Then 

(1) the chromatic number Xo(G) ^s eQua^ t° k + 1; 
(2) the edge connectivity number X(G) is equal to k; 
(3) the vertex independence number satisfies the inequality [ ^ t m ] < a(G) 

< m. 

P r o o f . 
(1) As G is fc-degenerate, we have Xo(G) < ^ + 1. On the other hand, G 

contains a copy of a complete graph Kk+1. Hence Xo(^) = k + l. 
(2) It is known that for the minimum degree 5(G), the edge connectivity 

number A(G) and the vertex connectivity number K(G) satisfy 6(G) > A(G) 
> K(G). Since 6(G) = K(G) = fc, we have A(G) = k. 

(3) As is well known, a(G)Xo(G) > \V(G)\. As \V(G)\ = k + m and 

X o (G) = fe,wehave \!^)<a(G). 
On the other hand, by Lemma 2, G contains a (k + l)-clique. Therefore, 

a(G) < \V(G)\ -k = k + m-k = m. D 
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EXAMPLE 2. We show that the bounds of Theorem 4 cannot be improved. We 
shall define two graphs Gx, G2 of order k+m for which the vertex independence 
numbers are m and [ ^ r f ] respectively. 

Let us consider a graph Gx = Km U Kk. By Lemma 2, G1 is maximal 

fc-degenerate graph, and it is obvious that OL(G1 ) = m. 

Let the vertices of G2 be denoted by vv v2,..., vk+m. For each vertex of G2 

we define its neighborhood as follows: 

N(vj) ={vv...,vj_vvj+v...,vj+k} for j = l , 2 , . . . , f c ; 

N(vk+j) = {vp .. .,vk+j_vvk+j+1,.. .,v2k+j} for j = 1 ,2 , . . . ,ra - k ; 

N(vk+j) = {vp ..., v f c + i . ! , ^ + i + i , • • •, vk+m} for j = m- fc+1 , m - f c + 2 , . . . , m. 

By an application of Theorem 1, we can verify that G2 is maximal fc-degenerate. 
Let S be a maximal independent set of vertices of G2. Since the fact that 
^ 6 S , for some i = l , 2 , . . . , m , implies that vi+1,vi+2,... ,vi+k ^ 5 , we 
have \S\ < [ ^ y ] . The opposite inequality follows from Theorem 4. Hence 

*(O2)=rt^i • 
THEOREM 5. Let G be a maximal k-degenerate graph of order p. If p> ( * ) , 
then A(G) >2k. 

P r o o f . Suppose, on the contrary, that A(G) < 2k — 1 for some G. Let us 
denote the vertices of G by vv t ! 2 , . . . , v . Since G is maximal fc-degenerate, we 

p 
have Y_ deg(^) = 2kp — k(k + 1). On the other hand, 

2 = 1 

p 

J2dQg(vi) < [A: + (fc + 1) + • • • + (2fc - 2)] + (p - fc + l)(2fc - 1), 
i = l 

which implies p < fc2+3/c < (k+2) , what is a contradiction. Therefore A(G) > 2k. 

a 

EXAMPLE 3. We now demonstrate that the bound of Theorem 5 is the best 
possible. By an application of Theorem 1, there exists a maximal fc-degenerate 
graph, which realizes the sequence 

nk = nk+i = ---=n2k-2 = 1>n2k-l= l 2 ) + 

2 f c - l 

The order of this graph G is £ n{ = (fc+2) - 1 and A(G) = 2fc - 1. 
i=k 

494 



A NOTE ON MAXIMAL k-DEGENERATE GRAPHS 

Rema rk . On the other hand, for arbitrary p > ( * 2 ) , there exists a maximal 
fc-degenerate graph of order p > k + m with A(G) = 2k. A graph G which 
realizes the sequence 

( k + l\ 
2 J +1 . n2k=p-m-k + l, 

where m = ( ^ 1 ) + 1, shows this. 

Our next theorem generalizes the result of Theorem 5. 

THEOREM 6. Let k>2, 0 < s < k — 2, be integers, and let G be a maximal 

k-degenerate graph of order p. If p > —2(1+s) § ' ^hen A(G) > 2k — s. 

The proof is as in Theorem 5. 
We conclude this section with characterization of those maximal fc-degenerate 

graphs which contain a hamiltonian cycle. The proof of our result is based on 
the following well-known result of Erdos and Chvatal (see, e.g., [1]). 

LEMMA 3 . Let G be k-connected graph such that G does not contain k + 1 
independent vertices, k > 2. Then G has a hamiltonian cycle. 

THEOREM 7. Let G be a maximal k-degenerate graph of order k + m, k>2, 
1 < m < k. Then G has a hamiltonian cycle. 

P r o o f . Since G is maximal fc-degenerate, by statement (3) of Proposi
tion 2, G is fc-connected. Theorem 4 states that a(G) <m<k. Hence G does 
not contain any set of k + 1 independent vertices. 

Then, by Lemma 3, G has a hamiltonian cycle. • 

Remark . We cannot guarantee the existence of hamiltonian cycle in a maximal 
fc-degenerate graphs of order k + m , for m > k. By Lemma 2, G = Krn U Kk is 
maximal fc-degenerate, and it is easy to verify that G contains no hamiltonian 
cycle. 

3. a(n,Vk)-critical graphs 

In this part, we investigate the correspondence between the structure of maxi
mal fc-degenerate graphs and a (n , £>fc)-critical graphs. 

The graph G = (V,E) is said to be a(n,V)-critical if G has no isolated 
vertices, and av(G — e) > av(G) = n for every edge e G E(G). For the 
elementary properties of a (n , 7>)-critical graphs, see [7]. In what follows, we 
shall concentrate to the structure of a (n , Dfc)-critical graphs. 

Our results are proved using the next two lemmas which follow straightfor
wardly from the definition of an a(n,'P)-critical graph. 
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LEMMA 4. A graph G with no isolated vertices is a (n , V)-critical if and only if 

(1) the complement G of G does not contain the complement of any V-maxi
mal graph of order n + 1; 

(2) for each edge e £ E(G) the graph G + e contains the complement of 
some V-maximal graph of order n + 1. 

LEMMA 5. If G is a(n,V)-critical, then for every v G V(G) there exists the 
set U C V(G) with \U\ = n such that (U)G is V-independent and v fi U. 

Using Theorem 2, we obtain: 

THEOREM 8. Let G be a a(k + m,Vk)-critical graph of order p and ™2-f™-2 

< k. Then for every I satisfying m +2
m~2 < / < p — rn — 1 the graph G is 

a(l + ra, Vk) -critical. 

P r o o f . As kj > m 2 + m - 2 implies that k,l > ( m " f l ) 2 " 2
( m + 1 ^" 2 , by Theo

rem 2, we have ./V(fc, ra+1) = iV(Z, ra+1). Thus the assertion follows immediately 
using Lemma 4. • 

The structure of a(k + ra, 2?fc)-critical graphs for ra < 1 + y * 8 can be 
characterized in the following way. 

THEOREM 9. Let k and ra satisfy m 2 + m ~ 2 < k, ra > 1. Then a graph G of 
order p > k + m is a(k + ra, Vk)-critical if and only if the complement G of G 
is c?, i -maximal. 

771 — 1 

P r o o f . Let us suppose that the graph G is a(k + ra,2?A.)-critical, and 
U C V(G) is a maximal ©^-independent set of vertices of G. Thus, \U\ = m + k 
and, according to Corollary 1, A ( G ) > A((U)G) > ra — 1. 

Firstly, we prove that A ( G ) = r a — l . I n order to obtain a contradiction, let 
us suppose that there exists a vertex w0 of G with degG(w0) > ra. By Lemma 5, 
there exists a ©^-independent set W ^ V(G), w0 £ W and \W\ = k + ra. Let 
the vertices w1,w2,...l) wk+m of W be labelled according to Corollary 1 in such a 
way that in ({w{, wi+1,..., w f c+m}), d e g ( ^ ) > m-i for each 2 = 1 ,2 , . . . , m - 1 . 
Since 

E
m ~ / . . x ra2 + 3ra ra2 + ra - 2 , . ^ . 

(ra - i + 1) = = + r a + l < f c + ra+l, 
i=o 2 2 

there exists a set T ^ V(G) satisfying the following conditions: 
(i) w0,w1,...,wm_1 e r , 

(ii) \T\ =fc + ra + l , 
(iii) d e g ^ ) >m-i in (T)G. 
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However, by Corollary 1, T is ^ - i n d e p e n d e n t in G, which is a contradiction. 
Now, let 

A={veV(G)\ d e g ^ ) < m - l } ? - 0 . 

By Lemma 4, for each e G E(G) the graph G + e contains the complement of 
some X^-maximal graph of order k + m + 1, implying A ( G + e) > m . Thus, 
(A)Q must be complete, and, by Proposition 5, G is 5 m _ 1 -maximal. 

Conversely, let G be a graph such that G is «Sm_1-maximal. Since | ^ ( G ) | > 
k + m + 1, G does not possess any isolated vertices. 

By Proposition 5, A ( G ) = m — 1. Thus, according to Corollary 1, G does 
not contain the complement of any P f c-maximal graph of order m + k + 1. As 
for 

A={ve V(G) | d e g ^ ) < m - 1} 

the induced subgraph (A)Q is complete, and | ^ ( G ) | > k + m + 1, G contains 
at least 

/ -x , «^ m 2 + m —2 m(m + l ) , ^ 
fc + m + l - ( m - l ) = k + 2 > - + 2 = — — ^ - — ^ + 1 > m + 1 

vertices of degree m — 1. 
Therefore, we can choose vertices wQ, wx,..., wrn_1 so that d e g ( ^ ) > m — i 

in (^(G) \ { IL/Q,^, . . . , ^ _ 1 } ) G + e * s satisfied for i = 0 , 1 , . . . , m — 1. 

As described above, we construct the set T C V(G). By Corollary 1, T is 
Z^-independent, and therefore, by Lemma 4, G is a(k + m,DA.)-critical. • 
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