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PROBLEMS OF AN ADDITIONAL EXPERIMENT 

LUBOMIR KUBACEK 

(Communicated by Anatolij Dvurecenskij) 

Dedicated to Professor B. Riecan on the occasion of his 70th birthday 

A B S T R A C T . In some situations estimates of unknown parameters must be cor
rected by additional measurements. It is in principle no problem to calculate the 
corrected estimates, however, it is of more interest to find formulae for correction 
itself. The formulae enable us to design an additional experiment and to judge 
its usefulness. 

The aim of the paper is to find such formulae for several situations. 

1. Introduction 

An influence of additional experiment on estimators is interesting not only 
from pure mathematical point of view but from practical requirement of many 
professions, e.g. geodesy, physics, chemistry, technical science, e t c 

The following example can serve as a motivation. Coordinates of several 
points of the Earth surface had been determined by a measurement for a mapping 
purpose. After some time either the value of the distance between two chosen 
points, or the azimuth between them must be known more precisely than the 
original measurement offers (e.g. for a construction of a bridge, a tunnel, e t c ) . 
Therefore an additional measurement must be realized. This new measurement 
together with the original one produce new, more precise, coordinates of the 
points. In practice, it is suitable to calculate directly differences among the 
original and new coordinates instead the new coordinates themselves. 

Besides such kind of problems also pure mathematical interest leads to prob
lem of an additional experiment, cf. the third fundamental theorem of the least 
square theory (for more detail see Lemma 3.6). 
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LUBOMIR KUBACEK 

The problem of additional experiments is closely related to problems often 
referred to as "updating in regression estimation" or "influential observations in 
regression". To design properly an additional experiment it must be taken into 
account a knowledge on the last mentioned influential observations. However 
this class of problems is not investigated in the paper. 

Our aim is to find explicit corrections of model parameters estimators and to 
study a problem of unknown variance components. 

2. Notation and auxiliary statements 

Let an n-dimensional random vector Y with an affiliated class of probability 
measures T = {PQ : 0 G 9 } < jU be under consideration. Here PQ is 
a probability measure parametrized by the vector parameter 0 , O is a set of 
admissible values of the vector 0 , \i is a dominating cr-finite measure, dPe /d / i = 
/ ( • , 0 ) (the Radon-Nikodym derivative). The vector © is decomposed into two 
vectors (3 and tf, i.e. 0 ' = (/3',#')-

The class T is assumed to have two properties: 

(i) (V0 G @)(ES(Y) = f u / ( u , 0 ) d / i ( i i ) = X/3), i.e. the mean value of 

the vector Y does not depend on the parameter i9 and 

(ii) (V0 e 6)(Var(Y) = f(u-Xf3)(u-X(3)'f(u,@)dfi(u) = £ W 
^ Rn 1=1 

= .£(??)], i.e. the covariance matrix of the vector Y does not depend 

on the parameter (3. 

Here W1 is n-dimensional Euclidean space, X is an n x k known matrix, (3 is an 
unknown k-dimensional parameter, # = ( i / i , . . . , tfp)' is an unknown parameter 
and V i , . . . ,V p are given symmetric n x n matrices. In the following text it is 
assumed O = (3 x $, where (3 is a linear manifold in Rk and $ is an open set 
in Rp. 

Such situation will be denoted as Y ~ n [X/3, £ ( # ) ] , (3 G /3, tf G ti. The 
notation Y ~ jVn[X/3, -S(i?)] means that V is normally distributed. 

The following two lemmas are well known and therefore they are given without 
proofs (in more detail cf. [13] and [15]). 

LEMMA 2 . 1 . Let Y ~ n (X/3, X.). where the rank of the known matrix X is 
r(X) = k < n and the known matrix X. is positive definite (p.d.). Then the best 
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linear unbiased estimator (BLUE) is 

P = ( X ' E ^ X ^ X ' i r 1 Y ~fc [/3, (X'E^X)" 1 ] . 

p 
If £ is of the form £ = ^ i^V*, where ?/ i , . . . , $ p , are unknown parame-

i = l 
ters the one possibility how to estimate the vector i? = ( i? i , . . . , # p ) ' , is to use 
MINQUE ([15]). There are also other possibilities, e.g. REML (restricted maxi
mum likelihood) estimator (for more detail cf. [1]). For the sake of simplicity in 
the following text the MINQUE is chosen for a demonstration how to proceed 
with results of an additional experiment. 

p 
LEMMA 2.2. Let Y be the random vector from Lemma 2.1 however £ = J2 ̂ iVz. 

%=i 

Let (7(1?) = g'tf, $ G 2?, be such function of # that g G M.IS(Mxs0Mx)+ J • Then 

MINQUE (minimum norm quadratic unbiased estimator) of g(-) is 

p 

g>0 = ^ \ i y , ( M x £ o M x ) + V i ( M x £ 0 M x ) + V, 
%=i 

S(M xE 0M x )+^ = ,g"? 

{S(MxEoMx)+ } { J = Tr [ ( M x £ 0 M x ) + V , ( M x £ 0 M x ) + V j ] , i,j = 1,... ,p. 

Here M(S(MxEoMx)+J = {S(M x£ o M x )+u : u e w \ , + denotes the Moore-

Penrose generalized inverse ([14]) of the matrix, Mx = I — Px? Px = XX + , 
p 

So = zC ^1 Vi> ^ ° ^ = (^1 ? • • • ? ^ P ) ^ f l W approximation of the actual value 
i = i 

O/ £fte vector tf. 
If p = 1, tten tfie estimator ti is ti = Y'(MxVMx)

+Y/(n - k) = 

(Y - X0)'\/-1(Y - X$)/(n - k), where 0 = ( X ' V ^ X ^ X ' V " 1 Y. 

LEMMA 2.3. The estimator g'fi from Lemma 2.2 can be expressed as 

g^ = Y,\{Y- X & ' E - ' V i E o ! ( Y - X0), S(MxSoMx)+A = g . 
1 = 1 

- 7 S ( M x E o M x ) + 25 regular, then 

( (Y-xpyv^v^^Y-xp) \ 
i9 — S - 1 

17 - °(MXE0MX)+ V (Y-XßyZö'V^iY-Xß) J 
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P r o o f . It is implied by the relationship 

( M X S 0 M X ) + V = S o 1 [I - X(X'S0-1X)-1X'S0-1] Y = ^ 1 ( Y - X0) 

and by Lemma 2.2. • 

In practice an iteration procedure is used for the estimation of #; in the first 
step some value of it) is chosen arbitrarily, in the second step the i9-MINQUE 1? 
is chosen instead of # , etc.. In the following text the notation #n-MINQUE is 
used, where i?0 is a chosen vector in the small neighbourhood of the last iterated 
value of the estimator. 

3. Additional experiment in nonsingular model 
without constraints 

Let the original experiment be characterized by the model 

V i ~ n i ( X i / 3 , E i ) , /3GM f c , r(Xi) = fc<m, E x p.d. 

and the additional one by the model 

V 2 ~ n 2 ( X 2 / 3 , £ 2 ) , (3eRk, S 2 p.d. 

The vectors Y\ and V2 are uncorrelated. 
Let /3(Yi) be the estimator based on the observation vector Yi, i.e. $(Y\) = 

(X^Sf 1Xi)~1Xi.SJ"1 Yi, and J3(Yi, V2) be the estimator based on both vectors, 
i.e. it is the corrected estimator. 

LEMMA 3 .1 . Then the BLUE /3(Yi, Y~) based on the results of both experiments 
can be expressed as 

P(YuY2)=0(Y1) + k, 
where the correction k is 

k = (c1 + c2)-1x^s2-1[v2-x2^(v1)] 

= (C1 + C2)-
1[X2S2-

1X2^(V2)-C2/3(V1)]. 
Here 

Ci-^XjEr'Xi, t = l,2, x2^5(v2) = p^ 1 v 2 , 

Pxf = x2(x2s2:1x2)-x2s2-1 

and ~ denotes generalized inverse ([14]) of the matrix (i.e. AA _ A = A). 
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Proof . Since 

0{Ylt Y2) = (Ci + C2)-1(X'1S]-1 Vx + X ^ 1 V2) 

(with respect to Lemma 2.1), it is sufficient to use the relationships 

(Ci+X2-~~ X2)~ = C~ - C~ X2(~]2 + X2C~ X2)~ X2C~ , 

C~ X2(~]2 + X2C~ X2)~ = (Ci + C2)~ x 2 s ~ 

and 

x2~-2 Y<I = x2~]2 x 2 (x 2 s 2 x2) x 2 s 2 Y2. 

(It is to be remarked that /3( Y2) need not exist, since X2 is a matrix which need 

not have full rank in columns, however the estimator X2/3(Y2) = P x
2 Y2 exists. 

Here p j f = X2(X2S2T1X2)-X'S2-1.) D 

REMARK 3.2. A measure of concordance between original and an additional 
experiment can be characterized either by the vector 

W2=Y2-X20{Y1), (2) 

or by the vector X2/3( Y2) — X2/3( Yi). If the original and the additional exper
iment are in concordance, i.e. E(w2) = 0, then in the case of the normality of 

the vector I * J, it must hold 

P{W'2[VM(W2)Y
1W2 < x*2(0; 1 - a)} = 1 - a, 

where Xn2(^ 1 — a) is t n e (1 — a)-quantile of the central chi-square distribution 
with n2 degrees of freedom and Var(iv2) = S 2 + X2Cj"1X2. 

LEMMA 3.3. Since Yi and Y2 are uncorrelated, then 

Var[p( Vi, V2)] = (Ci + C , ) ' 1 = Var[p( V^] - K , 

where the correction matrix K is 

K = Var[/9(V1)]X'2[Var(iv2)]-
1X2 Var[i9(V1)] (3) 

Proof . It is implied by the relationships (1) 

Var[/3( Vi)] = C]"1 and Var(iv2) = S 2 + X2C7^X2 . 

D 
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Thus it can be judged the influence of the additional experiment on the accu

racy of the estimator (3( Yi) which is characterized by Var[/3(Yi)] = C j - 1 . Since 

the matrix K from (3) can be calculated in advance, the additional experiment 

can be designed in such a way that Var[/3(Yi, Y2)] attains sufficiently small 

(prescribed) values. 

If a single additional measurement is done, i.e. Y2 ~ i (f/S,^), then 

Var[/3(Vi.y2)] = V a r ^ y ) ] - C^ff'C^/(^2 + f'C^f). 

L E M M A 3.4. Let the model 

У 
У 2 

N Пl+П 2 HMvo;l (4) 

where the matrix Xi is of the full rank in columns and the matrices Vi and V2 

are p.d., be under consideration. Then the best estimator (i.e. unbiased and 
with the minimum variance) of $ is 

ąүi,ү2) = (үi,үi) 
aa 

ßa 
5 

5 

aß 

ßß 
Yi /(ni +n2- k) 

tix2n1+П2-k(0)/Ы + n2-к) ~ І [ů,2$2/(m + n2- Щ , 

where 

aa 

aß 

H 

= V 1 - 1 - V 1
1 X 1 ( H 1 + H2)-1X'1Vr;1 , 

= - V f ^ ^ H i + H2)-
1X2\f^

1 = [ßa_ 

ßßj = V ^ - V ^ X a C H i + H a Y ^ V a " 1 , 

= X j V r 1 ^ , 1,2. 

P r o o f . The result is an obvious transcription of Lemma 2.2 (the case p = 1). 
In [6, Theorem IV. 1] it is proved that this estimator is the best one. • 

T H E O R E M 3.5. The best estimator i/(Yi, Y2) from Lemma 3.4 can be expressed 

as 

; 9 r v Y , Q2(YUY2) Q1(Y1) 
#(Yi, Y2) = ; r = ~ + « , 

n\+ n2 — k n\ — h 
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where 

Qi(Vi) = V 1 ' (Mx 1 ViMx 1 ) + Vi. 

Q 2 (Vi ,V 2 ) 
Vi 
v2 

Ki Vi 
K2 V2 

M 
ÍX 1 

V i , 
o, 

м KxXi 

K2X2 

0 
V2 

K1V1 

к2 v2 

м 
(£) 

+ 
Vi 
v2 

K = ^-Гjfe{-П-^V-) + W - [ V - " 1 - V2~1X2(Hi + H з ) - ^ ^ 1 ] ! ^ } , 

V2-1 к 2 к 2 

Tli +Tl2 

V r 1 = KiKi , 

and M/2 is defined in (2). 

P r o o f . Let 

fi(Vi) = V I - X D 3 ( V I ) , 

f i ( V i , v 2 ) = V i - X i y 9 ( V i , y 2 ) , 

f2(Vi,v 2 ) = v 2 - x 2 / 9 ( V i , y 2 ) . 

Then expression for #(Yi, V2) can be written as 

5 , v v , [W(Vi, y2)vr^i(Vi, v2) + ̂ (Vi, y ^ - ^ V i , v2)] 
V(Yi, Y2) — ; : • 

ni + n2 — k 

Since (Lemma 3.1) fr{Yu Y2) = f3{Y{) + (Hi + H2)-lX'2M^1 w2, 

vj(Vi, y2)vr1wi(Vi, v2) = vi(Vi)vrV(Vi) + ^v^XatHi + H2)-1 x 
x H ^ H i + H a ^ X a V a " 1 . ^ , 

" 2 (Vi, V O V ^ i ^ V i , V2) = wtf\- X 2 (Hi + H a ^ X a V - ^ ' V " 1 x 

x [ l - X 2 ( H 1 + H 2 )- 1 X 2 V 2 - 1 ] iv 2 

is valid. Here the equality v{(V1)Vj-1Xi = 0 was utilized. Since 

V 2 - 1 X 2 (H i + H 2 ) - 1 H 1 ( H 1 + H a J - ^ a V a " 1 + [I - V 2 " 1 X 2 (Hi + H a ) - ^ ] x 

x V ^ I - X 2 (Hi + HaJ-'XaVa"1] = V,"1 - V 2 " 1 X 2 (H 1 + H a ^ X ^ 1 , 

the proof is finished. D 

The influence of the additional experiment on the residual quadratic form, i.e. 
[Yi - Xi/3(Yi)] V1~

1[Vr

1 — XiJ3(Yi)], is characterized by the following lemma 
(cf. also [13, p. 157]). 
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L E M M A 3.6 (Third fundamental theorem of the least square theory). In the 
model (4), where r{Xi^ni^)) = k < n\, \l\, V2 are p.d., it holds that 

Qi(Y1)/Q2(Y1,Y2)~B(r*f±,!*). 

Here B{ni
2

 fe, -TJ2-) means the beta distribution with parameters equal to 72x
2— 

and -Tjf- and Qi(Yi) and Q2(Y\, Y2) are defined in Theorem 3.5. 

P r o o f . Let Zi and Z2 be nonsingular matrices such that ZiViZ^ = \ni,n1
 a n d 

Z2V2Z2 = ln2,n2 5 respectively. Then 

Q 2 ( У i , У 2 ) = 

Here 

Уi 
у 2 

Z1У1 
Z 2 У 2 

м 

м 

v ь 0 
x i H 0, V2 x2 

M 
Xi 
x 2 

Уi 
У2 

Z1X1 

Z2X2 

Z1У1 
Z 2 У 2 

м ZiXx 

Z2X2 

M Z l X l , 0 
0, 0 

Siд, Si,2 

S 2 , i , S 2 9 

+ s, 

and 

Thus 

s M = z1x1(x'1vr1Xi)-1x'2[v2 + x2(x/

1vr1x1)-1x^] * 
x x2(xiv1-1x1)-1x /

1zi, 
Si,2 = —ZiXi(X 1V 1 X i + X 2 V 2 X 2) X 2 Z 2 = S 2 j i , 

s2,2 = i-z 2 x 2 (x' 1 v ;; 1 x 1 + x 2 v 2 - 1 x 2 )- 1 x 2 z 2 

( V o)s-- s 2=s 

Q 2 (y i ,y 2 ) = x^- f c (o) + Xn2(o), 
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since r ( M z 1 x 1 ) = r(Mx_) = T r ( M x J = n i - f c a n d r M / z x 

/ 

/Z1X1 

l,z2x2 

Tr M 

V (£). 
ni + n 2 — k, Tr M / X i \ = T r ( M X l ) + T r ( S ) . The random variable X n i - k ( ° ) 

V U 
and Xn2 (0) a r e stochastically independent and thus it is sufficient to utilize the vri2 
relationship 

A 
A+A 

B (ł,ł)-
D 

If 

and 

Yi ~ NП1 (Xiß, ^Vx), r(XJ =„i < rц , VІ p.d. 

V2~iV„ 2(X 2/3,^2V 2), V2 p.d. 

and i?i 7-- ^2, then the situation is a little more complicated. The estimator of 
i?i in the original model is 

#i(Yi) = [Yi - XiP(Yi)]'v^ [Yi - XiP(Yi)]/(m - k) 

~ i?iX„.-„(0)/(ni - k) ~i [di,2d\/(ni - k)] 

and analogously 

h(Yi) = [v_ - xTp(Y2)]'v^ [y2 - X2^(y2)]/(n2 - k) 

~ ^x' 2- f c(0)/(n 2 - *) ~ 2 [t?2,2i?i/(n2 - k)] 

if n2 > k. If n2 < k, the parameter i?2 cannot be estimated. 

Let in the following theorem the model 

Yi 
^ П i + П 2 i'>Mvo:l)Mll (5) 

where r(Xi) = k < n i , r(X2) = k < ri2, Vi, V2 are p.d., be considered. 

T H E O R E M 3.7. In _/_e model (5) t/ie estimator of both variance components 
exists. It means that the matrix S*, where 

1 + 

* = M -<1,0) u 

0, S2,o 
M x Л 

x 2 ; 
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is nonsingular and the MIN QUE can be written in the form 

^ ( Y 1 , Y 2 ) = S ; 1 

IVÓ 

" Í W £ - v i ( Y i ) + iv_A1иЛ2 

4-Уõ1^ (P~ + т 2 " ) _ 1 ^ V Г 1 + A2 

^ 2 , 0 2 V ^ l . O # 2 , 0 / 2 Z 

w2 

The matrix S* can be written in the form 

ç _ / «i/#i,o. 0 , , 
Ь * - ' 0, n 2 / # | j 0

 , + 
(1/1?_0)C1,1, (1/(#1,0#2,0))C1,2 

(1/(#2,0#1,0))C2,1, (l/#!,o)C2,2 

where 

ciд = -2Tr 

+ Tr 

ci,2 = Tr 

c2,2 = -2Tr 

+ Tr 

H i H2 \ H i 

#1,0 #2,0/ #1,0 

H i H2 

#1,0 #2,0 

H i /_Hj_ , H 2 \ H i 

#i7 Vhfi # W #Zo" 

H i H 2 \ H i /_Hi_ H 2 

#1,0 # 2 , 0 / #1,0 V#i,o #2,0 

1 њ 
'2,0 

= c 2,i 

H i H2 

$1,0 $2,0 

_____ 
$2,0 

H i H 2 \ H 2 /_H_i_ , H 2 \ H 2 

#1^ #W #2^ V#^ #W #2^ 

* l (П) 

A_ 

Yi-Xi/3(Yi), 

H i H2 
n # 2 , 0 

v-"-x 
#io '1,0 

H, 
H i H2 

#1,0 #2,0 
X2VJ1 ѓ = 1,2. 

If rt\ — k and U2 — k are sufficiently large, then 

92 
^1,0 C l , l , 

# 1 . 0 # 2 
- C 1 2 

Co 1, 
П2П1 - ; ' - L ' 

" 2 , 0 ^ 

^ Г C 2 ' 2 
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Thus 

è(Yu Y2)=( 

' J. ci 1 
ni n_ ' 

# 1 , 0 C2,l 

# 1 , 0 Cl ,2 

# 2 , 0 П i П 2 

1 c 2 ) 2 

\ ч # 2 , 0 П 2 П i ' n 2 n_ 

. _ _ 

Wó 

ľ í ( V i ) | Ъ _(Vi) + ^ A i i v 2 

S-*V"X20(Ä + & ~ 1 X ' V " + A2' iv2 

The correction^ of the estimator 0 i (Yi) = [Yi-X_j3( Y i^ 'Vf 1 [Yi -X_0( Yx)] 
/ (n i — k). uf/iic/i is based on the first experiment only can be expressed, for 

sufficiently large n\ and n2, respectively, as 0 i (Yi , Y2) = [v'( Yi)V_"1v( Y_) + 
0_,o -v_AiiV2]/ni = i ? i ( Y i ) + 7 , where 

7 = " — 0 i ( ^ i ) + — w^w2. n\ n\ 

P r o o f . With respect to definition of {S*}-• (cf. Lemma 2.2) we obtain after 
some simple however rather tedious calculation the expression 

{S*}i,i = -äL + - І - Ћ 
^1,0 w i , o 

H i Hг 

# 1 , 0 i _ , o 

- ì 
H i / H i H2 

t?i,o U i , o ^2,0 

___ 
#1,0 

Чo 
2Tr 

H i H2 \ H i 

#1,0 <?2,0 j <?1.0 

Analogously other elements of the matrix S* can be obtained. Thus 

, ni/t?? j 0, 0 \ ( ( l / ^ , 0 ) c i , i , (l/(i?i,ot?2,o))ci,2 
5 * - ' 0, n 2 / ^ ; 0 ) + \ (l/(02,otfi,o))c2,i, ( l/^,o)c 2 ,2 

If the matrix ( n

 1 ' 0 ' / Q2 ] is sufficiently larger in Loevner sense than 
U, ^2/^2,0 / 

the matrix 

s.-1-

( (1/^,0)C1,1, (1/(Í?1,01?2,0))C1,2 A ,, 
V (1/(<?2,01?1,0))C2,1, ( l /4o)C2,2 / ' 

i 9 2 

0 
П i ' 

п, _ţo 
n 2 

_ , 0 п п 
П i ' 

П $ 2 , 0 

# 1 , 0 # 2 , 0 

V l , 0 

# 2 , 0 # 1 , 0 C 2 ' Ь 

CY2 

# l , 0 # 2 , 0 C l ' 2 

^ ~ C 2 , 2 
^ 9 n 

C2,2 
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Further 

) ^ f i ( У i , V 2 ) = v í ( У i ) ^ ' 
^1,0 v l , 0 

"í(Vi, V 2 ) ^ - ľ i ( У i , V2) = v í (Уi)-- !-vi(Уi) + .v^Ai.v2 : 

^ 2 ( V l , V 2 ) ^ f 2 ( У l , V 2 ) = 
^2,0 

v2ft ^-^Чê+^f*^1^ w2 . 

Now the statement is obvious. • 

4. Sensitivity approach 

In the case of the model (5) with unknown i?i and i?2, the i?0-LBLUE 

/3(Vi, v2,tfo) = m) + (-}--• + -}--•) * x ^ [ y 2 -x2/§(y1)] 
\#1 ,0 #2 ,0 / #2,0 

is one of possible estimators. Another possibility is to use the i?o-MINQUE or 
replicated REML of i? in the plug-in estimator of /3, i.e. 

Hi , H 2 V v / v 2 ß(Yъ V2,1?) = ß(Yг) + í i + - f ) X'2Щ-w2 . 
\ 1?1 1?2 / V2 

The problem is to find statistical properties of such estimator. If the simula-
tion approach is not taken into account, it is a difficult problem and for many 
situations it seems more suitable to investigate whether uncertainty in i? dete-
riorates properties of the i?*-LBLUE of the estimator ß or not, i.e. to find a 
insensitivity region. 

The insensitivity region at the value i?o is a set of values i?o + őů (őů is an 
infinitesimal shift of the vector value i?) with following property. If i?* (the 
actual value of the parameter i?) is an element of this set, then a deterioration 
of a statistical inference at the point i?o is smaller than a prescribed value. E.g. 
in the case of an estimator of a linear function h'ß, ß Є Mfc, calculated at the 
point 1?Q 

yVar^. [Hfr{Yu#*)] (1 + e) > y V a r ^ [h'P(Yu#0)] , 

is valid, where e > 0 is a prescribed sufficiently small number. 
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Insensitivity regions can be found for many other statistical problems, where 
estimated variance components must be used. Some examples are given in [2], 
[5], [7], [8], [9], [10], [12]. 

LEMMA 4.1. Let 5d\ and 5^2 be infinitesimal shifts of the parameters $i and 
$2. respectively. Then in the model (5) 

|8(Г,,У_,. 1+ft»i,.2 + í - 2 ) 

*.(V.,V2,. i , . 2 ) - ( £ + ! 
- 1 

X ; V ^ - . I ( У 1 , У 2 ) < 5 Ø I 

+ X_VJГV2(Уi,У2)Л.2 

(V/i Є Rfc) ( V a г ^ У i , У2,øi + <50i,02 + <502)] 

h' I H l _1_ H 2 

is valid, where 

Wfc = 

Ui = 

u2 = 

Ti.i = 

Ti,2 = 

T 2 , 2 = 

/ I ' U Í / 1 , 

o, 

H i H2 

01 0 2 

H i H2 

01 02 

Hi H2 
01 02 

H i H2 

01 02 

H i H2 

01 02 

0 

/ Ì ' U 2 / I 

/. + (<50i,<502)W/l 

h'Thlh, / I ' T 1 2 / J 

/i'T2,i/i, / i 'T22/ i 

Hi fкu H2 
01 02 

- 1 

Øf 

H2 
03 

- 1 
•___. 
ø2 

І H _ L 
Ø2 

ч 

H i H2 

01 0 2 

H i H2 

01 02 

___L _|_ ____ 
01 + 0 2 

H i H2 

0! 0 2 

<50i 

<502 

Hi 
Ø2 

H2 

<>2 
H2 
Ø2 

H i --+---
>1 1?2 

H i H2 

01 02 

____ 4. ____ 
01 02 

= т 2 . 

Proof . Since 

/3(Уi,У2,0_,02) = ( ' £ + £ X'i 
.vг1 

У i + X ^ У , 
02 
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we have 

dp{YuY2,0u02) 
dtij. 

Analogously 

d0(YuY2,du02) 

- I — + — ů\ 
XlVf^iíVi.Va) 

Since 

Vartf 

дů2 

*i(Yi,Yi) 
^2(Vi,V2) 

ЪъT ц™1*™ 

( ůгУ/г - Xi ( ^ + ^ _ 1 X'1; - X l (*- + ^Ţ1 X'2 

{ -X2 (ft + fe)" Xì, tf2V2 - X2 ( £ + g ) " 1 

\ 

/ 
we have 

/ tídP(YuY2,-du-d2)ldůx 
ů \ h'dp(YuY2,ůuů2)/dů2 

ZiUi/i, 0 
0 /i'U2/i 

iVTi,i/i, iVTi,2/i 
/i'T2'i/i, /i'T2 2/i 

Since 

cov$ /3(Vi,V2), ľ i(V ь V 2 ) 
"2(Vi,V2) 

= 0 , 

Lemma 4.1 implies 

Var4/i'/3(Vi, V2) t?i + 50u02 + 502)] 

« Var1?[/i'i3(V1, V2,0i,i?2)] + 50'\Nh50 

= » y/Van,[h'0(Yu V2,0i + 5du02 + 5d2)] 

y/Vfx*[h'p(YuY2,ůuů2)]Jl + 
5ů'\Nh5ů 

а 

Van>[h'0(YuY2,#wd2)] 

Let e > 0 be such small number that the enlargement of the variance of the 

estimator y Var#* (ft'l3) by the factor (1 + e) can be tolerated. Let 

'1 + 
5ů'\Nh5ů 

Vard[/i'/3(Vi,V2,<?i,t?2)] 
< 1 + є. 
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Then the insensitivity region M-& at the point # with respect to enlargement of 
the standard deviation of the estimator of the function -V/3,/3 e R f c , is given in 
the following theorem. 

THEOREM 4.2. The insensitivity region J\f# is 

N* = 160 : S0'\Nh6d < 2eti ( ^ + ̂ ) h\ , 

i.e. 

StieAfo => ^Var4/?'/3(Vi, V 2,^i + (Wi,# 2 + ^ 2 ) ] 

< (l+e)yJvan>[h'0(Yu Y2,0U#2)] . 

P r o o f . It is implied by Lemma 4.1. D 

REMARK 4.3. In order to utilize information on yV# at the point i9, it must be 
known that the actual value $* of 1? is sufficiently near to i9. The (1 — a)-con-
fidence region (for sufficiently small a) can help to check it. 

With respect to Theorem 3.7 

/ _ 1 _ _ 0 ? , O C _ _ ! _ _ _ ) 

V a r , 0 ^ ( V 1 , y 2 ) ] = 2 S - = 2 " ' ^ U ' , , «™-
Ł C i , 2 

_ _ _ _ 0 ^ 2 , 0 _ ^ 2 0 
П 2 П 1 2 Д ' 7І2 П^ ^ 

and regarding the Scheffe theorem [16] we have 

pfa'-dyps;1)-1^-#)<%} 

= P { (V/J e R2) (|/i'(#* - 0)| < y/lyfhVS~Fh~ ) I . 

With respect to the Bonferroni rule [3, p. 492], 

p | ( V » e { l , 2 } ) ^ ' ^ * - d ) | < > / | ^ 2 S , - 1 ^ ) } « l - a . 

Thus the containment 

C(0*) - {tf : ±(0 - 0 ) 'S„(0 - 0 ) < ^ } C {0o + Sti : 8# G JV^0} , 

can serve as a guaranty that i?o is sufficiently near to the actual value $* and 
that 1?* is in the insensitivity region Af&0. In [11] it is shown that the requirement 
of the containment may be in some situation too rigorous. 
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5. Models with constraints 

In this section the model 

V ~ i V n ( X / 3 , S ) , (3ep = {(3: b+B(3 = 0} 

will be under consideration. 

(6) 

L E M M A 5 .1 . Let in (6) r(Xn^) = k < n, r(Bq^) = q < fc. S p.d be valid. Then 
the BLUE of (3 is 

/3(Y) = fa(Y)- C^B'tBC^B') -1 [B/3(Y) + b] , 

where C = X / E _ 1 X,/3(Y) = C ^ X ' S ^ Y (the BLUE in the model without 
constraints). Further 

Var[£(Y)] = C 1 - C ^ B C ^ ^ C " 1 = [MBXMB.]+ . 

P r o o f . Cf. e.g. [4, Chap. 2]. • 

Let the first experiment be (6), where r(Xi^ni^) = k < n i , r(Bq^) = q < k, 
!Ei p.d.. The additional experiment is Y2 ~ n 2 (X2/3..S2), IE 2 p.d. (also in the 
additional experiment the parameter (3 must satisfy the constraints b-\-B(3 = 0; 
the matrix X2 need not have the full rank in columns). 

T H E O R E M 5.2. In the given situation the BLUE of (3 is 

h(Y\,Y2) = h(Y\) + kI, 

ki = [M„'(Ci + C 2 )M B ' ] + X 2 S^ 1 i v / ) 2 , 

wi,2= Y2-X2h(Y\), 

where J3(Y\) is the BLUE based on the first experiment with constraints. 

P r o o f . The experiment with constraints 

Ví 
V2 

П i + П 2 

Xi 
ß, 

S i , 0 
0, s 2 

is equivalent to experiment without constraints 

/ V i - X i / 3 0 \ [ / XiKB \ 

{Y2- X 2 /3 0 ; ~« i+"2 [y X 2 K B )
7 
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PROBLEMS OF AN ADDITIONAL EXPERIMENT 

where (3Q is any vector satisfying the constraints b + B/30 = 0 and KB is a 
k x (k — q) matrix satisfying the equality JC] V(B) = {u : Bu = 0} = X(K B ) . 
With respect to Lemma 3.1 

K B 7 ( V I , Y 2 ) 

= K B 7 ( V I ) + KB[K'B(Ci + CaJKeVVeXaEJ1 [Y2 - X2/30 - X2K?r(Y1)] , 

is valid, i.e. 

faYi, Y2) = /30 + KB7(Yi, Y2) = ^(Vx) + /c, 

k = [MB'(Ci + C2)MB ']+X2S2-1 [Y2 - X2/3(Yi)] . 

The last equality is implied by the following relationships. 

KB[KB(Ci + C 2 ) K B ] " 1 K B ( C 1 + C2) = P £ 1 + C 2 ) = Pj£,+Ca> 

= MB ' [MB'(Ci + C2)MB'] + MB'(Ci + C2) 

= • KB[K'B(Ci + C2)KB]_1KB = MB, [MB'(Ci + C2)MB'] + MB,. 

Further 

MB' [MB'(Ci + C2)MB'] + MB ' = [MB'(Ci + C2)MB']+ . 

D 

THEOREM 5.3. The covariance matrix Var[/3(Yi, Y2)] of the estimator from 
Theorem 5.2 is 

Var[/3(Y!, Y2)] = Var[,9( Y,)] - K7 , 

K7 = Var[^(Y1)]X2[Var(iv/)2)]"1X2Var[^(Y1)] . 

Proof . Analogously as in Lemma 3.3 (cf. also Lemma 5.1) 

Var[/3(Yi,Y2)] 

= [MB'(Ci + C2)MB ' ]+ = [ M B ' C I M B ' + MB'C2MB'] + 

= (MB 'CiMB ' )+ - (MB 'CJMBO+MB'X^ [S 2 + X2(MB 'CiMB ')+X2 ]_ 1 

x X2MB ' (MB 'CiMB ')+ 

= Var[^(Yi)]-K I, 
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Vа^[Э(У1)]=(Мв'С1МвО+, 
Е 2 + Х 2 ( М В , С 1 М В ' ) + Х 2 = Vа^(^V/)2), 

Мв'(Мв'С1 М в <) + = (Мв'С1М В ') + Мв' = ( М В ' С 1 М В 0 + 

D 

If S i = tfVi, S 2 = #V 2, then the BLUE 0(YU Y2) can be calculated by the 
help of Vi and V2 instead of S i and S 2 , respectively. The best estimator (in 
the case of normality) of # is given by the following theorem. 

T H E O R E M 5.4. The estimator i)i(Yi, y 2 ) of d based on both experiment is 

h{Yl,Y2) = dI{Yl) + kI, 

where 

ki = , \ r ( - n 2 ^ ( y i ) + w'ia{\l^ 
n1 + n2+q-k\ , <- -

-V2r1X2[MB'(H1 + H 2)MB ' ]+X 2V 2}iv /, 2), 

$i{Yi) = — - ^ r[yi -*ihYi)]'\l-x[Yi -XikYi)] , 
Tl\ "T" Q rv 

^(Vi) = H^XiV^Vi - H71B'(BH7;1B/)-1[BH71X/

1V1-
1yi + b], 

Hi = xivr-Xi, Wl,2 = y 2 - x 2 ^ ( v 1 ) . 

P r o o f . With respect to the proof of Theorem 5.2 both experiments can be 
rewritten as (5), where 

S i , 0 \ / V L 0 

o, s 2 j - ^ o , v2 

Now it can be proceeded as in the proof of Theorem 3.7. 

MYI, y2) = — - — * (Y w M,i(Yu y2)vr1v/,i(yi, *.) 
ni + n 2 - r ( X i K B ) L ' 

+ f;, 2(Vi,V 2)V 2- 1^, 2(Vi,V 2)] 
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where (cf. Theorem 5.2) 

vt,\(Y\, y2) = n - x ^ ( y i ) - X I [ M B ' ( H I + H2)MB ']+x2v2-1[y2-x2^(yi)], 

*i,2(Y\, y2) = y2 - x2/3(yi) - x2[MB'(Hi + H 2 )M B ' ] + X 2 V 2 - 1 [Y2 - x2fr(Y\)]. 

Since 

vi,\(Y\) = Y\-X\hY\), 

v/,2( Y\, y2) = .v/,2 - X2[MB'(Hi + H2)MB']+X2V2-
1.v/,2 , 

V/.iVr'Xi = 0 

and 

MY\) = viA(Y\)y^Vlt\(Y\)/(n\+q-k), 

the proof can be easily finished. D 

If S i = i?iVi and S2 = $2V2, respectively, and at the same time $1 ^ $2, 
then the estimators #i(Yi, Y2) and $2(^1, Y2) (n2 + q > k) are given by the 
following theorem. 

T H E O R E M 5.5. The 'OQ-MINQUE of$i and #2, respectively, in the model 

Y\ 
ү^ 

J П l + П 2 
Xl A a .a 1 Ví, 0 \ , , / 0, 0 

ß,#l + Ů2 0, v2 

ßeß, 

where r(Xi) = k < n\, Vi, V2 are p.a7, and r(Bg^) = q < k, is 

MYi,Y2) \ = - - i ( vl,\(Y\,Y2)^\/^Vl,\(Y\,Y2) 

MY\, y2) J '•* l <2(Vi, n ^ v ^ ^ y i , y2) 

where 

Sг* = — I ü i ,o 

0, V 2 ,0 
+ 

C l , l 
v i , o 
c2,l 

02 ,001 ,0 ' 

C l , 2 

01,002,0 
C2,2 

Җ~o 
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C l , l 

Cl,2 

C2,2 

= - 2 T W M r 
H i , H2 , 

-5—+ -«— Mв' 
#1,0 #2,0 

+ Tr Mв' ( -r- + -r- ) MB-
#1,0 # 2 , 0 . 

JІL 
#1,0 

Ü L s 
1? 1,0 

Tr 

м ( H l ^ *M м 
M в ' f c + # 2 J M B ' 

MB' (£- + -£-) Mв« 
\#i ,o #2,0/ 

+ 

M ғ 

= - 2 T W 

H i H 2 » . . 
-5— + -r— M B ' 
#1,0 #2,0 

Mr 
Hi н 2 

- г - + - г - M B ' 
#1,0 #2,0 

# 1 , 0 / 

+ 
ІÍL 
#1,0 

Лi\ 
# 2 ,oJ 

1 + 

C 2 , l , 

+ TH M " C + £ |M'' 
т + 

#2,0 

#2,0 " 

м°''^+ë |Mв' #2,0 

P r o o f . In the first step we reparametrize the model as in the proof of The
orem 5.2 Now with respect to Lemma 2.3 it is sufficient to use the following 
substitution scheme 

Уi - Xi/30 

Y2 — X2/30 

Thus it can be obtained 

v ( V ) -
Уi - Xi/30 

Y2 — X2/30 

XiK
B 

X
2
K B 

XiK
B
7(Vi,y

2
) 

X
2
K

B
7(Vi,V

2
) 

#i,oV
ь
 0 

0, #
2
,oV

2 

Yi-*iß{Yi,Y2) 

У2-X
2
^(Vi,У

2
) 

v/,i(Уi,У
2
) 

^
)2
(Уi,У

2
) 

S^VxE--1 1,0 

0, 

0 

0 
S

0
 V

2
E

0 

0, 

0, v
2
" 
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Tr[(MxSoMx)+V1(MxSoMx)+V1] 

тW M 
tfi.oVi, 0 

( M V 0, ^2,0^2 

M 

(Ї) 
tfi,oVi, 0 

0, í?2,0V2 

м 

M 

x Л 
x2 j 

1 + 

(£) 

V ь 0 
0, 0 

V ь 0 
0, 0 

„Q2 + 7 Q 2 ' 
^ 1 , 0 V l , 0 

Analogously 

Tr[(MxS0Mx)
+V1(MxS0Mx)+V2] 

c l , 2 

#1,0#2,0 
П2 . C 2 , 2 TV[(MXS0MX)+V2(MXS0MX)+V2] -> - ^ + -J-

^ 2 , 0 ^ 2 , 0 

The rest of the proof is obvious. D 

COROLLARY 5.6. If in Theorem 5.5 ri\ and n 2 are sufficiently large, then it is 
valid 

Q 2 ** - - _ _ _ _ _ _ _ 2 

n\n<2 

^2,0 ^ 2 , Q C 2 , 2 

- 1 S"1 

I,* 

< 0 _ ^ l . Q C l . l 

n\ ni ' 
____o___ 

П2П1 n2 

and thus 

MYi,Y2) \ __. / vř,i(Vi,V-)^^.i(Vi, V2) 
W , V2) y ~ ''*{ ^ i 2 ( n , V2)^v7,2(Vi, V2) 

Smce 

-7,i(Vi,V2) = ^ ( V O - X , 

f/,2(Vi,V2) = | i - x 2 

м " ' ê + ë | M в ' v / v -
X 2 ^ — *I,2, 

/V2 

M в ' f ^ + ë ) м в ' 
+ ì VГ1 

l X' 2 

1*2,0 

2,0 

£fte estimator $1 ( Yi, V2) o/ £/ie parameter d\ can be expressed as follows 

MYI,Y2) = MYI)+H,I, 
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where 

П\ 

v-1 

02,0 

2 x2 Mв-(-r + - r l MB' 
01,0 02,0 

x Hi M B ' ( ^ - + - H ^ ] M B , 
01,0 02,0. 

X ' 2 ^ - . v / i 2 ů 2,0 

REMARK 5.7. Analogously as in the model without constraints (cf. Section 4) 
a consideration on the insensitivity region can be proceeded. Since the method
ology is the same as in Section 4, it is sufficient to state the resulting theorem 
without proofs only. Let 

w / i ћ 

U/,i 

U/,2 

T/,(i,i) 

I,(Һ2) 

1,(2,2) 

•VU/i/i, o 

0, -VU/oh 

- - i H l ГІ9 
M*Ы + Ҡ 
IV/I / H i , н 2 

M B ' ( Ø ľ + 0 2 " 

м B' 
+ H 1 Í 

øf [ 
B' 

+ н 2 г 
ñ [ 

h'TIÁhl)h, ft'T/i(ii2)/i 
h'Ti,(2,i)h, h'TIÁ2,2)h 

мв, | £ + £ | мв, 
H i H2 

01 02 
M E 

M B ' 
H i , н 2 . 

ø ľ + ø ľ , м в ' 
+ H JL 

Ø2 

м,|£ + £|мв. 
** / H i , H 2 
M в ' ( ø ľ + ø ľ 

1 + 
M E øf 

H2 
Ø2 

MB ' 

н2 

*җ 

M И ^ ^ l M в ' 

M в t 

+ 

M B ' 

+ 

H i H2 

01 0 2 

H i H2 

01 02 

= т / , 

Hi н 2 . 

øľ + øľ , м в ' 
H2 

ň 

"^ЪЬ"" 
M B ' 

(2,1) > 

H i H2 

01 02 

-1 + 

Mr 

Mғ 

Mr 

THEOREM 5.8. The insensitivity region Ni,$ is 

N - - { 60: S-d'\NIhSti<2eh' Mв- \ůi ^ $1) M B ' 
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г.e. 

60 6 NM -==> ̂ /vartf [/i'/3( n , V2, i?i + <5i?!, 02 + <5tf2)] 

< (l + ̂ ^Var^f/i'^V!, V2,0i,02)] . 

REMARK 5.9. In order to utilize information on Ni,$ at the point #, it must 
be known that the actual value # * of # is sufficiently near to # . A similar 
consideration as in Remark 4.3 is to be made. 

6. Conclusion 

An additional experiment (updating in regression estimation) is relatively fre
quent in practice of many research domains (geodesy, physics, chemistry, tech
nical science, biology, e t c ) . It influences estimators of model parameters, a 
determination of confidence regions, testing statistical hypotheses, etc.. Thus 
many statistical problems arise and even many of them are solved, still new 
problems occur. Since a class of regression model structures is rich it seems 
to be difficult to develop a universal algorithms in order to find corrections of 
original experiment results for all situations. Partial problems must be solved 
first. 

In the preceding sections problems connecting with estimation of model pa
rameters in linear nonsingular regression models are solved. It was found out 
that in the case of normality it is possible to find an explicit expression for cor
rections of the estimators from the original experiment and to accept/reject the 
decision that the estimators of the variance components can be used in plug-in 
estimators of the parameters of the mean value of the observation vector. 
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