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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF THE 
DIFFERENTIAL EQUATION OF THE FOURTH ORDER II 

JOZEF MIKLO 

In paper [7] the asymptotic behaviour of solutions of the linear differential 
equation of the fourth order of the form 

(1) y(iv)+p(t)y" + q(t)y'-(-\)mr(t)y = 0, m = l , 2 

was investigated, where the functions p(t), q(t) and r(t) were supposed con
tinuous and continuously differentiable to the order which stands in the Theo
rems and r(t) > 0 on the interval [a, oo). 

In the paper presented an asymptotic behaviour of solutions of the equation 
of the form 

(2) y™+p{t)y" - (- \)mq(t)y' + r(t)y = 0, m = 1,2 

is studied, where the functions p(t), q(t) and r(t) have the same properties as in 
the equation (1) but q(t) > 0 is supposed instead of r(t) > 0. 

Eight new asymptotic formulae for the linear differential equation of the 
fourth order are shown. The results in this paper generalize the results in [8]. 
Theorem 8.1 in [1], p. 92 (in [7] as Theorem I) and Corollary in [2] (in [7] as 
Theorem II) will be apllied in this paper. 

The equation (2) is equivalent to the system of linear differential equations 
of the first order 

(3) z'(t) = A(t)z(t), 

where 
0 1 

A(0 = I ! ° 
' ' 0 0 

-r(t) (-\)mq(t) 
and z(t) = (y(t),y'(t),y"(t),y'"(t))T. 

Let T(r) = diag [q(t), q2'\t), ql'\t), 1] and let 

z(t) = T-'(0 w(t). 
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If z(t) is substituted in (3), then the system (3) has the form 

(4) W(t) = [A0q
]'\t) + Axr(t)q-\t) + A2p(0q ' , '3(0 + A,q\t)q~](t)] w(t), 

where A3 = diag [1,2/3,1/3,0], A0 = (a,7), A, = (b(l) and A2 = (c(/) are matrices 
of the fourth degree such that an = a23 = a34 = 1, a42 = (— \)m and all the others 
ay = 0; by = 0 for / ?- 4, J ?- 1, b4] = - 1; cif = 0 for / ^ 4 , ; V 3 and c43 = - 1. 

Let q ]l\t) dt = oo, then the function s = co(t) = \ q] \u) du is defined on 
Ja Ja 

the interval [a, oo) and has an inverse function t = a(s) defined on the interval 
[0, oo). By substituting t = a(s) the system (4) has the form 

(5) x\s) = [A0 + AJ(s) F A2#(s) + A3h(s)] x(s), 

where 
x(s) = w(a(s)),f(s) = r(a(s))q-4\a(s)), 

g(s) = p(a(s))q-2'\a(s)), h(s) = q'(a(s))q-4\a(s)). 

In order to apply Theorem I (see [1], p. 92 or [7]) the system (5) will be 
considered in the form 

(6) x'(s) = (A0 + V(s) + R (s)) x(s). 

There are the following alternatives 

(Al) V(s) = AJ(s) + A2g(s) + A3h(s) and R(s) = 0, 

(A2) V(s) = AJ(s) + A2g(s) and R(s) = A3/.(s), 

(A3) V(s) = AJ(s) + A,h(s) and R(s) = A2q(s), 

(A4) V(s) = AJ(s) and R(s) = A2g(s) + A3h(s), 

(A5) V(s) = A2g(s) + A,h(s) and R(s) = AJ(s), 

(A6) \/(s) = A2g(s) and R(s) = AJ(s) + A3h(s), 

(A7) V(5) = A3h(5) and R(s) = AJ(s) + A2g(s), 

(A8) V ( J ) = 0 and R(s) = AJ(s) + A2g(s) + A3h(s). 

The following designations will be used in Theorems of this paper 

E(t,t0) = expl-(-l)m\ r(u)q-'(u)du\ 

E]k(t, t0) = e x p V f nkq'l\u) - {-^L(pilp(u)q-^(u) + r(u)q-\u))\ d u l 
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E2k(t,t0) = e x p [ - j (»kq
y\u) ~ {-^r(u)q~\u))j du], 

E3k(t,t0) = e x p [ - £ ( A W 1 / 3 ( « 0 - (-^M2
kp(u)q-l,\u)^ d« ] , 

-E-vrC, >o) = exp [ - j Mkg ^(u) du\, 

where //*, k=l, 2, 3, 4 are the roots of the characteristic equation 
//4 - ( - \)mn = 0, m = 1,2 of the matrix A0 and /?* = (\,nk,nl,nl)T are the 
characteristic vectors of the matrix A0. 

The symbol J£? [a, oo) will refer to the set of all complexvalued functions 
which are Lebesgue integrable on the interval [a, oo). 

Applying Theorem I to the system (6) eight asymptotic formulae for the 
solutions of the equation (2) will be obtained. 

Theorem 1. Let ?"(t) q ~4/3(t), p'(t)q~2l\t), p\t)q~\t), r'(t)q~AI\t) and 
r(t)q~7/3(t) be in S£[a, oo). Then there is a fundamental system of solutions yk(t), 
k = 1, 2, 3, 4 of the equation (2) and a number t0 = a such that 

\imyi(t)E(t,t0) = 1, \\my?(t)q-jl\t)E(Ut0) = 0, j= 1,2,3 
(Fl) '^°° '^°° 

\imy^(t)q(2-m(t)E]k(t9t0) = Mi * = 2,3,4, j = 0,1,2,3. 
/-> oo 

If in addition it is supposed that q\t)q~\t) is in JS?[tf, oo), then there is a 
fundamental system of solutions yk(t\ k= 1,2,3,4 of the equation (2) and a 
number t0 = a such that 

\\myi(t)q(t)E(t,t0) = 1, \\mymq°-jV\t)E(t9t0) = 0, j= 1,2,3, 
( F 2 ) '-00 

Hm#( t )q ( 3 -^ / 3 ( t )^( t , to) = ^ * = 2,3,4, j = 0, l ,2 ,3. 
t-> oo 

Theorem 2. Let q"(t) q ~4/3(0, r'(t) q ~4/3(0, r2(0 q -7/3(0 andp(t) q ~ ̂ (t) be in 
_* [a, oo). Then there is a fundamental system of solutions yM, k = 1,2,3,4 of 
the equation (2) and a number t0 _ a such that 

lim yx(t)E(t, t0)=\, lim y?{t)q~J'Xt)E(t, t0) = 0, j = 1,2,3, 
(F3) '"°° 

Hmyl>Xt)q*-f,lXt)E2k(t,t0) = ti, k = 2,3,4, j = 0,1,2,3, 
/->oo 

If in addition it is supposed that q'(t)q~x(t) is in __*[#> °°), then there is a 
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fundamental system of solutions yk(t), k = 1, 2, 3, 4 of the equation (2) and a 
number t0 = a such that 

\\myx(t)q(t)E(t,t0) = 1, lim j,(Oa ,3-yV3(0^(t. to) = 0, j= 1,2,3, 
( F 4 ) - « 

lim yPq* -*\t) E2k(t, t0) = /4, k = 2,3,4, j = 0,1,2,3. 
t-> 00 

Theorem 3. Let q"(t)q~4'\t), p'(t)q~2l\t), p\t)q~\t) and r(t)q~\t) be in 
<£ [a, oo). Then there is a fundamental system of solutions yk(t), k = 1,2,3,4 of 
the equation (2) and a number t0 = a such that 

l i m j , ( 0 = l , \imyi(t)q-jl\t) = 0, j= 1,2,3, 
(F5) 

lim yjp(t) q« ~^\t) E,k(t, t0) = pjk, k = 2,3,4, j = 0,1,2,3. 
r-> oo 

If in addition it is supposed that q\t)q~\t) is in if [a, oo), then there is a 
fundamental system of sulutions yk(t), k= 1,2,3,4 of the equation (2) and a 
number t0=^ a such that 

limyi(t)q(t) = 1, limy1(0^(3-y)/3(0 = 0, j= 1,2,3, 
( F 6 ) 

limyP(t)qV-M\t)E2k(t,t0) = Ml k = 2,3,4, 7 = 0,1,2,3. 

Theorem 4. Let q"(t)q-*>\t), r(t)q~\t) and p(t)q-"\t) be in <£[a, co). 
Then there is a fundamental system of solutions yk(t), A: = 1,2,3,4 of the equation 
(2) and a number t0 = a such that 

lim yt(0 = 1, lim >-,w(t) q ~JI\t) = 0, j = 1,2,3, 
/T-<—\ t -> 00 t -> 00 

(F7) 
lim # ( 0 </2 -^(r) £4*(t, t0) = /4, * = 2,3,4, j = 0,1,2,3. 
/ -> oo 

Theorem 5. Lef q'(t)q~\t), r(t)q~\t) and p(t)q~v\t) be in <£[a, oo) a«d 

ioo 

q1/3(Odf= o o . 

77ze« fhere /s a fundamental system ojsolutionsyt(0, k = 1,2,3,4 of the equation 
(2) and a number t0 = a such that 

lim yx(t)q(t) = 1, lim y\>\t)q*"»"(0 = 0, y = 1,2,3, 
( F 8 ) 

lim y<J>(t)qV "^(0 I?«(t, to) = /4, * = 2' 3> 4, j = 0,1,2,3. 
t->oo 
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P r o o f of T h e o r e m 1. In this case all assumptions of Theorem I are 
satisfied. (The proof of this fact is analogous to the proof of Theorem 1 in [7]). 
Then there are four linearly independent solutions xk(s) of the system (6) in the 
case of the alternative (Al) and a number s0 = 0 such that 

lim xk(s) exp — Я*(w) áu = pk, 

where A*(s), k = 1,2,3,4 are the roots of the characteristic equation 

(7) A4 + a,A3 + a2X
2 + a3A + a4 = 0 

of the matrix A0 + V(s), where 

a, = -2h(s\ a2 = —h2(s) + g(s), 

a3= -h\s)-h(s)g(s)-(-\r, 
9 3 

a4 = -h2(s)g(s) - (-\)mh(s) +f(s), m = 1,2. 
3 

Similarly as in [7] it can be proved that the roots Xk(s) of the equation (7) can 
be expressed in the form 

Xx(s) = h(s) + (-\rf(s) + YM, 

his) = »k + ±[h(s) - ( - \r(»2g(s) +f(s))] + Yk(s)9 

k = 2,3,4, where f(s) -» 0, g(s) -• 0, h(s) -» 0 and Yk(s) -* 0 as s -* oo and Yk(s) 
is in S£ [0, oo). Then 

lim x 1 ( s ) e x p [ - 1 (h(u) + (- XTf(u) + Yx(u)) dt/ | = P, 

( 8 ) " ' T f T 1 
lim x,(s)exp|^- J ^ + -(/*(") - ( - \r(rfg(u) +f(u))) + 

+ 7k(u) dw \ = pk, k = 2,3,4, 

Denoting exp %(s)ds =-#*, k= 1,2,3,4 and putting a(u) = v, i.e., 

u = co(v) and du = qv\v)dv, ue[s0,s], ve[t0,t], (8) may be written as 
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lim w^t)q'\t)E{t,to) = PtB]g-\t0), 
t -> 00 

lim Wk(t)q'v\t)E]k(t,t0) = pkBkq~v\t0), k = 2,3,4, 
/ - • oo 

where the functions wk(t), k = 1,2,3,4 are solutions of the system (4). 
Since w(t) = T(t) z(t) and the system (3) is linear there are linearly indepen

dent solutions zk(t\ k = 1,2,3,4 of (3) such that 

limT(t)zl(t)q-](t)E(t,t0) = p, 
(9) 

\imT(t)zk(t)q-l/\t)E]k(t,t0) = p„ k = 2,3,4. 
/ - • 00 

Substituting T(0 = diag(a(O,<72/3(O,4l/3(0, 0 and 

zk(t) = (yk(t),y'k(t),y'k\t),y'k"(t))T, k = 1,2,3,4 

in (9), becomes 

\imdiag(y](t),y\(t)q-v\t),y';(t)q-2l\t),y?(t)q-\t))E(t,t0) = 
/ - • 00 

( 1 Q ) = ( l , 0 ,0 ,0 ) r 

lim dmg^Oq^tlyMq^tlyUtlyZXOq-^tVE^t, /„) = 
/-> oc 

= (\,Hk,H
2

k,nl)T, A; = 2,3,4. 

Then the formula (Fl) follows directly from (10). Therefore the first part of 
Theorem 1 is proved. 

The formulae (F2)—(F8) may be proved analogously. 

Corollary. The formulae (Fl)—(F8) imply the corresponding formulae (F'l) 
—(F'8) for the general solution of the equation (2): 

(Fl) y = ̂ E-\t,t0) + q~2'\t) I ^ / ^ V , io)]o + o(\)) 

(F'l) y = g - 'W^-U to) + £wkErk\t,t0)^(\ + o(\)), 

(F'3) y = [c}E~\t, Q + q'2l\t) YwkE;k\t, /0)](1 + o(\)), 

(F'4) y = q-\t^cxE-\t,t0) + £**£*(*> h)]*-1 + ° ( 1 ) ) ' 

(F'5) y = [c, + q'2l\t) £wkEfk\t, /0)](1 + o(\)), 
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(F'6) y = q~\t)\cx + tckt*kE*% OJC1 + "0))> 

(F'7) y = [cx + q~2l\t) twkE4~\u <,)](1 + o(l))9 

(F'8) y = ?-!(0[^i + £2CME4-k\t,t0)^(l + o(\)) 

where cl9 c2, c3, c4 are arbitrary numbers and the symbol o(l) denotes a function 
which converges to zero as t —> oo. 

Remark. The equation y(iv) + a^y' = 0, a > 0 satisfies the hypothesis of 
Theorems 1—5, thus from each formula (F'l)—(F'8) it follows that the general 
solution of this equation is of the form 

y = [cx + c2e
±at + e+at/\c3 cos (a fit/2) + c4 sm(afit/2))}(\ + o(\)) 

This equation has constant coefficients and therefore its general solution is 

y = Cx + c2e
±at + e±at/\c3 cos (a fit/2) + c4 sin (a fit/2)) 

and so o(l) = 0. 
Example. If p(t)q~x/\t) and r(t)q~\t) are in J5?[a, oo), a > 0, where 

/ 2t V 
q(t) = I I , then the equation 

y(iv) + P(t)y"-q(t)y' + r(t)y = 0 

satisfies the assumptions of Theorem 5 and therefore its general solution has the 
form 

2ř 

З Г „21 

C\ + c2—^—: + (t + l)e"'(c 3 cos3(ř - ln(/ + 1)) + 
(f + O2 

+ c4 sin Ъ(t - ln (/ + 1))) ](1 + o(l)), 

where cuc2,c3 and c4 are arbitrary numbers. 
From this example it may be seen that the coefficients do not satisfy the 

assumptions of theorems in [3], [4] and therefore this paper gives new results on 
the asymptotic behaviour of solutions of the linear differential equation of the 
fourth order. 
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АСИМПТОТИЧЕСКИЕ ПОВЕДЕНИЯ РЕШЕНИЙ ДИФФЕРЕНЦИАЛЬНОГО 
УРАВНЕНИЯ ЧЕТВЕРТОГО ПОРЯДКА II 

1огеГ М1к1о 

Резюме 

В работе рассметриваются асимптотические поведения решений уравнения (2) при г —> ос, 
если несобственные интегралы от некоторых дробей функций /?, а и г являются конечными. 

190 


		webmaster@dml.cz
	2012-08-01T04:20:09+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




