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Abstract

The linear regression model in which the vector of the first order pa-
rameter is divided into two parts: to the vector of the useful parameters
and to the vector of the nuisance parameters is considered. The type I
constraints are given on the useful parameters. We examine eliminating
transformations which eliminate the nuisance parameters without loss of
information on the useful parameters.
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Introduction, notations

Transformations for nuisance parameters in linear regression models with nui-
sance parameters are studied for instance in [3], [4], [6]. This paper deals with
similar problems in models to which type I constraints are added.

The following notation will be used throughout the paper:

o1



52 Pavla KUNDEROVA

R" the space of all n-dimensional real vectors;

Up, Amn the real column p-dimensional vector, the real m x n
matrix;

A r(A) the transpose, the rank of the matrix A;

A (A), Ker(A) the range, the null space of the matrix A;

A~ a generalized inverse of a matrix A (satisfying AA~A = A);

AT the Moore—Penrose generalized inverse of a matrix A
(satisfying AATA = A ATAAT = AT (AAT) = AAT,
(A*A) = ATA);

Pa the orthogonal projector in the Euclidean norm onto . (A);

Ma =1—P4 the orthogonal projector in the Euclidean norm onto . (A);

I the k x k identity matrix;

Om.n the m x n null matrix;

o the null vector.

If .#(A) C #(U), U p.s.d., then the symbol P} denotes the projector pro-
jecting vectors in . (U) onto .# (A) along .# (UAL). A general representation

of all such projectors P§ is given by A(A’'UA)"A’U~ + B(I — UU™), where B
is arbitrary, (see [7], (2.14)). My =1—PY .

Let N, is p.d. (p.s.d.) matrix and A,,, an arbitrary matrix, then the
symbol A;(N) denotes the matrix satisfying AA;(N)A = A and NA;(N)A =
(NAL )
N-seminorm is minimal]. In general ALvy =N+ A’A)"A AN+ AAT)" A,
If the condition .Z(A") C .#(N) is fulfilled, then A . = NTA’(ANTA’)~, (see
[2], pp. 14-15).

AY. ] AL (nyY 1s any solution of the consistent system Ax =y whose

(N)

Assertion 1 (see [3], Lemma 10.1.35) Let X be any n X k matriz and ¥ an
n X n p.s.d. matriz.
(i) If ¥ is p.d., then

(MxEMy)t =271 - B IX(X'S7IX)"X'S~ = 2-IMY .
(i1) If ¥ is not p.d. however #(X) C A (X), then
(MxEIMx)T =S - ZHX(X'S™X)"X'Tt.
(ii) In general case
(MxEMx)t = (B +XX)FT = (Z 4+ XX) XX (Z + XX)"X] =X (Z + XX)T.
(iv)
(MxSMx)t = Mx(MxEMx)t = (MxEMx)tMy = Mx(MxSMy ) TMy.

Assertion 2 Let D = (g} ?) be symmetric and positive semidefinite matriz.

If #(B") C .#(C—B'ATB), then

o _ (A B [ AT+ AtB(C - B/ATB)TB/A*, —~ATB(C — B'A*B)*
“\p,Cc) = —(C— B'ATB)TB/A*, (C— B'/ATB)*
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If #(B) C #(A—BCtB'), then

o+ _ (AB T (A —BC+B/)*, —(A—BCTB/)TBC*
—\B,c) T\ -CrB(A—BC*B/)*, Ct+CFB/(A—BCB/)*BCt /-

Proof Assertions can be proved directly. As D is p.s.d. matrix, there exists
block matrix (%) such that

( Q”, E) N @ (K = (fdlf’, éﬁ/f> = M(B) = MIK') C M) = .MN),

analogously .#(B’) C .#(C). It implies that AAtYB = B, BPATA =B’, CCtB’ =
B/, BCTC = B. These matrices don’t depend on the choice of g-inverses. We
can easily prove, that relations DD™D = D, DYDD" = D% are valid for both
formulas. Matrices D™D, DD" are symmetric, if conditions .#(B’) C .#(C —
B’ATB) and .#(B) C .#(A — BC*B') are satisfied. It is to be remarked that
these conditions are valid if #(D) = r(A) + r(C). O

Let us consider following linear model with nuisance parameters

Y ~ [(X,9) <g) ,Xv], 2y known matrix, (1)
where Y = (Y1,...,Y,)" is a random observation vector; § € RF is a vector of

the useful parameters; x € R! is a vector of the nuisance parameters; Xn,k is a
design matrix belonging to the vector (; S, ; is a design matrix belonging to
the vector k.

We suppose that

1. E(Y)=XB+Sk, V3 € RF, Yk € R,

2. var(Y) =%y =20 Vi, 9= (V1,...,9,) € 9 C RP, 9 is supposed to
be with nonempty topological interior.

In this paper we consider that the given matrices Vy,...,V, are p.s.d. and that
the variance components ¥1,...,9, are positive (mixed linear model, see [1],
Chapter 4).

3. Xy is not a function of the vector (3, )"

If matrix ¥y is positive definite and r(X,S) = k + 1 < n, the model is said
to be regular, (see [3], p.13).

Parametric function f//3 is unbiasedly estimable in model (1) iff f € .# (X'Mg),
see [6], Remark 2.

There are situations in the practice that auxiliary information on the vector
of useful regression coefficients 3 is known, it means that the parametric space
for 3 is not R* but its subset only,

B € {ue R*:b+Bu=o}, (2)

where B is a ¢ x k known matrix. Since no assumption on the 7(B) is considered,
it must be assumed that a given ¢-dimensional vector b satisfies b € .#(B). This
constraints on the useful parameters will be called type I constraints.
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Lemma 1 The class of unbiasedly estimable functions of the useful parameters
in model (1) with constraints (2) is created by all functions h'3 possesing

he .#(X'Ms,B).
Proof Function h’3+a, h € R¥, a € R is in model (1) with constraints (2)
unbiasedly estimable iff there exists statistic g'Y + ¢, g € R", ¢ € R such that
E@Y +c)=g[XB+Sk]+c=hp+a, VB, Vr
S (@X-h)B+c—a=0ng'S=0, V3
& (UMgX -h)34+c—a=0, V3, uc R"
& there exists vector k € R? such that k'B = u'MgX —h" Ak'b=c—a.

Because ¢ can be chosen arbitrarily, the necessary and sufficient condition for
unbiasedly estimable function is

UMgX —KB=h" & h=XMgu—Bk < he.#(XMg,B). O

Remark 1 The BLUE (best linear unbiased estimator) of the vector function
MgX/3 in the singular model (1) with constraints (2) is
IRy [Zo+XMpg X'+58']T [Zo+XMpg X'+88']T —
MsX3 = MSP(Xﬁl\/[B/,SI)B Y — MSM(XﬁMB,’S;3 XB'(BB')"b.

It is proved in [1], 2.10.2. and enables us to get BLUE of the unbiasedly es-
timable functions h’'3,h € .#(X'Mg) in singular model (1) with constraints (2).

In the regular model (1) with constraints (2) the BLUE of the parameter
is given by

B=[I—C'B/(BC"'B))"'B]g* — C"'B/(BC"'B')~'b,

where
C= X'(MngMS)+X,

and where
B* = [X' (MgZgMg)TX] 71X (MsgZyMg)TY,

(estimator in the regular model (1) without constraints).
The variance matrix of the estimator /3 in regular model (1) with constraints
(2) is given by
V&I‘(B) = (MB/CMB/)+.

These assertions are proved in [5], Theorem 1, Theorem 2.

In the literature there are investigated properties of estimators of the pa-
rameters 3, x in model (1) under constraints (2), see for example [1], [5]. In
cases when we are interested on useful parameters only it is possible to simplify
model (1) by the propriate eliminating transformation, see [3], [4], [6].

In this paper we join both of the procedures mentioned. Firstly we use elim-
inating transformation and then we add constraints to the transformed model.
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2 Type I constraints in the transformed model

Our task will be to eliminate the matrix S belonging to the vector of nuisance
parameters, i.e. we consider the following class of eliminating matrices

T={T:TS =0},

where T is matrix of the proper dimension, say of the type r x n.
That leads us to linear models

TY ~ [TX3, TSy T (3)

If we now add constraints (2) to the model (3), we get model

TY X TYyT, O
(%)~ 1(5)7("e"5)] @
Lemma 2 Linear function f'3 + a,f € R¥,a € R is unbiasedly estimable in
model (4), iff
fe.#(XT,B.
Proof The assertion can be proved in the same way as in Lemma 1. O

In the following text we consider only transformation matrices T with the

property
AMXT) =t (X'Mg),

it means that transformations do not cause a loss of information on the param-
eter f3.

Theorem 1 For the BLUE of the function of the parameter 3 in the model (4)
holds

TXB = PY gy XM K0T py TSt XM XOTT gy (BBY) b,

Proof According to Theorem 3.1.3. in [3]

L —

(%)s=(%) [(X/T/’B”;(”ﬁa“s)y (%)
() Joemen{ (757 9) + (W) eemen} (B)]
o (%57 (B ) (%)

By the help of the Rohde’s formula for g-inverse of the p.s.d. partitioned matrix
(see [3], Theorem 10.1.40) we can write

(1) [i2]

T[Sy + XX]T, TXB'\ ~
BX/T’, BB’
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where
zﬁ + XMp X)T']~,
219 + XMp X)) T~ TXB'(BB)~
= “BX'T'[T(Zy + XMp X)T']~
(BB')"BX'T'[T(Zy + XMp X)T'|~TXB'(BB') .

Then (we use Moore-Penrose g-inverse matrix for the sake of simplicity)

X'T,B) 11 12 TX
21 22

= Mp X'T(T[Sg + XMpX]T) " TXMp: + Pp/]™,

>\
(%)=
TX 11/ 11/ /
= ( ){[MB/XT(T[2g+XMB/ T)"TXMp/ " + P }(X'T',B)
11 12 TY
21 22
After some calculations we get

(TX) f= (P%;?MB’X Ty TS XM X T (BB b) |

thus

B —b
In the course of the proof following assertion has been used
AB=0 A BA'=0 = (A+B)t = A" 1 B*. 0
Theorem 2 The covariance matriz of the estimator TX3 in model (4) is

var[TX3] = TX{[Mp X'T/(T[Zy + XMpX'|T')"TXMp/|T — Mp }X'T".

Proof -
var[TX3] =
= PU XM X (g T TXM s X T/ TXM g X T (P XM X0y

= TXMp: (Mp X' T'[T(Sg + XMp X )T TXMgz/) " Mp X'T’
X [T(Sg + XMpX)T']HT(Sy + XMpX)T[T(Sg + XMp X )T+
x TXMp: (Mp X' T/[T(Sg + XM X )T X T'Mp) " Mp X' T’
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— TXMp (M X'T'[T(Zy + XMB>/X')T’]+TXMB/)Jr Mp X'T’
X [T(Zy + XMp X T [T TXMp M X' T/ [T(Zy + XMp X)) T'|*

x TXMp: (M X'T'[T(Zy + XMB>/X')T’]+TXMB/)Jr Mp X'T’
=TXMp (MpX'T'[T(Zy + XMB/X’)T’]JFTXMB/)Jr Mp X'T" — TXMp X'T’
=TX { (M XT'[T(Zy + XMB/X’)T’]J’TXMB/)Jr — Mg } X'T.

In the course of the proof we have used Assertion 1, (ii) and following statement
AMB') C #A) & BATA=B,
for matrices A = T(Xy + XMp X' )T’ and B = Mp X'T". O
Theorem 3 Let the transformed model (4) where ¥y = Zle % Vi, V; p.s.d.,
% > 0,Vi=1,...,p, (mized linear model) be under consideration. Let ¥¢ =

Y109V, where 90 = (99,...,99) is as near to the actual value ¥* of the

parameter as possible. The linear function g'¥,9 € 9 can be estimated by
MINQUE (minimum norm quadratic unbiased estimator) iff

ge M[S , +], (5)
(NI(T);()(TE%.T ' %)M(TBX)>
where the (i, j)-th element of the matriz S + 18
(s )
( B ) ’ ( B )
+}ig =
TE T/, 0
( M)
= Tr[(Mrxar, TS0T Mrxar, )T TV, T (Mrx ar, TS0 T Mrxar, ) TTV; T,
7’7 ] = 17 Y 4
If the condition (5) is satisfied, then the 9°-MINQUE is
P /
— TY
» ZTV,T'Z; —ZTV,;T'ZTXB'(BB')~ TY
—(BB) " BX'T'Z'TV,T'Z’; (BB')"BX'T'ZTV,;T'Z'TXB'(BB)~ —b )’

where Z = [Mrxar, TS0 T'Mrx s, |7, and where the vector X = (Ai,...,\p)
is a solution of the equation

T=gT', 0
0O )M

tA=g.
(TBX))
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Proof We use following statement (see [4], p. 101) valid for the linear model
Y ~ [X3,5y] where 3 € RF, Sy = S0 9Vi, 0 = (0h,....0,) € 0 C RP,
¥, >0,Vi=1,...,p, Vi,...,V, p.s.d. matrices (mixed linear model):

a) Let g = >0 99V,. The function g'd = Y7 | ¢:9;, ¥ € ¥, can be
unbiasedly quadratically and invariantly estimated [i.e. the estimator has the
form Y'AY, where A, ,, is symmetric matrix, the estimator is invariant with
respect to the change of the vector ] if and only if g € .#(S(arysonx)+)s
where

{Statxson)+ Fij = Tr[(MxEoMx ) TV (Mx oMy ) V5],

ii=1,...,p.
b) If the function g'tJ satisfies the condition from a), then the ¥°-MINQUE
of g’v is given as

P
gl = Z)\iY/(MXEOMX)+Vi(MXEOMX)+Y7
i=1
where the vector A = (Aq1,...,),) is a solution of the system of equations
S(szoMX)+/\ =8

We use this statement for the model (4) by following substitutions

TY X TE T, 0 _ leﬂ?TViT’,O
= (5) 2= (%) == (T80 0) - (™).
Thus

{S TSoT! +}i’j
(e (587 )

B

o (7578 e (7679)

o (7578w (67 9)}

ab
bb|/’

Let us denote

(757 (2]

where (see Assertion 2)

[T(Zo + XMp X T+

—[T(So + XMp X )T|* TXB'(BB')*,
—(BB')TBX'T'[T(Z0 + XMp X)) T/,

= (BB')* + (BB')"BX'T/[T(Z + XMp X)T']t TXB'(BB') ™.
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By Assertion 1,(ii) (the Moore—Penrose matrices are used because of unique-
ness of matrix expressions)

e (7T e - (j T )
—(:) (2o (BHRE) (20}
o ([ ) - (B )

— (’ EE ) <TX>{PB/ + MB/XT [T(EO +XMB’X/)T/]+TXMB/}+
oern (I ) - (L ) - (3 ).
[ba). [bb] ) \[ba} [bb] )\ [t} [1V]

where by notation
U= [T(EO + XMB/X/)T/]—l—,

= UTX(Mp X' T'UTXMp )" X'T'U,
= —UTX(Mp X' T'UTXMp )" X' T'UTXB'(BB)* =111,
= (BB)TBX'T'UTX(Mp X' T'UTXMp/ )t X' T'UTXB'(BB')* + (BB)*.

After some calculations using notation

Z = (Mrxa, TE0T' Mrxar,, )™,

[M@;) ( TEJ)T/’,%W(T;)r

_ Z, —ZTXB/'(BB') _(EF
o —(BB’)*BX/T’Z’, (BB’)+BX’T’ZTXB’(BB’)‘Ir “\F.,G/)"
Thus

we get

© (M(TBX) (T %)M(TBXQ i

B E, F\ /TV,T, O\ (E F\ /TV,T, 0\] _ [
_Tr[(F/7G>< o, o)(P,c)( S O)]—Tr[ETvlTETVJT]

= Tr[(Mrx s, TS0 T’ Mrx s, )T TV T (Mox g, TS0 T'Mex g, ) T TV, T,

iji=1,...,p.



60 Pavla KUNDEROVA

If
ge//l(S<

+);
M(Tg)(”%.ﬂ %)M(TBX))

then under the model (4)
o z”:x ™'y TS, O\ |7 (TViT, 0
BT 2 ) MO\ 0, 0) () 0, O
ST/, O Ty
. [M(TBX) < 0, o) M(TBX)] <—b>

(Y "(ETV,TE, ETV,T'F\ (TY\ < (TY '
_Z; \=p) \FTV,TE, FTV,T'F ) \ =p _Z; “\ —b

y TV, T'Z, —ZTV,;T'ZTXB'(BB)* TY
—(BB)*BX'T'Z'TV,T'Z', (BB)*BX'T'Z' TV, T'ZTXB'(BB')* —b)’
where Z = (Mrxar,, TS0 T'Mrxar,, )t =

Theorem 4 Function giTY is the best unbiased estimator of its mean value in

the model (4) iff
g1 € A M (15,11 -TX(X'T'TX+BB")~ X'T|. TSy T'TX (X' T'TX +BB')~ B

Proof Function g’ (IE), g = (gl), g, € R", g, € R, is in the model (4) the
2
best unbiased estimator of its mean value iff

oo () (] -»

where 79 [(IYb)} is arbitrary unbiased estimator of the null function g, (5, 9) = 0,
(see [4], p. 84). Any unbiased estimator of this function is of the form

v [Cﬁﬂ - f’@)’ F= (L) fet(Miy).

E[fiTY +f5(—=b)] = f1TXB+f4(—b) = (f1TX+f4,B)3 =0, V3,

as

<~ ( &,f’g)(TBX> = 0/7 & fe %(M(TBX)) .

Let u= (E;), ui € R", us € R?, be arbitrary. Then the covariance

cor (8(15) ey (1)) = (7673 ) e
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_ o (TE6T, 0 (1= TXX'T'TX +B'B) X'T', —TX(XT'TX+B'B) B\
- 0, O —B(X'T'TX+B'B)"X'T, Il,—B(XTTX+B'B)"B

@ ,)<T279T’(I,. — TX(X'T'TX+B'B)"X'T), ~TEyTTXXT'TX + B’B)‘B’) )
IR o, o

=0.
& g (T T [l —TX(X'T'TX+B'B) " X'T'], - TSy T'TX(X'T'TX+B'B) " B’) = 0.
Thus g| TY is the best unbiased estimator of its mean value iff

g1 € A (s, 11, - TX(X'T'TX+B'B)- X'T"), TS, T'TX (X' T'TX +B'B)-B)|- O

Remark 2 If we change the ordering of the procedures described at the begin-
ning of this section, we get the same model. Indeed by joining linear model (1)
with constraints (2), we can write

Y X, S I} 3,0
b)) T |\B,0)\x)\0O,0)]|"
. . T, 0
The transformation by the matrix o 1) such that TS = O, leeds to the
model (4).

3 Examples of the transformation matrices

The general solution of the matrix eguation TS = O is of the form
T=A(l-S57),

where A is an arbitrary matrix of the corresponding type, S~ is some version of
generalized inverse of the matrix S.

If we choose S~ = (S”WS)~S'W, where W is an arbitrary p.s.d. matrix such
that

M(S') = .4 (S'WS), (6)

then T = AMY , where MY is given uniquely.

First we confine us to the transformation matrix

a) T=MY,
i.e. we consider transformed linear model

MZY ~ MY X3, MY (ME ). (7)

Thus model with the type I constraints is following

(- ()
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It can be proved (see [6], chapter 3) that
M (Ms) = A4 (M5')"),

thus
M(X'Mg,B') =.#(X' (MY B,

i.e. the classes of unbiasedly estimable functions g’ in model (1) with con-
straints (2) and in model (8) are identical.
According to Theorem 1 and Theorem 2

MY X5 = P XM SOOI MLy 1 X8 (BBY)b] — MY XB/(BB) b
4 +
= MY XMp [MB,X’(M?’)’ (MgV(z+XMB,x')(MgV)/) MgVXMB,] Mg

+
XX (MY (MY (5 + XMp X)) (MY )') M [Y+XB'(BB')"b] — MY XB'(BB') b,

var[M% Xg] =
w 1 W w noawa W * LW
= MEX{[Mp X (ME) (MY + XM X (MY ) ) MEXMp| — Mp X (ME).
Remark 3 If the matrix ¥ + XMp: X' is regular or if
M(S) C M(S+XMpX),

it can be proved that (see [6], Lemma 1)

+

(ME) [ME (S +XMpX)ME) | MY = Ms (S + XM X)Ms] "
Then
MY X3 = MY X (Mg X' [Mg(E + XMp X )Mg]TXMp:) * X [Ms(S+XMp X )Mg]*
x (Y 4+ XB'(BB')~b) — MY XB'(BB')"b.

var[MYX3] = MY X { (M X Mg (5 + XMp X ) Mg T XM, ) = Mjg} X' (MY,
When we choose transformation matrix

b) T= MngzMx) 7
we get the model with type I constraints with the same design matrix belonging
to the vector 3,

M(SszMxﬁY N <x>6 MgNIxZJVIX)+E(M(SMxZJVIX)+)/,O
—b B/ 0, o/’
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because it is .
MGEMTS — o

s MG =

According to assumption (6) it should be
M(S) = #(S'MxEMx]TS).

It is valid if the model (1) is regular (see [3], page 189).
In this model

+ +
)/(\6 B P[J\/[éﬂlx)jlwx) E(MéMX SMy) )’+XMB/X’]+ M(]V[XZ]V[X)+Y
— " XMpg/ S

+ +
M(SMXEMX) E(1\/[(SMX>:MX) Y AX M X'

~My XB'(BB') b,

var[Xj] =
= X{ [Mp X' (MZPHEOT QBT XMy X ) XM | T M }X'

If we suppose, that
MXY) C (X [MsgEMg]TX), (9)

we can use transformation matrix
+
¢ T-= ngszwls)
that leads to the model

(5 )~ e (x5

because under assumption (9) it is

Pg(MsEMs)+X — X, P%VISEMS)+S -0,

PRI 3 (PSS = X (X [Ms M X) X'
)/@ _ P[;cl\(/f);[MSZMS]*X)*X’+XMB,X’]*PgéwszMsﬁY
_ME?J(V});’,[MSEMS]*X)’X’+XMB/X']+XB/(BB/)—b

— {XMB, [MB/X’ (XX (MgEMg) XX + XM X') ¥ XMB/} Mp X — XMB,x’}

x (MgEMg)T[Y + XB'(BB')"b] — XB'(BB')"b.

var[X3] = x{ [MB/X’ (XX (MgEMg)TX] X + XM g X') ™ XMB,} T Mg }x’.
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Remark 4 In the practice we have to decide, whether to use transformation
or not. We should compute variance matrices of the estimators in the original
model and in the transformed model and decide according to the accuracy of
the estimates. We can use following formulas:

a) if the model (1) is regular, then under condition (2) without transforma-
tion (see Remark 1)

var(X3) = XMp X' (MgEyMg)tXMp ] tX,

b) in the singular model (1) with constraints (2) without transformation (see
Remark 1)

CH plSe+X Mg X'+88T [So+XMg X'+887T)’
var[Xf] = P(XﬁMB/,Sf 29 (P(XﬁMB/,Sf ) )

¢) in the transformed singular model (4) (see Theorem 2)

var[TXB] = TX{[MpX'T (T[S + XMp X T") " TXMp/ |t — Mg }X'T’.
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