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Abstract

Sufficient conditions are established for the global stability of solutions
of certain third-order nonlinear differential equations. Our result improves
on Tunc’s [10].
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1 Introduction

We consider the third-order nonlinear ordinary differential equation

. . .
x + ψ(x, ẋ, ẍ)ẍ + f(x, ẋ) = 0 (1.1)

or its equivalent system

ẋ = y, ẏ = z, ż = −ψ(x, y, z)z − f(x, y), (1.2)

where

ψ, ψx, ψz ∈ C(R× R× R,R) and f, fx, fy ∈ C(R× R,R). (1.3)

It is assumed that solutions of (1.1) exist and are unique.
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Stability is a very important problem in the theory and application of differ-
ential equations, and an effective method for studying the stability of nonlinear
differential equations is the second method of Lyapunov (see [1–14]).

In a recently paper, Tunc [10] obtained the global stability of (1.1) and the
following result was proved.

Theorem A (Tunc [10]). Further to the basic assumptions on the functions ψ
and f suppose the following:

(i) xf(x, 0) > 0 for x �= 0;

(ii)
∫ y

0

f(0, v) dv ≥ 0;

(iii) lim
|x|→∞

sup
∫ x

0

f(u, 0) du =∞;

(iv) there is a positive constant B such that ψ(x, y, z) ≥ B for all x, y, z;

(v)

B

[
f(x, y)− f(x, 0)−

∫ y

0

ψx(x, v, 0)v dv
]
y ≥ y

∫ y

0

fx(x, v) dv

for all x, y;

(vi)

B

[
f(x, y)− f(x, 0)−

∫ y

0

ψx(x, v, 0)v dv
]
y + ψ(x, y, z)

≥ y

∫ y

0

fx(x, v) dv +B

for all x, y �= 0, z;

(vii)

4B
∫ x

0

f(u, 0) du
{∫ y

0

[f(x, v)− f(x, 0)] dv +B

∫ y

0

[ψ(x, v, 0)−B] v dv
}

≥ y2f2(x, 0)

for all x, y �= 0;

(viii) yψz(x, y, z) ≥ 0 for all x, y, z

Then the trivial solution of equation (1.1) is globally asymptotically stable.

Interestingly, (1.1) is a rather general third-order nonlinear differential equa-
tion. In particular, many third-order differential equations which have been dis-
cussed in [12] are special cases of (1.1), and some known results can be obtained
using this theorem. However, it is not easy to apply Theorem A to these special
cases to obtain new or better results since Theorem A has some hypotheses
which are not necessary for the stability of many nonlinear equations.
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Our aim in this paper is to further study the global stability of (1.1). In the
next section, we establish a criterion for the stability of (1.1), which extends
and improve Theorem A. Finally, in Section 3, we apply our result to some
examples.

In the following discussion, we always assume (1.3) holds without further
mention.

2 Main result

Our main result in this section is the following theorem.

Theorem Let δ0, a, b, c be positive constants such that ab > c.
Assume that

(1) f(x,0)
x ≥ δ0, x �= 0, f(0, 0) = 0,

(2) f ′(x, 0) ≤ c,

(3) fy(x, θy) ≥ b for 0 ≤ θ ≤ 1,

(4) ψ(x, y, z) > a,

(5) yψz(x, y, θz) ≥ 0, for 0 ≤ θ ≤ 1,

(6) a
[
f(x, y)− f(x, 0)−

∫ y

0
ψx(x, v, 0)v dv

]
y ≥ y

∫ y

0
fx(x, v) dv.

Then, the trivial solution of (1.1) is globally asymptotically stable.

Remark 1 The theorem just stated above improves the theorem established in
[1] and includes the result established in [9]. The results of Ezeilo [2], Ogurtsov
[5] and Goldwyn and Narendra [3] are also direct consequences of our result.

Proof Clearly, (1.1) is equivalent to the system (1.2) and (0, 0, 0) is a solution.
Now, consider the Lyapunov function

V (x, y, z) =
∫ x

0

f(u, 0) du+
∫ y

0

ψ(x, v, 0)v dv + a−1

∫ y

0

f(x, v) dv

+
1
2
a−1z2 + yz (2.1)

This is rewritten as

V (x, y, z) =
1
2a

(ay + z)2 +
1

2ab
(f(x, 0) + by)2 +

∫ y

0

[ψ(x, v, 0)− a]v dv

+
1
a

∫ y

0

[fv(x, θv) − b]v dv +
∫ x

0

[1− 1
ab
f ′(u, 0)]f(u, 0) du

where fv(x, θv) = v−1{f(x, v)− f(x, 0)}, v �= 0.
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On using hypotheses (1)–(4) of the theorem,

V (x, y, z) ≥ 1
2a

(ay + z)2 +
1

2ab
(f(x, 0) + by)2 +

1
2
δ1x

2,

where δ1 = 1
ab (ab− c)δ0 > 0. It follows that there exists a constant K > 0 small

enough that
V (x, y, z) ≥ K(x2 + y2 + z2).

Hence V (x, y, z) is a positive definite function.
Next, we show that the derivative of V (x, y, z) with respect to t along the

solution path of (1.2) is negative semi definite.

V̇(1.2) = Vxẋ+ Vy ẏ + Vz ż, (2.2)

where Vx, Vy , Vz are partial derivatives of V with respect to x, y and z respec-
tively, and ẋ, ẏ and ż are as in (1.2).
Thus,

Vx = f(x, 0) +
∫ y

0

ψx(x, v, 0)v dv +
1
a

∫ y

0

fx(x, v) dv,

Vy = ψ(x, y, 0)y +
1
a
f(x, y) + z, Vz =

1
a
z + y.

Then, substituting Vx, Vy, Vz in (2.2) and using (1.2) yield

V̇(1.2)(x, y, z) = −
{
f(x, y)− f(x, 0)−

∫ y

0

ψx(x, v, 0)v dv
}
y

+
1
a
y

∫ y

0

fx(x, v) dv − ψz(x, y, θz)yz2 −
[
1
a
ψ(x, y, z)− 1

]
z2,

where ψz(x, y, θz) = z−1 {ψ(x, y, z)− ψ(x, y, 0)}, z �= 0. From hypotheses (4),
(5) and (6) of theorem, we see that

V̇(1.2)(x, y, z) ≤ 0, (2.3)

and the rest of the proof may now follow as in [2, 9].
Let Ω denote a trajectory x(t), y(t), z(t) of (1.2) satisfying the initial condi-

tions x(0) = x0, y(0) = y0, z(0) = z0, where (x0, y0, z0) is an arbitrary point of
the (x, y, z)-space. Then, by (2.3),

V (t) ≡ V (x(t), y(t), z(t)) ≤ V (x0, y0, z0) (t ≥ 0). (2.4)

Further, V (t), being non-increasing and non-negative, tends to a non-negative
limit, V (∞) say, as t→∞. To prove the theorem, it is sufficient to show that

V (∞) ≯ 0; (2.5)

for, in that event, we should have V (∞) = 0, and this would imply x(∞) = 0,
y(∞) = 0, z(∞) = 0, which is the required result.
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Suppose on the contrary that (2.5) is not true: that is, assume that V (∞) > 0.
Since the set points (x, y, z) for which

V (x, y, z) ≤ V (x0, y0, z0)

is bounded, it is clear from (2.4) that the trajectory Ω has limit points; and
the set of all its limit points consists of whole trajectories of (1.2) lying on the
surface V (x, y, z) = V (∞). Thus, in particular, if Q is a limit point of Ω, there
is a half-trajectory, ΩQ say, of (1.2) issuing from Q and lying on the surface
V (x, y, z) = V (∞). Evidently, we must have

V̇(1.2) ≡ 0 (2.6)

on ΩQ; for otherwise there would exist points (x, y, z) of ΩQ at which

V (x, y, z) < V (∞).

From (2.4) and (2.6) it follows readily that z = 0 and hence also that y ≡ γ,
x = γt+ ξ (γ, ξ constants), ż = 0 for any (x, y, z) on ΩQ.

Also, since from (1.2),

ż = −ψ(x, y, z)z − f(x, y),

it follows that f(x, y) = 0, that is

f(γt+ ξ, γ) = 0. (2.7)

Since f(0, 0) = 0, (2.7) clearly holds if and only if ξ = γ = 0 (see, for example,
[12, p. 370]). Hence x = 0, y = 0. We have therefore that x = y = z = 0;
this implies that the origin is a point of the surface V (x, y, z) = V (∞), which
contradicts our assumption that V (∞) > 0. This proves (2.5) and hence the
theorem. �

Remark 2 Clearly our theorem is an improvement and extension of Theorem
A. In particular, from our theorem we see that (ii), (vi) and (viii) assumed in
Theorem A are not necessary, and (i) can be replaced by (1) for the global
stability of the trivial solution of (1.1).

3 Examples

In this section, we consider certain examples which are particular cases of (1.1).

Example 1 Consider the equation

. . .
x + [(sinx)ẋ + (ẋ)2 + eẋẍ + 2]ẍ+ (ẋ)3 + ẋ+

x

1 + x2
= 0. (3.1)

(3.1) is in the form of (1.1) with

ψ(x, y, z) = (sinx)y + y2 + eyz + 2, f(x, y) = y3 + y +
x

1 + x2
.
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With a = 2, b = 1, c = 1, we observe that
[
f(x, y)− f(x, 0)−

∫ y

0

ψx(x, v, 0)vdv
]
y =

[
y3 + y − 1

3
(cos x)y3

]
y

> y2 1− x2

(1 + x2)2
= y2f ′(x, 0), for y �= 0.

Then it is easy to check all the hypotheses in Theorem are satisfied and so the
trivial solution of (3.1) is globally asymptotically stable.

Example 2 Consider the equation

. . .
x + [ln(1 + x2) + eẋẍ + 2] +

x

1 + x2
(1 + (ẋ)2) + ẋ+

1
3
(ẋ)3 = 0. (3.2)

(3.2) is in the form (1.1) with

ψ(x, y, z) = ln(1 + x2) + eyz + 2, f(x, y) =
x

1 + x2
(1 + y2) + y +

1
3
y3.

With a = 2, b = 1, c = 1, we observe that
[
f(x, y)− f(x, 0)−

∫ y

0

ψx(x, v, 0)v dv
]
y =

[
y +

1
3
y3

]
y

> y2 (1 − x2)
(1 + x2)2

= y2f ′(x, 0), for y �= 0.

Then it is easy to check all the hypotheses in Theorem are satisfied and so the
trivial solution of (3.2) is globally asymptotically stable.
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