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Abstract

In the paper an additive closure operator on an abelian unital l-group
(G, u) is introduced and one studies the mutual relation of such operators
and of additive closure ones on the MV -algebra Γ(G, u).
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1 Introduction

In [6] additive closure (and multiplicative interior) operators on MV -algebras
were introduced as a natural generalization of topological closure (and interior)
operators on Boolean algebras. Closure and interiorMV -algebras (MV -algebras
endowed with additive closure or multiplicative interior operators) generalize
topological boolean algebras in a natural way.

Let us recall the notions of an MV -algebra and of an additive closure oper-
ator on an MV -algebra.

Definition 1.1 An algebra A = (A,⊕,¬, 0) of the signature 〈2, 1, 0〉 is called
an MV-algebra iff for each x, y, z ∈ A:

(MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

(MV2) x⊕ y = y ⊕ x;
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(MV3) x⊕ 0 = x;

(MV4) ¬¬x = x;

(MV5) x⊕ ¬0 = ¬0;

(MV6) ¬(¬x ⊕ y)⊕ y = ¬(x ⊕ ¬y)⊕ x.

Definition 1.2 Let us consider an MV-algebra A = (A,⊕,¬, 0) and a mapping
Cl : A → A. Then Cl is called an additive closure operator on A iff for each
a, b ∈ A

1. Cl(a⊕ b) = Cl(a)⊕ Cl(b),

2. a ≤ Cl(a),

3. Cl(Cl (a)) = Cl(a),

4. Cl(0) = 0.

MV -algebras, which are an algebraic counterpart of the �Lukasiewicz infinite
valued logic, are by [3], Chapters 2, 7 in a very close connection with abelian
unital l-groups.

Definition 1.3 An algebra G = (G,+, 0,∨,∧) of the signature 〈2, 0, 2, 2〉 is
called an l-group iff

1. (G,+, 0) is a group,

2. (G,∨,∧) is a lattice,

3. x+ (y ∨ z) + w = (x+ y + w) ∨ (x+ z + w) ∀x, y, z, w ∈ G,

x+ (y ∧ z) + w = (x+ y + w) ∧ (x+ z + w) ∀x, y, z, w ∈ G.

An element u ∈ G (u > 0) is called a strong unit of the l-group G iff

(∀a ∈ G)(∃n ∈ N) (a ≤ nu),

where
nu

def= u+ u+ · · ·+ u︸ ︷︷ ︸
n

.

If an l-group G contains a strong unit u, then (G, u) is called a unital l-
group. Moreover, if the operation ”+“ of the l-group G is commutative, then G
is called an abelian l-group.

In the following remark we will describe the mutual relation of abelian unital
l-groups and MV -algebras.

Remark 1.4
a) Let (G,+, 0,∨,∧) be an abelian l-group and let u ∈ G, u ≥ 0. If

x⊕ y := (x+ y) ∧ u, ¬x := u− x,

then Γ(G, u) = ([0, u],⊕,¬, 0, u) is an MV-algebra.
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b) On the other hand, Daniele Mundici [5] proved that for every MV-
algebra A there exists such an abelian unital l-group (G, u) that
A ∼= Γ(G, u).

The aim of this paper is to introduce an additive closure operator on an
abelian unital l-group (G, u). That means, we will investigate in introducing of
such an operator on abelian unital l-groups that it will preferably form a natural
counterpart of additive closure operators on MV -algebras.

2 Relation between additive closure operators on
MV -algebras and on abelian unital l-groups

Definition 2.1 Let (G, u) be an abelian unital l-group. A mapping ψ+ : G+ →
G+ such that for each x, y ∈ G+ it holds

1. ψ+(x+ y) = ψ+(x) + ψ+(y),

2. ψ+(x ∧ u) = ψ+(x) ∧ u,

3. x ≤ ψ+(x),

4. ψ+(ψ+(x)) = ψ+(x),

will be called an additive closure operator on G+, where G+ = {x ∈ G; x ≥ 0}.
Lemma 2.2 Let (G, u) be an abelian unital l-group and let ψ+ be an additive
closure operator on G+. Then we have for each k ∈ N, k > 1 and for each
x, y ∈ G+

(i) ψ+(u) = u,

(ii) ψ+(ku) = ku,

(iii) x ≤ y ⇒ ψ+(x) ≤ ψ+(y).

Proof

(i) From the axiom 3 of Definition 2.1 it follows that u ≤ ψ+(u). Moreover,
from the second axiom of the same definition we get

ψ+(u) = ψ+(u ∧ u) = ψ+(u) ∧ u
and further ψ+(u) ≤ u. Together we have u = ψ+(u).

(ii) It follows from the first axiom of Definition 2.1 and from (i).

(iii) Let x, y ∈ G+, x ≤ y. Since −x+ (x ∨ y) ∈ G+, it must also be

ψ+(y) = ψ+(x∨y) = ψ+(x+(−x+(x∨y))) = ψ+(x)+ψ+(−x+(x∨y)),
But since

ψ+(−x+ (x ∨ y)) ∈ G+,

we finally get
ψ+(x) ≤ ψ+(y). �
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Definition 2.3 Let (G, u) be an abelian unital l-group. A mapping ψ : G→ G
is called an additive closure operator on G iff there exists such an additive
closure operator ψ+ on G+, that it holds for each element a ∈ G

1. ψ |G+= ψ+,

2. ψ(a) = ψ+(a+)− ψ+(a−), where a+ = a ∨ 0, a− = −a ∨ 0.

Remark 2.4 It is known that in each l-group G we have a = a+ − a− for each
element a ∈ G. So G = G+ − G+ holds in each l-group G. Let us show now
that in each l-group G all representations of ψ(a) in the form of the difference
of ψ+(x) and ψ+(y), where x, y ∈ G+ such that a = x− y, are the same as the
representation of ψ(a) in the form of the difference of ψ+(a+) and ψ+(a−).

Lemma 2.5 Let (G, u) be an abelian unital l-group and let ψ be an additive
closure operator on G. Then it holds for each element a ∈ G and for each
elements x, y ∈ G+

[a = x− y] =⇒ [ψ(a) = ψ+(a+)− ψ+(a−) = ψ+(x) − ψ+(y)].

Proof If a = x− y, then x− y = a+− a−. From that we have x+ a− = a+ + y
and so ψ+(x) + ψ+(a−) = ψ+(a+) + ψ+(y), and finally ψ+(x) − ψ+(y) =
ψ+(a+)− ψ+(a−) = ψ(a). �

In the sequel we will study the mutual relation of additive closure operators
on abelian unital l-groups and on MV -algebras. The properties of additive
closure operators on MV -algebras were studied in [6].

Theorem 2.6 Let us consider an abelian unital l-group (G, u) and further an
additive closure operator ψ+ on G+. Then ϕ = ψ+ |[ 0,u] is an additive closure
operator on the MV-algebra A = Γ(G, u).

Proof Since ψ+ is isotone and ψ+(u) = u, it is obvious that ϕ is a mapping
from [0, u] into [0, u]. We will check now validity of 1.–4. from Definition 1.2.
Therefore, let us choose two arbitrary elements a, b ∈ [0, u] and we have

1. ϕ(a ⊕ b) = ϕ((a + b) ∧ u) = ψ+((a + b) ∧ u) = ψ+(a + b) ∧ u =
(ψ+(a) + ψ+(b)) ∧ u = (ϕ(a) + ϕ(b)) ∧ u = ϕ(a) ⊕ ϕ(b),

2. a ≤ ψ+(a) = ϕ(a),

3. ϕ(ϕ(a)) = ψ+(ϕ(a)) = ψ+(ψ+(a)) = ψ+(a) = ϕ(a),

4. ϕ(0) = ψ+(0) = 0, because of ψ+(0) = ψ+(0 + 0) = ψ+(0) + ψ+(0).
�

Let A = Γ(G, u) be the MV-algebra constructed on an abelian unital
l-group (G, u). Then by [3], Lemma 7.1.3 each element a ∈ G+ can be uniquely
represented in the form

a = a1 + a2 + · · ·+ an,

where the n-tuple (a1, a2, . . . , an) ∈ [0, u]n is determined by relations

a1 = a ∧ u, a2 = (a− a1) ∧ u, . . . , an = (a− a1 − · · · − an−1) ∧ u.
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Remark 2.7 The introduced n-tuple (a1, a2, . . . , an) is a good sequence of ele-
ments of MV-algebra Γ(G, u)—see [3, Lemma 7.1.3]. Let us recall that a good
sequence of elements of an MV-algebra A is such a sequence (a1, a2, . . . , an, . . . )
of elements of this algebra that for each i = 1, 2, . . . the identity

ai ⊕ ai+1 = ai

holds and at the same time there exists such n ∈ N that ar = 0 for all r > n.

Now, let ϕ be an additive closure operator on the MV-algebra A = Γ(G, u)
and let us define a mapping ϕ : G+ → G+, where

ϕ(a) def= ϕ(a1) + ϕ(a2) + · · ·+ ϕ(an) ∀a ∈ G+.

Remark 2.8 Let us notice the prescription for the introduced mapping ϕ. By
Remark 2.5 we know that (a1, a2, . . . , an) is a good sequence of elements of
Γ(G, u) and for each i = 1, 2, . . . , n − 1 we have therefore ai ⊕ ai+1 = ai. But
then also for each i = 1, 2, . . . , n− 1

ϕ(ai)⊕ ϕ(ai+1) = ϕ(ai ⊕ ai+1) = ϕ(ai).

That means, (ϕ(a1), ϕ(a2), . . . , ϕ(an)) is a good sequence of elements of Γ(G, u)
again.

Lemma 2.9 Let us consider an MV -algebra A = Γ(G, u) constructed on an
abelian unital l-group (G, u) and an additive closure operator ϕ on A. Then the
mapping ϕ is isotone.

Proof Let us choose arbitrary elements a, b ∈ G+, a ≤ b. It holds ([3, Lemma
7.1.3])

a = a1 + a2 + · · ·+ am, b = b1 + b2 + · · ·+ bn,

where a1, a2, . . . , am, b1, b2, . . . , bn ∈ [0, u] and m,n are some integers, not nec-
essarily the same. If for example m > n, then we put bm−n+1 = · · · = bm = 0.
So we can consider m = n. Now, if a ≤ b, then for each integer k

((a− ku) ∨ 0) ∧ u ≤ ((b− ku) ∨ 0) ∧ u.

Further by [3, Lemma 7.1.3] we have from the last inequality

(a− a1 − a2 − · · · − ak) ∧ u ≤ (b− b1 − b2 − · · · − bk) ∧ u,

that means ak+1 ≤ bk+1 for each integer k. From that it follows that ϕ(ak+1) ≤
ϕ(bk+1) for each integer k and finally

ϕ(a) = ϕ(a1) + ϕ(a2) + · · ·+ ϕ(an) ≤ ϕ(b1) + ϕ(b2) + · · ·+ ϕ(bn) = ϕ(b).

Theorem 2.10 Let A = Γ(G, u) be the MV-algebra constructed on an abelian
unital l-group (G, u) and let ϕ be an additive closure operator on A. Then for
the mapping ϕ and an arbitrary element a ∈ G+
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• ϕ(a ∧ u) = ϕ(a) ∧ u,

• a ≤ ϕ(a),

• ϕ(ϕ(a)) = ϕ(a).

Proof Let a ∈ G+ is chosen arbitrarily. Then there exists an n-tuple (a1, a2, . . . ,
an) of elements from [0, u], where a = a1 + a2 + · · · + an, a1 = a ∧ u, a2 =
(a− a1) ∧ u, . . . , an = (a− a1 − · · · − an−1) ∧ u. We have:

• ϕ(a)∧u = (ϕ(a1)+ϕ(a2)+ · · ·+ϕ(an))∧u = ϕ(a1)⊕ϕ(a2)⊕· · ·⊕ϕ(an) =
= ϕ(a1⊕a2⊕· · ·⊕an) = ϕ((a1 +a2 + · · ·+an)∧u) = ϕ(a∧u) = ϕ(a∧u);

• a = a1 + a2 + · · ·+ an ≤ ϕ(a1) + ϕ(a2) + · · ·+ ϕ(an) = ϕ(a);

• ϕ(ϕ(a)) = ϕ(ϕ(a1) + ϕ(a2) + · · ·+ ϕ(an)) = ϕ(ϕ(a1)) + ϕ(ϕ(a2)) + · · ·+
ϕ(ϕ(an)) = ϕ(a1) + ϕ(a2) + · · · + ϕ(an) = ϕ(a), because of c = ϕ(a1) +
ϕ(a2)+ · · ·+ϕ(an) is just the unique decomposition of the element c ∈ G+

onto a sum of elements from [0, u], which form a good sequence of Γ(G, u).
�

Remark 2.11 (open problem) In Theorem 2.10, we have proven in fact that
the operator ϕ fulfils conditions 2, 3 and 4 from Definition 2.1. Not answered
stays now the problem, in which condition does ϕ fulfil moreover the axiom 1
from Definition 2.1, that means in which condition does ϕ become an additive
closure operator on G+.
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