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Abstract

In this paper we consider a method by which a skew-symmetric tensor
field of type (1,2) in Mn can be extended to the tensor bundle T 0

q (Mn)
(q > 0) on the pure cross-section. The results obtained are to some extend
similar to results previously established for cotangent bundles T 0

1 (Mn).
However, there are various important differences and it appears that the
problem of lifting tensor fields of type (1,2) to the tensor bundle T 0

q (Mn)
(q > 1) on the pure cross-section presents difficulties which are not en-
countered in the case of the cotangent bundle.
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1 Introduction

Let Mn be a differentiable manifold of class C∞ and finite dimension n, and let
T 0

q (Mn) (q > 0) be the bundle over Mn of tensors of type (0, q):

T 0
q (Mn) =

⋃

P∈Mn

T 0
q (P ),

where T 0
q (P ) denotes the tensor spaces of tensors of type (0, q) at P ∈ Mn.
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i. π : T 0
q (Mn) → Mn is the projection T 0

q (Mn) onto Mn.

ii. The indices i, j, . . . run from 1 to n, the indices ı̄, j̄, . . . from n + 1 to
n + nq = dimT 0

q (Mn) and the indices I = (i, ı̄), J = (j, j̄), . . . from 1 to
n + nq. The so-called Einsteins summation convention is used.

iii. �(M) is the ring of real-valued C∞ functions on Mn. T p
q (Mn) is the

module over �(M) of C∞ tensor fields of type (p, q).

iv. Vector fields in Mn are denoted by V, W, . . . The Lie derivation with re-
spect to V is denoted by LV .

Denoting by xj the local coordinates of P = π(P̃ ) (P̃ ∈ T 0
q (Mn)) in a

neighborhood U ⊂ Mn and if we make (xj , tj1...jq) = (xj , xj̄) correspond to
the point P̃ ∈ π−1(U), we can introduce a system of local coordinates (xj , xj̄)
in a neighborhood π−1(U) ⊂ T 0

q (Mn), where tj1...jq

def= xj̄ are components of
t ∈ T 0

q (P ) with respect to the natural frame ∂i.
If α ∈ T 0

q (Mn), it is regarded, in a natural way (by contraction), as a function
in T 0

q (Mn), which we denote by iα. If α has the local expression α = αj1...jq ∂j1⊗
. . . ⊗ ∂jq in a coordinate neighborhood U(xi) ⊂ Mn, then iα has the local
expression iα = α(t) = αj1...jq tj1...jq with respect to the coordinates (xj , xj̄) in
π−1(U).
Suppose that A ∈ T 0

q (Mn). We define the vertical lift VA ∈ T 1
0 (T 0

q (Mn)) of
A to T 0

q (Mn) (see [1]) by VA(iα) = α(A) ◦ π = V (α(A)), where V (α(A)) is the
vertical lift of the function α(A) ∈ �(Mn). The vertical lift VA of A to T 0

q (Mn)
has components

VA =
(

VAj

V Aj̄

)
=
(

0
Aj1...jq

)
(1.1)

with respect to the coordinates (xj , xj̄) in T 0
q (Mn).

We define the complete lift CV = L̄V of V to T 0
q (Mn) (see [1]) by CV (iα) =

i(LV α), α ∈ T q
0 (Mn). The complete lift CV of V to T 0

q (Mn) has components

CV k = V k, CV k̄ = −
q∑

λ=1

tk1...s...kq ∂kλ
V s (1.2)

with respect to the coordinates (xk, xk̄) in T 0
q (Mn).

Suppose that there is given a tensor field ξ ∈ T 0
q (Mn). Then the corre-

spondence x → ξx, ξx being the value of ξ at x ∈ Mn, determines a mapping
σξ : Mn → T 0

q (Mn) such that π ◦ σξ = idMn , and the n dimensional submani-
fold σξ(Mn) of T 0

q (Mn) is called the cross-section determined by ξ. If the tensor
field ξ has the local components ξk1...kq (x

k), the cross-section σξ(Mn) is locally
expressed by xk = xk, xk̄ = ξk1...kq (x

k) with respect to the coordinates (xk, xk̄)
in T 0

q (Mn). Differentiating by xj , we see that the n tangent vector fields Bj to
σξ(Mn)have components

(BK
j ) =

(
∂xK

∂xj

)
=
(

δk
j

∂jξk1...kq

)
(1.3)
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with respect to the natural frame {∂k, ∂k̄} in T 0
q (Mn).

On the other hand, the fibre is locally expressed by xk = const, tk1...kq =
tk1...kq , tk1...kq being consider as parameters. Thus, on differentiating with re-
spect to xj̄ = tj1...jq , we see that the nq tangent vector fields Cj̄ to the fibre
have components

(CK
j̄ ) =

(
∂xK

∂xj̄

)
=

(
0

δj1
k1

. . . δ
jq

kq

)
(1.4)

with respect to the natural frame {∂k, ∂k̄} in T 0
q (Mn).

We consider in π−1(U) ⊂ T 0
q (Mn), n+nq local vector fields Bj and Cj̄ along

σξ(Mn). They form a local family of frames {Bj, Cj̄} along σξ(Mn), which is
called the adapted (B, C)-frame of σξ(Mn) in π−1(U). Taking account of (1.2),
we can easily prove that , the complete lift CV has along σξ(Mn) components
of the form

CV =
(

C Ṽ j

C Ṽ j̄

)
=
(

V j

−(LV ξ)j1...jq

)
(1.5)

with respect to the adapted (B, C)-frame [2], where (LV ξ)j1...jq are local com-
ponents of LV ξ in Mn.

2 The vertical-vector lift of a tensor field of type (1,1)

Let ϕ ∈ T 1
1 (Mn). Making use of the Jacobian matrix of the coordinate trans-

formation in T 0
q (Mn):

xi′ = xi′ (xi), xī′ = t(i′) = A
(i)
(i′)t(i)

= A
(i)
(i′)x

ı̄
(
t(i) = ti1...iq , A

(i)
(i′) = Ai1

i′1
. . . A

iq

i′q
, Ai

i′ =
∂xi

∂xi′

)

we can define a vector field γϕ ∈ T 1
0 (T 0

q (Mn)) [3]:

γϕ = ((γϕ)J ) =
(

0
tji2...iq ϕ

j
i1

)
,

where ϕj
i1
are local components of ϕ in Mn. Clearly, we have (γϕ)(Vf) = 0 for

any f ∈ �(Mn), so that γϕ is a vertical vector field. We call γϕ the vertical-
vector lift of the tensor field ϕ ∈ T 1

1 (Mn) to T 0
q (Mn). We can easily verify that

the vertical-vector lift γϕ has along σξ(Mn) components

γϕ = ((γϕ̃)I) =
(

0
ξji2...iqϕ

j
i1

)

with respect to the adapted (B, C)-frame, where ξi1...iq are local components of
ξ in Mn.
Let S be an element of T 1

2 (Mn) with local components Sk
ij in Mn. In a

similar way, if γ((LV1S)V2), γ((LV2S)V1) and γ(S[V1,V2]) are vertical-vector lifts
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of (LV1S)V2 = (vm
2 (LV1S)j

im) ∈ T 1
1 (Mn), (LV2S)V1 = (vm

1 (LV2S)j
im) ∈ T 1

1 (Mn)
and S[V1,V2] = (Sj

im[V1, V2]m) ∈ T 1
1 (Mn), respectively, then γ((LV1S)V2),

γ((LV2S)V1) and γ(S[V1,V2]) have along σξ(Mn) respectively components of the
form

γ((LV1S)V2) = (γ((L̃V1S)V2)
I) =

(
0

ξji2...iq v
m
2 (LV1S)j

i1m

)
,

γ((LV2S)V1) = (γ((L̃V2S)V1)
I) =

(
0

ξji2...iq v
m
1 (LV2S)j

i1m

)
,

γ(S[V1,V2]) = (γ(S̃[V1,V2])
I) =

(
0

ξji2...iq S
j
i1m[V1, V2]m

)

with respect to the adapted (B, C)-frame, where [V1, V2] = LV1V2.

3 The complete lift of a skew-symmetric tensor field of
type (1,2)

Suppose now that S ∈ T 1
2 (Mn) is a skew-symmetric tensor field of type (1,2)

with local components Sk
ij , that is S(V, W ) = −S(W, V ), ∀V, W ∈ T 1

0 (Mn). A
tensor field ξ ∈ T 0

q (Mn) is called pure with respect to S ∈ T 1
2 (Mn), if [4]:

{
Sr

k1j1
ξr...jq = . . . = Sr

k1jq
ξj1...r,

Sr
j1k2

ξr...jq = . . . = Sr
jqk2

ξj1...r.

In particular, covector fields will be considered to be pure. Let
∗

T 0
q (Mn)denotes a

module of all the tensor fields ξ ∈ T 0
q (Mn) which are pure with respect to S. We

consider a pure cross-section σS
ξ (Mn) determined by ξ ∈

∗
T 0

q (Mn). We observe
that the local vector fields

CX(i) =C (
∂

∂xi
) =C (δh

i

∂

∂xh
) =

(
δh
i

0

)

and

VX(ı̄) = V (dxi1 ⊗ . . .⊗ dxiq ) = V (δi1
h1

. . . δ
iq

hq
dxh1 ⊗ . . .⊗ dxhq) =

(
0

δi1
h1

. . . .δ
iq

hq

)

i = 1, . . . , n, ı̄ = n + 1, . . . , n + nq

span the module of vector fields in π−1(U) ⊂ T 0
q (Mn). Hence any tensor field

is determined in π−1(U) by its action of CX(i) and V X(ı̄). Then we define a
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tensor field CS ∈ T 1
2 (T 0

q (Mn)) along the pure cross-section σS
ξ (Mn) by

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

CS(CV1,
CV2) = C(S(V1, V2))− γ((LV2S)V1)

+ γ((LV1S)V2) + γ(S[V1,V2]), ∀V1, V2 ∈ T 1
0 (Mn) (i)

CS(V A,C V2) = V (SV2(A)), ∀A ∈ T 1
q (Mn), (ii)

CS(CV1,
V B) = V (SV1(B)), ∀B ∈ T 1

q (Mn), (iii)
CS(V A,V B) = 0, (iv)

(3.1)

where SV2(A), SV1(B) ∈ T 0
q (Mn) and call CS the complete lift of S ∈ T 1

2 (Mn)
to T 0

q (Mn) along σS
ξ (Mn).

Let C S̃J
L1L2

be components of CS with respect to the adapted (B, C)-frame of
the pure cross-section σS

ξ (Mn). From (1.1), (1.3), (1.4) and VA = VÃjBj+VÃj̄Cj̄,

we easily obtain VÃj = 0, VÃj̄ = VAj̄ = Aj1...jq . Thus the vertical lift
VA also

has components of the form (1.1) with respect to the adapted (B, C)-frame of
σS

ξ (Mn). Then, from (3.1) we have
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C S̃J
L1L2

C Ṽ L1C
1 Ṽ L2

2 =C (S̃(V1, V2))J − γ((L̃V2S)V1)
J

+ γ((L̃V1S)V2)J + γ(S̃[V1,V2])J , (i)
C S̃J

L1L2
V ÃL1C Ṽ L2

2 =V (SV2(Ã))J (ii)
C S̃J

L1L2
C Ṽ L1V

1 B̃L2 =V (SV1(B̃))J , (iii)
C S̃J

L1L2
V ÃL1V B̃L2 = 0, (iv)

(3.2)

where

V (SV2 (̃A))J =
(

0
Sm

j1lV
l
2Amj2...jq

)
, V (SV1 (̃B))J =

(
0

Sm
lj1

V l
1Bmj2...jq

)
.

When J = j, from (i) of (3.2) we have
C S̃j

l1l2
= Sj

l1l2
, C S̃j

l̄1l2
= C S̃j

l1 l̄2
= C S̃j

l̄1 l̄2
= 0,

where xl̄a = tr1...rq , a = 1, 2.
When J = j̄, (i) of (3.2) reduces to

CS̃ j̄
l1l2

C Ṽ l1
1

C Ṽ l2
2 +C S̃ j̄

l̄1l2
C Ṽ l̄1

1
C Ṽ l2

2 +C S̃ j̄

l1 l̄2
C Ṽ l1

1
C Ṽ l̄2

2

+ C S̃ j̄

l̄1 l̄2
C Ṽ l̄1

1
C Ṽ l̄2

2 + ξij2...jq v
m
1 (LV2S)i

j1m

− ξij2...jqv
m
2 (LV1S)i

j1m − ξij2...jq S
i
j1m[V1, V2]m = C(S̃(V1, V2))j̄

(3.3)

Now, using the Generalized Yano–Ako operator we will investigate components
CS̃ j̄

l1l2
. The Generalized Yano–Ako operator on the pure module

∗
T 0

q (Mn) is
given by [4], [5].

(ΦSξ)l1l2j1...jq = Sm
l1l2∂mξj1...jq − ∂l1(S

m
j1l2ξmj2...jq )− ∂l2(S

m
l1j1ξmj2...jq )

+
q∑

a=1

(∂jaSm
l1l2)ξj1...m...jq .



140 A. MAGDEN, A. A. SALIMOV

After some calculations we have

V l2
2 V l1

1 (ΦS(V1,V2)ξ)l1l2j1...jq + V l1
1 Sm

l1j1LV2ξmj2...jq + V l2
2 Sm

j1l2LV1ξmj2...jq

+ V l2
2 (LV1S

m
j1l2)ξmj2...jq − V l1

1 (LV2S
m
j1l1)ξmj2...jq + (LV1V2)l1Sm

j1l1)ξmj2...jq

= LS(V1,V2)ξj1...jq (3.4)

for any V1, V2 ∈ T 1
0 (Mn). Using (1.5), from (3.4) we have

((ΦS(V1,V2)ξ)l1l2j1...jq)
C Ṽ l1

1
C Ṽ l2

2 − Sr1
l1j1

δr2
j2

. . . δ
rq

jq

C Ṽ l1
1

C Ṽ l̄2
2

− Sr1
j1l2

δr2
j2

. . . δ
rq

jq

C Ṽ l̄1
1

C Ṽ l2
2 + V l2

2 (LV1S
m
j1l2)ξmj2...jq − V l1

1 (LV2S
m
j1l1)ξmj2...jq

+ (LV1V2)l1Sm
j1l1ξmj2...jq = −C(S̃(V1, V2))j̄. (3.5)

Comparing (3.3) and (3.5), we get

C S̃ j̄
l1l2

= −(ΦSξ)l1l2j1...jq .

By similar devices, from (ii)–(iv) of (3.2) we have also

C S̃ j̄

l̄1 l̄2
= 0, C S̃ j̄

l̄1l2
= Sr1

j1l2
δr2
j2

. . . δ
rq

jq
, C S̃ j̄

l1 l̄2
= Sr1

l1j1
δr2
j2

. . . δ
rq

jq
.

Thus the complete lift CS of S ∈ T 1
2 (Mn) (S(V, W ) = −S(W, V )) has along the

pure cross-section σS
ξ (Mn) components

⎧
⎪⎨
⎪⎩

C S̃j
l1l2

= Sj
l1l2

, CS̃j

l̄1l2
= C S̃j

l1 l̄2
= C S̃j

l̄1 l̄2
=C S̃ j̄

l̄1 l̄2
= 0

C S̃ j̄

l̄1l2
= Sr1

j1l2
δr2
j2

. . . δ
rq

jq
, C S̃ j̄

l1 l̄2
= Sr1

l1j1
δr2
j2

. . . δ
rq

jq
,

C S̃ j̄
l1l2

= −(ΦSξ)l1l2j1...jq

(3.6)

with respect to the adapted (B, C)-frame of σS
ξ (Mn), where ΦSξ is the Gener-

alized Yano–Ako operator.

Remark 1 CS in the form (3.6) is unique solution of (3.1). Therefore, if
∗
S is

element of T 1
2 (T 0

q (Mn)), such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C
∗
S(CV1,

C V2) =C (S(V1, V2))− γ((LV2S)V1)
+ γ((LV1S)V2) + γ(S[V1,V2]),
C
∗
S(V A,C V2) =V (SV2(A)),

C
∗
S(CV1,

V B) =V (SV1(B)),
C
∗
S(V A,V B) = 0,

then
∗
S = CS.

Remark 2 The equation (3.1) is a useful extension of the equation CV (iα) =
i(LV α), α ∈ T q

0 (Mn) (see §1) to tensor fields of type (1,2) along the pure cross-
section σS

ξ (Mn).
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In the case ∂mξj1...jq = 0, (B, C)-frame is considered as a natural frame
{∂h, ∂h̄} of σS

ξ (Mn). Then, from (3.6) we obtain components of CS along the
pure cross-section with respect to the natural frame {∂h, ∂h̄} of σS

ξ (Mn) in
π−1(U) (see [5]). The diagonal and horizontal lifts for tensor fields of special
kinds to the tensor bundle have been studied in [6]–[8].
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