Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematic

A. Magden; Arif A. Salimov
On applications of the Yano-Ako operator

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 45 (2006), No. 1, 135--141

Persistent URL: http://dml.cz/dmlcz/133446

Terms of use:

© Palacký University Olomouc, Faculty of Science, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On Applications of the Yano-Ako Operator*

A. MAGDEN and A. A. SALIMOV
Department of Mathematics, Faculty of Arts and Sci. Atatürk University, 25240 Erzurum, Turkey
e-mail: asalimov@atauni.edu.tr

(Received May 12, 2006)

Abstract

In this paper we consider a method by which a skew-symmetric tensor field of type $(1,2)$ in M_{n} can be extended to the tensor bundle $T_{q}^{0}\left(M_{n}\right)$ ($q>0$) on the pure cross-section. The results obtained are to some extend similar to results previously established for cotangent bundles $T_{1}^{0}\left(M_{n}\right)$. However, there are various important differences and it appears that the problem of lifting tensor fields of type $(1,2)$ to the tensor bundle $T_{q}^{0}\left(M_{n}\right)$ ($q>1$) on the pure cross-section presents difficulties which are not encountered in the case of the cotangent bundle.

Key words: Lift; tensor bundle; pure tensor; operator Yano-Ako.
2000 Mathematics Subject Classification: 53C15, 53C25, 53C55

1 Introduction

Let M_{n} be a differentiable manifold of class C^{∞} and finite dimension n, and let $T_{q}^{0}\left(M_{n}\right)(q>0)$ be the bundle over M_{n} of tensors of type $(0, q)$:

$$
T_{q}^{0}\left(M_{n}\right)=\bigcup_{P \in M_{n}} T_{q}^{0}(P)
$$

where $T_{q}^{0}(P)$ denotes the tensor spaces of tensors of type $(0, q)$ at $P \in M_{n}$.

[^0]i. $\pi: T_{q}^{0}\left(M_{n}\right) \rightarrow M_{n}$ is the projection $T_{q}^{0}\left(M_{n}\right)$ onto M_{n}.
ii. The indices i, j, \ldots run from 1 to n, the indices $\bar{\imath}, \bar{\jmath}, \ldots$ from $n+1$ to $n+n^{q}=\operatorname{dim} T_{q}^{0}\left(M_{n}\right)$ and the indices $I=(i, \bar{\imath}), J=(j, \bar{\jmath}), \ldots$ from 1 to $n+n^{q}$. The so-called Einsteins summation convention is used.
iii. $\Im(M)$ is the ring of real-valued C^{∞} functions on $M_{n} . T_{q}^{p}\left(M_{n}\right)$ is the module over $\Im(M)$ of C^{∞} tensor fields of type (p, q).
iv. Vector fields in M_{n} are denoted by V, W, \ldots The Lie derivation with respect to V is denoted by L_{V}.
Denoting by x^{j} the local coordinates of $P=\pi(\tilde{P})\left(\tilde{P} \in T_{q}^{0}\left(M_{n}\right)\right)$ in a neighborhood $U \subset M_{n}$ and if we make $\left(x^{j}, t_{j_{1} \ldots j_{q}}\right)=\left(x^{j}, x^{\bar{\jmath}}\right)$ correspond to the point $\tilde{P} \in \pi^{-1}(U)$, we can introduce a system of local coordinates $\left(x^{j}, x^{\bar{\jmath}}\right)$ in a neighborhood $\pi^{-1}(U) \subset T_{q}^{0}\left(M_{n}\right)$, where $t_{j_{1} \ldots j_{q}} \stackrel{\text { def }}{=} x^{\bar{J}}$ are components of $t \in T_{q}^{0}(P)$ with respect to the natural frame ∂_{i}.

If $\alpha \in T_{q}^{0}\left(M_{n}\right)$, it is regarded, in a natural way (by contraction), as a function in $T_{q}^{0}\left(M_{n}\right)$, which we denote by $i \alpha$. If α has the local expression $\alpha=\alpha^{j_{1} \ldots j_{q}} \partial_{j_{1}} \otimes$ $\ldots \otimes \partial_{j_{q}}$ in a coordinate neighborhood $U\left(x^{i}\right) \subset M_{n}$, then $i \alpha$ has the local expression $i \alpha=\alpha(t)=\alpha^{j_{1} \ldots j_{q}} t_{j_{1} \ldots j_{q}}$ with respect to the coordinates $\left(x^{j}, x^{\bar{j}}\right)$ in $\pi^{-1}(U)$.

Suppose that $A \in T_{q}^{0}\left(M_{n}\right)$. We define the vertical lift ${ }^{V} A \in T_{0}^{1}\left(T_{q}^{0}\left(M_{n}\right)\right)$ of A to $T_{q}^{0}\left(M_{n}\right)$ (see [1]) by ${ }^{V} A(i \alpha)=\alpha(A) \circ \pi={ }^{V}(\alpha(A))$, where ${ }^{V}(\alpha(A))$ is the vertical lift of the function $\alpha(A) \in \Im\left(M_{n}\right)$. The vertical lift ${ }^{V} A$ of A to $T_{q}^{0}\left(M_{n}\right)$ has components

$$
\begin{equation*}
{ }^{V} A=\binom{V^{j} A^{j}}{V A^{\bar{\jmath}}}=\binom{0}{A_{j_{1} \ldots j_{q}}} \tag{1.1}
\end{equation*}
$$

with respect to the coordinates $\left(x^{j}, x^{\bar{\jmath}}\right)$ in $T_{q}^{0}\left(M_{n}\right)$.
We define the complete lift ${ }^{C} V=\bar{L}_{V}$ of V to $T_{q}^{0}\left(M_{n}\right)$ (see [1]) by ${ }^{C} V(i \alpha)=$ $i\left(L_{V} \alpha\right), \alpha \in T_{0}^{q}\left(M_{n}\right)$. The complete lift ${ }^{C} V$ of V to $T_{q}^{0}\left(M_{n}\right)$ has components

$$
\begin{equation*}
{ }^{C} V^{k}=V^{k}, \quad{ }^{C} V^{\bar{k}}=-\sum_{\lambda=1}^{q} t_{k_{1} \ldots s \ldots k_{q}} \partial_{k_{\lambda}} V^{s} \tag{1.2}
\end{equation*}
$$

with respect to the coordinates $\left(x^{k}, x^{\bar{k}}\right)$ in $T_{q}^{0}\left(M_{n}\right)$.
Suppose that there is given a tensor field $\xi \in T_{q}^{0}\left(M_{n}\right)$. Then the correspondence $x \rightarrow \xi_{x}, \xi_{x}$ being the value of ξ at $x \in M_{n}$, determines a mapping $\sigma_{\xi}: M_{n} \rightarrow T_{q}^{0}\left(M_{n}\right)$ such that $\pi \circ \sigma_{\xi}=i d_{M_{n}}$, and the n dimensional submanifold $\sigma_{\xi}\left(M_{n}\right)$ of $T_{q}^{0}\left(M_{n}\right)$ is called the cross-section determined by ξ. If the tensor field ξ has the local components $\xi_{k_{1} \ldots k_{q}}\left(x^{k}\right)$, the cross-section $\sigma_{\xi}\left(M_{n}\right)$ is locally expressed by $x^{k}=x^{k}, x^{\bar{k}}=\xi_{k_{1} \ldots k_{q}}\left(x^{k}\right)$ with respect to the coordinates $\left(x^{k}, x^{\bar{k}}\right)$ in $T_{q}^{0}\left(M_{n}\right)$. Differentiating by x^{j}, we see that the n tangent vector fields B_{j} to $\sigma_{\xi}\left(M_{n}\right)$ have components

$$
\begin{equation*}
\left(B_{j}^{K}\right)=\left(\frac{\partial x^{K}}{\partial x^{j}}\right)=\binom{\delta_{j}^{k}}{\partial_{j} \xi_{k_{1} \ldots k_{q}}} \tag{1.3}
\end{equation*}
$$

with respect to the natural frame $\left\{\partial_{k}, \partial_{\bar{k}}\right\}$ in $T_{q}^{0}\left(M_{n}\right)$.
On the other hand, the fibre is locally expressed by $x^{k}=$ const, $t_{k_{1} \ldots k_{q}}=$ $t_{k_{1} \ldots k_{q}}, t_{k_{1} \ldots k_{q}}$ being consider as parameters. Thus, on differentiating with respect to $x^{\bar{\jmath}}=t_{j_{1} \ldots j_{q}}$, we see that the n^{q} tangent vector fields $C_{\bar{\jmath}}$ to the fibre have components

$$
\begin{equation*}
\left(C_{\bar{\jmath}}^{K}\right)=\left(\frac{\partial x^{K}}{\partial x^{\bar{\jmath}}}\right)=\binom{0}{\delta_{k_{1}}^{j_{1}} \ldots \delta_{k_{q}}^{j_{q}}} \tag{1.4}
\end{equation*}
$$

with respect to the natural frame $\left\{\partial_{k}, \partial_{\bar{k}}\right\}$ in $T_{q}^{0}\left(M_{n}\right)$.
We consider in $\pi^{-1}(U) \subset T_{q}^{0}\left(M_{n}\right), n+n^{q}$ local vector fields B_{j} and $C_{\bar{\jmath}}$ along $\sigma_{\xi}\left(M_{n}\right)$. They form a local family of frames $\left\{B_{j}, C_{j}\right\}$ along $\sigma_{\xi}\left(M_{n}\right)$, which is called the adapted (B, C)-frame of $\sigma_{\xi}\left(M_{n}\right)$ in $\pi^{-1}(U)$. Taking account of (1.2), we can easily prove that, the complete lift ${ }^{C} V$ has along $\sigma_{\xi}\left(M_{n}\right)$ components of the form

$$
\begin{equation*}
{ }^{C} V=\binom{{ }^{C} \tilde{V}^{j}}{{ }^{C} \tilde{V}^{\bar{j}}}=\binom{V^{j}}{-\left(L_{V} \xi\right)_{j_{1} \ldots j_{q}}} \tag{1.5}
\end{equation*}
$$

with respect to the adapted (B, C)-frame [2], where $\left(L_{V} \xi\right)_{j_{1} \ldots j_{q}}$ are local components of $L_{V} \xi$ in M_{n}.

2 The vertical-vector lift of a tensor field of type (1,1)

Let $\varphi \in T_{1}^{1}\left(M_{n}\right)$. Making use of the Jacobian matrix of the coordinate transformation in $T_{q}^{0}\left(M_{n}\right)$:

$$
\begin{gathered}
x^{i^{\prime}}=x^{i^{\prime}}\left(x^{i}\right), x^{\bar{l}^{\prime}}=t_{\left(i^{\prime}\right)}=A_{\left(i^{\prime}\right)}^{(i)} t_{(i)} \\
=A_{\left(i^{\prime}\right)}^{(i)} x^{\bar{\imath}}\left(t_{(i)}=t_{i_{1} \ldots i_{q}}, A_{\left(i^{\prime}\right)}^{(i)}=A_{i_{1}^{\prime}}^{i_{1}} \ldots A_{i_{q}^{\prime}}^{i_{q}}, A_{i^{\prime}}^{i}=\frac{\partial x_{i}}{\partial x_{i^{\prime}}}\right)
\end{gathered}
$$

we can define a vector field $\gamma \varphi \in T_{0}^{1}\left(T_{q}^{0}\left(M_{n}\right)\right)$ [3]:

$$
\gamma \varphi=\left((\gamma \varphi)^{J}\right)=\binom{0}{t_{j i_{2} \ldots i_{q}} \varphi_{i_{1}}^{j}}
$$

where $\varphi_{i_{1}}^{j}$ are local components of φ in M_{n}. Clearly, we have $(\gamma \varphi)\left(V_{f}\right)=0$ for any $f \in \Im\left(M_{n}\right)$, so that $\gamma \varphi$ is a vertical vector field. We call $\gamma \varphi$ the verticalvector lift of the tensor field $\varphi \in T_{1}^{1}\left(M_{n}\right)$ to $T_{q}^{0}\left(M_{n}\right)$. We can easily verify that the vertical-vector lift $\gamma \varphi$ has along $\sigma_{\xi}\left(M_{n}\right)$ components

$$
\gamma \varphi=\left((\gamma \tilde{\varphi})^{I}\right)=\binom{0}{\xi_{j i_{2} \ldots i_{q}} \varphi_{i_{1}}^{j}}
$$

with respect to the adapted (B, C)-frame, where $\xi_{i_{1} \ldots i_{q}}$ are local components of ξ in M_{n}.

Let S be an element of $T_{2}^{1}\left(M_{n}\right)$ with local components $S_{i j}^{k}$ in M_{n}. In a similar way, if $\gamma\left(\left(L_{V_{1}} S\right)_{V_{2}}\right), \gamma\left(\left(L_{V_{2}} S\right)_{V_{1}}\right)$ and $\gamma\left(S_{\left[V_{1}, V_{2}\right]}\right)$ are vertical-vector lifts
of $\left(L_{V_{1}} S\right)_{V_{2}}=\left(v_{2}^{m}\left(L_{V_{1}} S\right)_{i m}^{j}\right) \in T_{1}^{1}\left(M_{n}\right),\left(L_{V_{2}} S\right)_{V_{1}}=\left(v_{1}^{m}\left(L_{V_{2}} S\right)_{i m}^{j}\right) \in T_{1}^{1}\left(M_{n}\right)$ and $S_{\left[V_{1}, V_{2}\right]}=\left(S_{i m}^{j}\left[V_{1}, V_{2}\right]^{m}\right) \in T_{1}^{1}\left(M_{n}\right)$, respectively, then $\gamma\left(\left(L_{V_{1}} S\right)_{V_{2}}\right)$, $\gamma\left(\left(L_{V_{2}} S\right)_{V_{1}}\right)$ and $\gamma\left(S_{\left[V_{1}, V_{2}\right]}\right)$ have along $\sigma_{\xi}\left(M_{n}\right)$ respectively components of the form

$$
\begin{gathered}
\gamma\left(\left(L_{V_{1}} S\right)_{V_{2}}\right)=\left(\gamma\left(\left(\tilde{L}_{V_{1}} S\right)_{V_{2}}\right)^{I}\right)=\binom{0}{\xi_{j i_{2} \ldots i_{q}} v_{2}^{m}\left(L_{V_{1}} S\right)_{i_{1} m}^{j}}, \\
\gamma\left(\left(L_{V_{2}} S\right)_{V_{1}}\right)=\left(\gamma\left(\left(\tilde{L}_{V_{2}} S\right)_{V_{1}}\right)^{I}\right)=\binom{0}{\xi_{j i_{2} \ldots i_{q}} v_{1}^{m}\left(L_{V_{2}} S\right)_{i_{1} m}^{j}}, \\
\gamma\left(S_{\left[V_{1}, V_{2}\right]}\right)=\left(\gamma\left(\tilde{S}_{\left[V_{1}, V_{2}\right]}\right)^{I}\right)=\binom{0}{\xi_{j i_{2} \ldots i_{q}} S_{i_{1} m}^{j}\left[V_{1}, V_{2}\right]^{m}}
\end{gathered}
$$

with respect to the adapted (B, C)-frame, where $\left[V_{1}, V_{2}\right]=L_{V_{1}} V_{2}$.

3 The complete lift of a skew-symmetric tensor field of type (1,2)

Suppose now that $S \in T_{2}^{1}\left(M_{n}\right)$ is a skew-symmetric tensor field of type (1,2) with local components $S_{i j}^{k}$, that is $S(V, W)=-S(W, V), \forall V, W \in T_{0}^{1}\left(M_{n}\right)$. A tensor field $\xi \in T_{q}^{0}\left(M_{n}\right)$ is called pure with respect to $S \in T_{2}^{1}\left(M_{n}\right)$, if [4]:

$$
\left\{\begin{array}{l}
S_{k_{1} j_{1}}^{r} \xi_{r \ldots j_{q}}=\ldots=S_{k_{1} j_{q}}^{r} \xi_{j_{1} \ldots r} \\
S_{j_{1} k_{2}}^{r} \xi_{r \ldots j_{q}}=\ldots=S_{j_{q} k_{2}}^{r} \xi_{j_{1} \ldots r}
\end{array}\right.
$$

In particular, covector fields will be considered to be pure. Let ${ }_{T}^{*}\left(M_{n}\right)$ denotes a module of all the tensor fields $\xi \in T_{q}^{0}\left(M_{n}\right)$ which are pure with respect to S. We consider a pure cross-section $\sigma_{\xi}^{S}\left(M_{n}\right)$ determined by $\xi \in \stackrel{*}{T_{q}^{0}}\left(M_{n}\right)$. We observe that the local vector fields

$$
{ }^{C} X_{(i)}={ }^{C}\left(\frac{\partial}{\partial x^{i}}\right)=^{C}\left(\delta_{i}^{h} \frac{\partial}{\partial x^{h}}\right)=\binom{\delta_{i}^{h}}{0}
$$

and

$$
\begin{gathered}
{ }^{V} X^{(\bar{\imath})}={ }^{V}\left(d x^{i_{1}} \otimes \ldots \otimes d x^{i_{q}}\right)={ }^{V}\left(\delta_{h_{1}}^{i_{1}} \ldots \delta_{h_{q}}^{i_{q}} d x^{h_{1}} \otimes \ldots \otimes d x^{h_{q}}\right)=\binom{0}{\delta_{h_{1}}^{i_{1}} \ldots \delta_{h_{q}}^{i_{q}}} \\
i=1, \ldots, n, \bar{\imath}=n+1, \ldots, n+n^{q}
\end{gathered}
$$

span the module of vector fields in $\pi^{-1}(U) \subset T_{q}^{0}\left(M_{n}\right)$. Hence any tensor field is determined in $\pi^{-1}(U)$ by its action of ${ }^{C} X_{(i)}$ and ${ }^{V} X^{(\bar{\imath})}$. Then we define a
tensor field ${ }^{C} S \in T_{2}^{1}\left(T_{q}^{0}\left(M_{n}\right)\right)$ along the pure cross-section $\sigma_{\xi}^{S}\left(M_{n}\right)$ by

$$
\left\{\begin{array}{l}
{ }^{C} S\left({ }^{C} V_{1},{ }^{C} V_{2}\right)={ }^{C}\left(S\left(V_{1}, V_{2}\right)\right)-\gamma\left(\left(L_{V_{2}} S\right)_{V_{1}}\right) \tag{i}\\
+\gamma\left(\left(L_{V_{1}} S\right)_{V_{2}}\right)+\gamma\left(S_{\left[V_{1}, V_{2}\right]}\right), \quad \forall V_{1}, V_{2} \in T_{0}^{1}\left(M_{n}\right) \\
{ }^{C} S\left({ }^{V} A,{ }^{C} V_{2}\right)={ }^{V}\left(S_{V_{2}}(A)\right), \quad \forall A \in T_{q}^{1}\left(M_{n}\right), \\
{ }^{C} S\left({ }^{C} V_{1},{ }^{V} B\right)={ }^{V}\left(S_{V_{1}}(B)\right), \quad \forall B \in T_{q}^{1}\left(M_{n}\right), \\
{ }^{C} S\left({ }^{V} A,{ }^{V} B\right)=0,
\end{array}\right.
$$

where $S_{V_{2}}(A), S_{V_{1}}(B) \in T_{q}^{0}\left(M_{n}\right)$ and call ${ }^{C} S$ the complete lift of $S \in T_{2}^{1}\left(M_{n}\right)$ to $T_{q}^{0}\left(M_{n}\right)$ along $\sigma_{\xi}^{S}\left(M_{n}\right)$.

Let ${ }^{C} \tilde{S}_{L_{1} L_{2}}^{J}$ be components of ${ }^{C} S$ with respect to the adapted (B, C)-frame of the pure cross-section $\sigma_{\xi}^{S}\left(M_{n}\right)$. From (1.1), (1.3), (1.4) and ${ }^{V} A={ }^{V} \tilde{A}^{j} B_{j}+{ }^{V} \tilde{A}^{\bar{\jmath}} C_{\bar{\jmath}}$, we easily obtain ${ }^{V} \tilde{A}^{j}=0,{ }^{V} \tilde{A}^{\bar{j}}={ }^{V} A^{\bar{J}}=A_{j_{1} \ldots j_{q}}$. Thus the vertical lift ${ }^{V} A$ also has components of the form (1.1) with respect to the adapted (B, C)-frame of $\sigma_{\xi}^{S}\left(M_{n}\right)$. Then, from (3.1) we have

$$
\left\{\begin{array}{l}
{ }^{C} \tilde{S}_{L_{1} L_{2}}^{J}{ }^{C} \tilde{V}_{1}^{L_{1} C} \tilde{V}_{2}^{L_{2}}={ }^{C}\left(\tilde{S}\left(V_{1}, V_{2}\right)\right)^{J}-\gamma\left(\left(\tilde{L}_{V_{2}} S\right)_{V_{1}}\right)^{J} \tag{i}\\
+\gamma\left(\left(L_{V_{1}} S\right)_{V_{2}}\right)^{J}+\gamma\left(\tilde{S}_{\left[V_{1}, V_{2}\right]}\right)^{J}, \\
{ }^{C} \tilde{S}_{L_{1} L_{2}}^{J}{ }^{V} \tilde{A}_{1}^{L_{1} C} \tilde{V}_{2}^{L_{2}}={ }^{V}\left(S_{V_{2}}(\tilde{A})\right)^{J} \\
{ }^{C} \tilde{S}_{L_{1} L_{2}}{ }^{C} \tilde{V}_{1}^{L_{1} V} \tilde{B}^{L_{2}}={ }^{V}\left(S_{V_{1}}(\tilde{B})\right)^{J}, \\
{ }^{C} \tilde{S}_{L_{1} L_{2}}^{J}{ }^{V} \tilde{A}^{L_{1} V} \tilde{B}^{L_{2}}=0,
\end{array}\right.
$$

where

$$
\left.{ }^{V}\left(S_{V_{2}} \tilde{(} A\right)\right)^{J}=\binom{0}{S_{j_{1}}^{m} V_{2}^{l} A_{m j_{2} \ldots j_{q}}}, \quad{ }^{V}\left(S_{V_{1}} \tilde{}(B)\right)^{J}=\binom{0}{S_{l j_{1}}^{m} V_{1}^{l} B_{m j_{2} \ldots j_{q}}} .
$$

When $J=j$, from (i) of (3.2) we have

$$
{ }^{C} \tilde{S}_{l_{1} l_{2}}^{j}=S_{l_{1} l_{2}}^{j}, \quad{ }^{C} \tilde{S}_{\bar{l}_{1} l_{2}}^{j}={ }^{C} \tilde{S}_{l_{1} \bar{l}_{2}}^{j}={ }^{C} \tilde{S}_{\bar{l}_{1} \bar{l}_{2}}^{j}=0
$$

where $x^{\bar{l}_{a}}=t_{r_{1} \ldots r_{q}}, a=1,2$.
When $J=\bar{\jmath}$, (i) of (3.2) reduces to

$$
\begin{gather*}
{ }^{C} \tilde{S}_{l_{1} l_{2}}^{\bar{j}}{ }^{C} \tilde{V}_{1}^{l_{1} C} \tilde{V}_{2}^{l_{2}}+{ }^{C} \tilde{S}_{\bar{l}_{1_{1} l_{2}}{ }^{C}} \tilde{V}_{1}^{\bar{l}_{1} C} \tilde{V}_{2}^{l_{2}}+{ }^{C} \tilde{S}_{l_{1} \bar{l}_{2}}^{\bar{j}} \tilde{V}_{1}^{l_{1} C} \tilde{V}_{2}^{\bar{l}_{2}} \\
 \tag{3.3}\\
+{ }^{C} \tilde{S}_{\bar{l}_{1} \bar{l}_{2}}{ }^{C} \tilde{V}_{1}^{\bar{l}_{1} C} \tilde{V}_{2}^{l_{2}}+\xi_{i j_{2} \ldots j_{q}} v_{1}^{m}\left(L_{V_{2}} S\right)_{j_{1} m}^{i} \\
-\xi_{i j_{2} \ldots j_{q}} v_{2}^{m}\left(L_{V_{1}} S\right)_{j_{1} m}^{i}-\xi_{i j_{2} \ldots j_{q}} S_{j_{1} m}^{i}\left[V_{1}, V_{2}\right]^{m}={ }^{C}\left(\tilde{S}\left(V_{1}, V_{2}\right)\right)^{\bar{J}}
\end{gather*}
$$

Now, using the Generalized Yano-Ako operator we will investigate components ${ }^{C} \tilde{S}_{l_{1} l_{2}}^{\bar{J}}$. The Generalized Yano-Ako operator on the pure module ${ }_{T}^{*}\left(M_{n}\right)$ is given by [4], [5].

$$
\begin{gathered}
\left(\Phi_{S} \xi\right)_{l_{1} l_{2} j_{1} \ldots j_{q}}=S_{l_{1} l_{2}}^{m} \partial_{m} \xi_{j_{1} \ldots j_{q}}-\partial_{l_{1}}\left(S_{j_{1} l_{2}}^{m} \xi_{m j_{2} \ldots j_{q}}\right)-\partial_{l_{2}}\left(S_{l_{1} j_{1}}^{m} \xi_{m j_{2} \ldots j_{q}}\right) \\
+\sum_{a=1}^{q}\left(\partial_{j_{a}} S_{l_{1} l_{2}}^{m}\right) \xi_{j_{1} \ldots m \ldots j_{q}}
\end{gathered}
$$

After some calculations we have

$$
\begin{align*}
& \left.V_{2}^{l_{2}} V_{1}^{l_{1}}\left(\Phi_{S\left(V_{1}, V_{2}\right)}\right)\right)_{l_{1} l_{2} j_{1} \ldots j_{q}}+V_{1}^{l_{1}} S_{l_{1} j_{1}}^{m} L_{V_{2}} \xi_{m j_{2} \ldots j_{q}}+V_{2}^{l_{2}} S_{j_{1} l_{2}}^{m} L_{V_{1}} \xi_{m j_{2} \ldots j_{q}} \\
& +V_{2}^{l_{2}}\left(L_{V_{1}} S_{j_{1} l_{2}}^{m}\right) \xi_{m j_{2} \ldots j_{q}}-V_{1}^{l_{1}}\left(L_{V_{2}} S_{j_{1} l_{1}}\right) \xi_{m j_{2} \ldots j_{q}}+\left(L_{V_{1}} V_{2}\right)^{l_{1}} S_{j_{1} l_{1}}^{m} \xi_{m j_{2} \ldots j_{q}} \\
& \quad=L_{S\left(V_{1}, V_{2}\right)} \xi_{j_{1} \ldots j_{q}} \tag{3.4}
\end{align*}
$$

for any $V_{1}, V_{2} \in T_{0}^{1}\left(M_{n}\right)$. Using (1.5), from (3.4) we have

$$
\begin{align*}
& \left(\left(\Phi_{S\left(V_{1}, V_{2}\right)} \xi\right)_{l_{1} l_{2} j_{1} \ldots j_{q}}\right)^{C} \tilde{V}_{1}^{l_{1} C} \tilde{V}_{2}^{l_{2}}-S_{l_{1} j_{1}}^{r_{1}} \delta_{j_{2}}^{r_{2}} \ldots \delta_{j_{q}}^{r_{q} C} \tilde{V}_{1}^{l_{1} C} \tilde{V}_{2}^{\bar{l}_{2}} \\
& -S_{j_{1} l_{2}}^{r_{1}} \delta_{j_{2}}^{r_{2}} \ldots \delta_{j_{q}}^{r_{q} C} \tilde{V}_{1}^{l_{1} C} \tilde{V}_{2}^{l_{2}}+V_{2}^{l_{2}}\left(L_{V_{1}} S_{j_{1} l_{2}}^{m}\right) \xi_{m j_{2} \ldots j_{q}}-V_{1}^{l_{1}}\left(L_{V_{2}} S_{j_{1} l_{1}}^{m}\right) \xi_{m j_{2} \ldots j_{q}} \\
& +\left(L_{V_{1}} V_{2}\right)^{l_{1}} S_{j_{1} l_{1}}^{m} \xi_{m j_{2} \ldots j_{q}}=-{ }^{C}\left(\tilde{S}\left(V_{1}, V_{2}\right)\right)^{\bar{j}} \tag{3.5}
\end{align*}
$$

Comparing (3.3) and (3.5), we get

$$
{ }^{C} \tilde{S}_{l_{1} l_{2}}^{\bar{J}}=-\left(\Phi_{S} \xi\right)_{l_{1} l_{2} j_{1} \ldots j_{q}} .
$$

By similar devices, from (ii)-(iv) of (3.2) we have also

$$
{ }^{C} \tilde{S}_{\bar{l}_{1} \bar{l}_{2}}^{\bar{J}}=0, \quad{ }^{C} \tilde{S}_{\bar{l}_{1} l_{2}}^{\bar{j}}=S_{j_{1} l_{2}}^{r_{1}} \delta_{j_{2}}^{r_{2}} \ldots \delta_{j_{q}}^{r_{q}}, \quad{ }^{C} \tilde{S}_{l_{1} \bar{l}_{2}}^{\bar{j}}=S_{l_{1} j_{1}}^{r_{1}} \delta_{j_{2}}^{r_{2}} \ldots \delta_{j_{q}}^{r_{q}} .
$$

Thus the complete lift ${ }^{C} S$ of $S \in T_{2}^{1}\left(M_{n}\right)(S(V, W)=-S(W, V))$ has along the pure cross-section $\sigma_{\xi}^{S}\left(M_{n}\right)$ components

$$
\left\{\begin{array}{l}
{ }^{C} \tilde{S}_{\bar{l}_{1} l_{2}}^{j}=S_{l_{1} l_{2}}^{j},{ }^{C} \tilde{S}_{\bar{l}_{1} l_{2}}^{j}={ }^{C} \tilde{S}_{l_{1} \bar{l}_{2}}^{j}={ }^{C} \tilde{S}_{\bar{l}_{1} \bar{l}_{2}}^{j}={ }^{C} \tilde{S}_{\bar{l}_{1} \bar{l}_{2}}^{j}=0 \tag{3.6}\\
{ }^{C} \tilde{S}_{S_{1}}^{J}{ }_{l}^{l_{2}}=S_{j_{1} l_{2}}^{r_{j}} \delta_{j_{2}}^{r_{2}} \ldots \delta_{j_{q}},{ }^{C} \tilde{S}_{l_{1} \bar{l}_{2}}^{J}=S_{l_{1} j_{1}}^{r_{j_{2}}} \ldots \delta_{j_{q}}^{r_{q}}, \\
{ }^{C} \tilde{S}_{l_{1} l_{2}}^{J}=-\left(\Phi_{S} \xi\right)_{l_{1} l_{2} j_{1} \ldots j_{q}},
\end{array}\right.
$$

with respect to the adapted (B, C)-frame of $\sigma_{\xi}^{S}\left(M_{n}\right)$, where $\Phi_{S} \xi$ is the Generalized Yano-Ako operator.

Remark $1^{C} S$ in the form (3.6) is unique solution of (3.1). Therefore, if $\stackrel{*}{S}$ is element of $T_{2}^{1}\left(T_{q}^{0}\left(M_{n}\right)\right)$, such that

$$
\left\{\begin{array}{l}
{ }^{C} \stackrel{*}{S}\left({ }^{C} V_{1},{ }^{C} V_{2}\right)={ }^{C}\left(S\left(V_{1}, V_{2}\right)\right)-\gamma\left(\left(L_{V_{2}} S\right)_{V_{1}}\right) \\
+\gamma\left(\left(L_{V_{1}} S\right)_{V_{2}}\right)+\gamma\left(S_{\left[V_{1}, V_{2}\right]}\right), \\
C^{*}{ }_{S}\left({ }^{V} A,{ }^{C} V_{2}\right)={ }^{V}\left(S_{V_{2}}(A)\right), \\
\left.{ }^{C}{\stackrel{*}{S}\left({ }^{C} V_{1},{ }^{V} B\right)={ }^{V}\left(S_{V_{1}}(B)\right),}_{{ }^{C} \stackrel{*}{S}\left({ }^{V} A,{ }^{V} B\right)=0,} \text {. }{ }^{V} B\right)
\end{array}\right.
$$

then $\stackrel{*}{S}={ }^{C} S$.
Remark 2 The equation (3.1) is a useful extension of the equation ${ }^{C} V(i \alpha)=$ $i\left(L_{V} \alpha\right), \alpha \in T_{0}^{q}\left(M_{n}\right)$ (see $\S 1$) to tensor fields of type (1,2) along the pure crosssection $\sigma_{\xi}^{S}\left(M_{n}\right)$.

In the case $\partial_{m} \xi_{j_{1} \ldots j_{q}}=0,(B, C)$-frame is considered as a natural frame $\left\{\partial_{h}, \partial_{\bar{h}}\right\}$ of $\sigma_{\xi}^{S}\left(M_{n}\right)$. Then, from (3.6) we obtain components of ${ }^{C} S$ along the pure cross-section with respect to the natural frame $\left\{\partial_{h}, \partial_{\bar{h}}\right\}$ of $\sigma_{\xi}^{S}\left(M_{n}\right)$ in $\pi^{-1}(U)$ (see [5]). The diagonal and horizontal lifts for tensor fields of special kinds to the tensor bundle have been studied in [6]-[8].

References

[1] Ledger, A., Yano, K.: Almost complex structures on tensor bundles. J. Dif. Geom. 1 (1967), 355-368.
[2] Salimov, A. A., Magden, A.: Complete lifts of tensor fields on a pure cross-section in the tensor bundle $T_{q}^{1}\left(M_{n}\right)$. Note di Matematica 18, 1 (1998), 27-37.
[3] Cengiz, N., Salimov, A. A.: Complete lifts of derivations to tensor bundles. Bol. Soc. Mat. Mexicana (3) 8, 1 (2002), 75-82.
[4] Yano, K., Ako, M.: On certain operators associated with tensor fields. Kodai Math. Sem. Rep. 20 (1968), 414-436.
[5] Salimov, A. A.: Generalized Yano-Ako operator and the complete lift of tensor fields. Tensor N. S., Tensor Soc. of Japan 55, 2 (1994), 142-146.
[6] Cengiz, N., Salimov, A. A.: Diagonal lift in the tensor bundle and its applications. Appl. Math. Comput. 142, 2-3 (2003), 309-319.
[7] Salimov, A. A., Cengiz, N.: Lift of Riemannian metrics to tensor bundles. Russian Math. (IZ. VUZ) 47, 11 (2003), 47-55.
[8] Magden, A., Cengiz, N., Salimov, A. A.: Horizontal lift of affinor structures and its applications. Appl. Math. Comput. 156, 2 (2004), 455-461.

[^0]: *Supported by The Scientific and Technological Council of Turkey with number 105T551.

