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Abstract

The aim of the paper is to show some possible statistical solution of the
estimation of the dispersion of the GPS receiver. The presented method
(based on theory of linear model with additional constraints of type I)
can serve for an improvement of the accuracy of estimators of coordinates
acquired from the GPS receiver.
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1 Introduction

The aim of this paper is to make one keep in view that the geographical coordi-
nates, obtained with the help of a GPS receiver cannot be regarded as accurate
data. Based on the results of one exemplary measurement, we will show that it
is always necessary to take into account an uncertainty of data acquired from
the GPS receiver. The user of the GPS receiver should always consider carefully
if the measured values are sufficiently accurate with respect to the particular
purposes. This conclusion can be drawn only in cases when an estimation of a
dispersion of the GSP receiver is known in a given place and time.
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In order to lower the uncertainty of the measurement, various measuring
approaches are used. A repeated (multistage) measurement is one of such pro-
cedures. In addition, it is also well-known how to determine the estimation of
the dispersion of the GPS receiver.
However, a possible situation can arise when the user of the device is not

in a position to repeat the measurement several times during longer time in-
terval. This can be caused either by a physical principle of a given design of
the measurement or by practical aspects (e.g. expensiveness of the repeated
measurement carried out for several days).
To avoid this difficulty, we will show another possible approach which leads

to the estimation of the dispersion of the GPS receiver. Moreover, the presented
method can serve for an improvement of the accuracy of data acquired from the
GPS receiver.
In the following text, an algorithm based on the theory of estimation is

introduced which would eventually decrease the uncertainty of the coordinates
obtained from the GPS receiver with an utilization of an additional measurement
(in our case, by a measuring tape). Even for an amateur measurement, the
dispersion of the measured lengths is approximately about 0.12 m2. From here
and on, the uncertainty of the first-stage measurement is considered as the B-
type uncertainty (in our case, the B-type uncertainty represents the uncertainty
of the measurement by the measuring tape) and the lengths obtained in the first-
stage measurement are denoted by a symbolΘ. On the contrary, the uncertainty
of the second-stage mesurement is considered as the A-type uncertainty (in our
case, the A-type uncertainty represents the uncertainty of the measurement by
the GPS receiver) and the coordinates acquired in the second-stage measurement
are denoted by a symbol β.

Motivation

Let us suppose the following situation. The goal was to determine a stochastic
distribution of a chemical element in the soil. The coordinates of the positions,
where the value of the chemical element was intended to be measured, have
been acquired by the GPS receiver. The obtained values are depicted in Figure
1 where every point corresponds to the place where the sample was taken.
According to the design of the measurement and principle of the utilized device,
it was then expected that the acquired data would create an accumulation in
the form of a ring.
As it is evident from Figure 1, the ring was generated from data for one

“locality”. However, the expected ring for the second locality was extended in
comparison with the previous one. One may therefore ask the following ques-
tions. What were the reasons for such an anomalous behaviour of the measured
data? Was it a consequence of the uncertainty of the acquired coordinates?
In the next example from another area of interest, it will be shown that

the estimation of the dispersion of the GPS device is 0.3542 m2. This value
may greatly differ depending on a number of available satellites, surrounding
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landscape and sedulity of the person performing the measurement. Therefore,
the values acquired by the GPS receiver can exhibit different accuracy.

Figure 1: Coordinates of the measured points.

In the above-discussed example describing the measurement of the location
points in the soil, it was found out that the student carrying out the mea-
surement did not respect the instructions for a given measurement. The mea-
surement was not performed all at once but there was a time delay between
particular steps of the measurement.

Notation

The following notations will be used throughout the paper:
Rn space of all n-dimensional real vectors;
Θ real column vector—from the first stage;
β real column vector—from the second stage;
Im,m, Am,n m×m identity matrix; real m× n matrix;
Ar1:s1,r2:s2 (s1 − r1)× (s2 − r2) block matrix with elements of A;
A′, r(A),Tr(A) transpose, rank and trace of the matrix A;
A = diag(u) diagonal matrix with diagonal equal elements of vector u;
M(A) column space of the matrix A;

M(A) = {Au : u ∈ Rn} ⊂ Rm;
Ker(A) null space of the matrix A;

Ker(A) = {u : u ∈ Rn,Au = 0} ⊂ Rn;
A− generalized inverse of the matrix A (satisfying AA−A = A),

(see [4]);
PA orthogonal projector ontoM(A) in Euclidean norm;

PA = A(A′A)−A′;
MA orthogonal projector ontoM⊥(A) = Ker(A′) in Euclidean

norm; MA = I− PA;
Y ∼ (AΘ,T) observation vector Y with mean value AΘ and covariance

matrix T.



162 Pavel TUČEK, Jaroslav MAREK

2 Model of measurements

Definition 1 Let us consider the following linear model Y−DΘ̂ ∼n (Xβ, Σ0),
where Σ0 = σ2V1 + DV0D′ and where Y ∼n (DΘ + Xβ, σ2V1) is a random
observation vector, β ∈ Rk stands for a vector of the useful parameters and
Xn,k denotes a design matrix belonging to the vector β. We suppose that an
estimator Θ̂ ∼k1 (Θ,V0) of Θ is at our disposal only.

Theorem 1 The standard estimator σ̂2 of the parameter σ2 for the model de-
fined in Definition 1 is given by the expression in the form of

σ̂2 = λ[(Y −DΘ̂)′(MXΣ0MX)+V1(MXΣ0MX)+(Y −DΘ̂)]
−Tr[(MXΣ0MX)+V1(MXΣ0MX)+V0] ,

where the value of the parameter λ is expressed by the following equation

S(MXΣ0MX)+λ = 1 ,

where the 1×1 matrix S(MXΣ0MX)+ takes the form of

S(MXΣ0MX)+ = Tr[(MXΣ0MX)+V1(MXΣ0MX)+V1] .

Proof Firstly, we have the model in the form of

Y ∼ (Xβ,V0 + σ2V1),

where the estimator σ̂2 of the parameter σ2 takes the form of

σ̂2 = Y′AY + a,

where A is a suitable matrix. Let E[σ̂2] = σ2, which is equivalent to E[σ̂2] =
Tr(AV0)+σ2 Tr(AV1)+β′X′AXβ+a = σ2. This implies that a = −Tr(AV0),
Tr(AV1) = 1 and X′AX = 0.
It is known (see [1]) that the matrix A in the form of A = MXSMX, where

S = S′, satisfies the conditions AX = 0 and A = A′. This leads to the
minimalization of the functional Φ defined as Φ = Tr(AΣ0AΣ0)−2λTr(AV1).
This can be rewritten as

Φ(S) = Tr(SMXΣ0MXSMXΣ0MX)− 2λTr(SMXV1MX).

As ∂Φ(S)
∂S = 0, we arrive at 4(MXΣ0MX)S(MXΣ0MX) = 4λMXV1MX. Now

we have the matrix system in the form of AXB = C. The general solution of
this matrix system is X = A−CB− + Z −A−AZBB− It is possible to show,
that X = A+CB+ is also the solution (see [4]).
As MXSMX = A, it follows that

A = λ(MXΣ0MX)+V1(MXΣ0MX)+ .

With regard to the condition that Tr(AV1) = 1, we arrive at

λTr[(MXΣ0MX)+V1(MXΣ0MX)+V1] = 1.
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From this relation, we can obtain the result for the matrix A and the equa-
tion for the Lagrange parameter λ. We then get

λ =
1

Tr[(MXΣ0MX)+V1(MXΣ0MX)+V1]
,

A =
(MXΣ0MX)+V1(MXΣ0MX)+

Tr[(MXΣ0MX)+V1(MXΣ0MX)+V1]
.

Finally, the estimator σ̂2 of the parameter σ2 for the matrix Σ0 can be now
written as

σ̂2 = Y′AY − Tr(AV0) =
Y′(MXΣ0MX)+V1(MXΣ0MX)+Y
Tr[(MXΣ0MX)+V1(MXΣ0MX)+V1]

− Tr[(MXΣ0MX)+V1(MXΣ0MX)+V0]
Tr[(MXΣ0MX)+V1(MXΣ0MX)+V1]

. �

Hereafter we will focus on the same model but from a different point of view.
We will consider the model of the measurement and then we will present how
to determine the estimators of the fundamental parameters.

Definition 2 The model of connecting measurement will be represented by

(i)
(

Y1

Y2

)
∼
[(

X1, 0
D, X2

)(
Θ
β

)
,

(
Σ11, 0
0, Σ22

)]
,

where X1,D,X2 are known n1×k1, n2×k1, n2×k2 matrices, respectively, such
that M(D′) ⊂ M(X′

1); Θ and β are unknown k1- and k2-dimensional vectors;
Σ22 = σ2V1, where Σ11 and V1 are known matrices.

In this model, the parameter Θ is estimated on the basis of the vector Y1

of the first stage and parameter β on the basis of the vectors Y2 −DΘ̂ and Θ̂.
At this point, it should be mentioned that the results of the measurement

from the second stage (i.e. Y2) cannot be used for a modification of the esti-
mator Θ̂.
The parametric space Θ of this model of connecting measurement Y is de-

fined as

(ii) Θ = {(Θ′, β′)′ : Bβ + CΘ + a = 0} ,

where B and C are q × k2 and q × k1 matrices, a is q-dimensional vector,
r(B) = q < k2.

Definition 3 The model in the parametric space Θ (see Definition 2) is regular
provided that r(X1) = k1, r(X2) = k2, Σ11,Σ22 are positively definite matrices,
r(B) = q.

Remark 1 The vector Θ represents the parameter of the first stage (connect-
ing) whereas the vector β denotes the parameter of the second stage (con-
nected). In the second stage, we then start with the unbiased estimator Θ̂ =
(X′

1Σ
−1
11 X1)−1X′

1Σ
−1
11 Y1 originating from the first stage whose covariance ma-

trix is expressed in the form of Var(Θ̂) = V0 = (X′
1Σ

−1
11 X1)−1.
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Definition 4 The least-square estimator of the parameter β, obtained under
the condition that Σ11 = 0 (⇒ Var(Θ̂) = 0), is called the standard estimator if
the vector Θ is substituted by Θ̂ in this estimator.

Theorem 2 The standard estimator β̂ of the parameter β in the model (i) and
(ii) postulated in Definition 2 and given by

β̂ = (X′
2Σ

−1
22 X2)−1X′

2Σ
−1
22 (Y2 −DΘ̂)

− (X′
2Σ

−1
22 X2)−1B′[B(X′

2Σ
−1
22 X2)−1B′]−1

× {a + CΘ̂ + B(X′
2Σ

−1
22 X2)−1X′

2Σ
−1
22 (Y2 −DΘ̂)},

is unbiased.

Proof See [3], p. 72–73. �

Theorem 3 If Var(Θ̂) �= 0 then the covariance matrix of the standard estima-
tor β̂ is composed of two uncertainties, i.e. the “uncertainty of type A” and
“uncertainty of type B”, as

Var(β̂) = Var0(β̂) +〈{I− (X′
2Σ

−1
22 X2)−1B′[B(X′

2Σ
−1
22 X2)−1B′]−1B}

× (X′
2Σ

−1
22 X2)−1X′

2Σ
−1
22 D− (X′

2Σ
−1
22 X2)−1

×B′[B(X′
2Σ

−1
22 X2)−1B′]−1C〉

×Var(Θ̂)
× 〈{I− (X′

2Σ
−1
22 X2)−1B′[B(X′

2Σ
−1
22 X2)−1B′]−1B}

× (X′
2Σ

−1
22 X2)−1X′

2Σ
−1
22 D− (X′

2Σ
−1
22 X2)−1

×B′[B(X′
2Σ

−1
22 X2)−1B′]−1C〉′

︸ ︷︷ ︸
uncertainty of

︸ ︷︷ ︸
uncertainty of

type A type B
where

Var0(β̂) = (MB′X′
2Σ22X2MB′)+ = (X′

2Σ
−1
22 X2)−1− (X′

2Σ
−1
22 X2)−1B′

×[B(X′
2Σ

−1
22 X2)−1B′]−1B(X′

2Σ
−1
22 X2)−1.

Proof See [3], p. 74. �

Corollary 1 For the case of the model with X2 = I and D = 0, the covariance
matrix of the standard estimator is given by

Var(β̂) = [I−Σ22B′(BΣ22B′)−1B]Σ22[I−B′(BΣ22B′)−1BΣ22]
+ Σ22B′(BΣ22B′)−1CVar(Θ̂)C′(BΣ22B′)−1BΣ22 .

Proof See [3], p. 73–74. �
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Theorem 4 The (1 − α)-confidence domain for the parameter β, β ∈ Θ (see
Definition 2), based on the standard BLUE β̂, is a set expressed by

E1−α(β) =
{
u : u ∈ Θβ ⊂ Rk2 , (u− β̂)′[Var(β̂)]−(u− β̂) ≤ χ2

r[Var(bβ)]
(1− α)

}
.

Here the symbol χ2
r[Var(bβ)]

(1 − α) denotes (1 − α)-quantile of χ2-distribution

with r[Var(β̂)] degrees of freedom.

Proof See [2], p. 158–159. �

3 Illustrative example

The aim of this example is to find a dispersion for a CARMIN GPS 12XL
navigator and estimate the plane coordinates β of the points A1, A2, A3 in
the Situation I and plane coordinates of the points A1, A2, A3 and P in the
Situation II using the theory of basic linear models of the measurement.

Situation I:

Θ
3
=21.613 m

Θ
1
=16.683 m

Θ
2
=12.453 m

A
1
=[β

1
,β

2
]

A
2
=[β

3
,β

4
]

A
3
=[β

5
,β

6
]

P

A
1
=[536622.292 m, 1118095.276 m]

A
2
=[536605.521 m, 1118109.327 m]

A
3
=[536621.495 m, 1118107.768 m]

Situation II:

Θ
1
=12.816 m

Θ
3
=6.98 m

Θ
2
=10.244 m

A
1
=[β

1
,β

2
]

A
2
=[β

3
,β

4
]

A
3
=[β

5
,β

6
]

P=[β
7
,β

8
]

A
1
=[536622.292 m, 1118095.276 m]

A
2
=[536605.521 m, 1118109.327 m]

A
3
=[536621.495 m, 1118107.768 m]

P=[536615.205 m, 1118105.278 m]

Figure 2: The polygonometric measurement.

We have given four points A1, A2, A3 and P and their geographical specifi-
cations, i.e. their latitudes and longitudes, which have been obtained from a
CARMIN GPS 12XL navigator. All points have been visualized on Fig. 2.
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For our purposes, the geographical coordinates were transformed to the plane
system known as S-JTSK (where +x-axes . . . south, +y-axes . . . west). For
details on S-JTSK coordinates, see [5].
So we have estimated values of Ai = (Y2i−1, Y2i), i = 1, 2, 3 and measured

values of Θ̂I = (Θ̂I
1, Θ̂I

2, Θ̂I
3)′ in the Situation I or we have estimated values

of Ai = (Y2i−1, Y2i), i = 1, 2, 3, and P = (Y7, Y8) and measured values of
Θ̂II = (Θ̂II

1 , Θ̂II
2 , Θ̂II

3 )′ in the Situation II.
Let the result from the first and the second stage of measurement in the

Situation I be (Θ̂I
1, Θ̂

I
2, Θ̂

I
3)
′ = (16.683 m, 12.453 m, 21.613 m)′ and

YIg =

⎛
⎜⎜⎜⎜⎜⎜⎝

Y1

Y2

Y3

Y4

Y5

Y6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

49◦38′02.2′′

17◦23′35.1′′

49◦38′01.8′′

17◦23′36.0′′

49◦38′01.8′′

17◦23′35.2′′

⎞
⎟⎟⎟⎟⎟⎟⎠
→ YI =

⎛
⎜⎜⎜⎜⎜⎜⎝

536622.292 m
1118095.276 m
536605.521 m

1118109.327 m
536621.495 m

1118107.768 m

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In the Situation II, let the result from the first and the second stage of
measurement be (Θ̂II

1 , Θ̂II
2 , Θ̂II

3 )′ = (12.816 m, 10.244 m, 6.980 m)′ and

YIIg =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

49◦38′02.2′′

17◦23′35.1′′

49◦38′01.8′′

17◦23′36.0′′

49◦38′01.8′′

17◦23′35.2′′

49◦38′01.9′′

17◦23′35.5′′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ YII =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

536622.292 m
1118095.276 m
536605.521 m

1118109.327 m
536621.495 m

1118107.768 m
536614.788 m

1118105.885 m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The accuracy of the measurement is given by the covariance matrix
(

V0 0
0 σ2V1

)
.

Let Θ̂1, Θ̂2, Θ̂3 be the random variables with the mean values Θ1, Θ2, Θ3, then

Y1 =

⎛
⎜⎝

Θ̂1

Θ̂2

Θ̂3

⎞
⎟⎠ ∼ N3

⎡
⎣X1

⎛
⎝

Θ1

Θ2

Θ3

⎞
⎠ ;V0

⎤
⎦ .

In our case, we will consider the covariance matrices in the form of

V0 = σ2
d ×

⎛
⎝

1, 0, 0
0, 1, 0
0, 0, 1

⎞
⎠ ,

where σ2
d = 0.012m2 and X1 = I3,3. Note that σ2

d = 0.012m2, especially the
value of 0.01 m, is usually used for the value of the standard deviation of the
measuring tape.
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Let Y1, Y2, Y3, Y4, Y5, Y6 be the random variables with the mean values β1,
β2, β3, β4, β5, β6, respectively, and dispersions σ2V1.

Y2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

Y1

Y2

Y3

Y4

Y5

Y6

⎞
⎟⎟⎟⎟⎟⎟⎠
∼ N6

⎡
⎢⎢⎢⎢⎢⎢⎣
X2

⎛
⎜⎜⎜⎜⎜⎜⎝

β1

β2

β3

β4

β5

β6

⎞
⎟⎟⎟⎟⎟⎟⎠

; σ2V1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We can use the covariance matrix in the form of

Σ22 = σ2V1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos2 ϕ, 0, 0, 0, 0, 0
0, 1, 0, 0, 0, 0
0, 0, cos2 ϕ, 0, 0, 0
0, 0, 0, 1, 0, 0
0, 0, 0, 0, cos2 ϕ, 0
0, 0, 0, 0, 0, 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where σ2 = 3.12m2, cos(ϕ) = cos(49◦) = 0.6564 and X2 = I6,6. For the
parameter σ2 we will use the following value, calculated from

σ2
GPS =

2 · π · 6378 · 1000
360 · 60 · 60 · 10

= 3.12m2,

where the expression above, especially the value of 3.1 m, denotes the stan-
dard deviation, derived from the smallest decimal digit which the GPS reciever
displays.
The angle ϕ = 49◦ stands for the value of the latitude where the measure-

ment has been carried out.
Finally, we have the model given by

(
Y1

Y2

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ̂1

Θ̂2

Θ̂3

Y1

Y2

Y3

Y4

Y5

Y6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼ N9

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
X1, 0
0, X2

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ1

Θ2

Θ3

β1

β2

β3

β4

β5

β6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;
(

V0, 0
0, σ2V1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now, we can briefly describe the core of the example. We are in the position
when we have the model expressed by

Y = f(θ) + ε, (1)

Var(ε) = Σ0, (2)
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where Σ0 = σ2V1 + V0. Here we can more closely rewrite the relation (1), i.e.

Y = f(β) + ε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
(β1 − β3)2 + (β2 − β4)2√
(β3 − β5)2 + (β4 − β6)2√
(β1 − β5)2 + (β2 − β6)2

β1

β2

β3

β4

β5

β6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ε. (3)

In our example, we will consider the covariance matrices W0 = (0.1)2 ×(
I3,3, 03,6
06,3, 06,6

)
and σ2W1 = σ2 × diag((0, 0, 0, 1, cos2 ϕ, 1, cos2 ϕ, 1, cos2 ϕ)′) with

σ2 = 3.12m2 and cos(ϕ) = cos(49◦) = 0.6564.
For the function f , we will generate the Taylor expansion at the suitable

point which is given by

f(β1) = f(β0) + A(β1 − β0).

According to the theory of the measurement, we have to define the matrix A
that is given by A =

(
∂f

∂Θ′
)
. As an illustration, the expression for A3,6 takes

the form of A3,6 = β6−β2√
β2
5−2β5β1+β2

1+β2
6−2β6β2+β2

2

. The derivation of the other

elements, i.e., A1,1, A1,2, A1,3, A1,4, A2,3, A2,4, A2,5, A2,6, A3,1, A3,2 and A3,5,
is analogous.
Now we will determine the estimator σ̂2 of the parameter σ2 according to

the Theorem 2.1. The whole process of determining the estimator σ̂2 can be
now, according to the Theorem 2.1, written as

σ̂2 = λ
{
[(Y −DΘ̂)′(MAΣ0MA)+W1(MAΣ0MA)+(Y −DΘ̂)] (4)

− Tr[(MAΣ0MA)+W1(MAΣ0MA)+W0]
}
, (5)

where the value of the parameter λ is expressed by the following equation

S(MAΣ0MA)+λ = 1, (6)

where the 1×1 matrix S(MAΣ0MA)+ takes the form of

S(MAΣ0MA)+ = Tr[(MAΣ0MA)+W1(MAΣ0MA)+W1]. (7)

By solving equations (5),(6) and (7) we have obtained λ = 4.1751e−27 and
σ̂2 = (0.3540 m)2.
We can say that the estimator of the uncertainty in GPS–coordinates is

σ̂2 = 0.35402 m2. Hereafter, we will focus on the same model but from a
different point of view. We will consider the model of the measurement (i) and
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condition (ii) from Definition 2.2. Finally, we have in the Situation I the model
given by

(
Y1

Y2

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ̂1

Θ̂2

Θ̂3

Y1

Y2

Y3

Y4

Y5

Y6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼ N9

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
X1, 0
0, X2

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Θ1

Θ2

Θ3

β1

β2

β3

β4

β5

β6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;
(

Σ11, 0
0, Σ22

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In our case, X1 = I, X2 = I, Σ11 = (W0)1:3,1:3 and Σ22 = (σ2W1)4:9,4:9

(seeW0 and σ2W1 on p. 168).
One can observe from Figure 2 in the Situation I that the condition g(Θ, β) =

0 is implied for the parameters Θ and β, where

g1(Θ, β) = (β5 − β3)2 + (β6 − β4)2 −Θ2
1,

g2(Θ, β) = (β5 − β1)2 + (β6 − β2)2 −Θ2
2,

g3(Θ, β) = (β3 − β1)2 + (β4 − β2)2 −Θ2
3.

The linear version of the condition g(Θ, β) = 0, obtained using the Taylor
expansion at the approximate point (Θ0, β0) = (Θ̂1, Θ̂2, Θ̂3, Y1, Y2, Y3, Y4, Y5,
Y6), is in the form of Bδβ + CδΘ + a = 0, where δβ = β − β0, δΘ = Θ − Θ0,

B = ∂g(Θ0,β0)
∂β′ , C = ∂g(Θ0,β0)

∂Θ′ and a = g(Θ0, β0).

Here we present the values of the vector of the estimator β̂I (calculated
according to Theorem 2.2) based on the model with the measurement of all
triangular lengths by the measuring tape. They are as follows:

β̂I =

⎛
⎜⎜⎜⎜⎜⎜⎝

536621.930 m
1118095.923 m
536604.643 m

1118108.123 m
536622.735 m

1118108.324 m

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Its covariance matrix was calculated (see Corollary 2.1) leading to

Var(β̂I) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.2455 0.5064 0.0300 −0.9437 0.1645 0.4373
0.5064 3.3361 −0.2980 2.3743 −0.2084 3.2896
0.0300 −0.2980 0.7453 0.5556 0.6647 −0.2576

−0.9437 2.3743 0.5556 4.1672 0.3881 2.4585
0.1645 −0.2084 0.6647 0.3881 0.6108 −0.1797
0.4373 3.2896 −0.2576 2.4585 −0.1797 3.2519

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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As Tr[Var(β̂I)] < Tr(Σ22) (see p. 169) it is evident that we get a better estimator
of the coordinates of points A1, A2 and A3.

Furthermore, in the same way, we will find estimator β̂II for model for the
Situation II. In this situation, one can observe that the condition g(Θ, β) = 0
is implied for the parameters Θ and β, where

g1(Θ, β) = (β1 − β7)2 + (β2 − β8)2 −Θ2
1,

g2(Θ, β) = (β3 − β7)2 + (β4 − β8)2 −Θ2
2,

g3(Θ, β) = (β5 − β7)2 + (β6 − β8)2 −Θ2
3.

The linear version of the condition g(Θ, β) = 0, obtained using the Taylor
expansion at the approximate point (Θ0, β0) = (Θ̂1, Θ̂2, Θ̂3, Y1, Y2, Y3, Y4, Y5,
Y6), is in the form of Bδβ + CδΘ + a = 0, where δβ = β − β0, δΘ = Θ − Θ0,

B = ∂g(Θ0,β0)
∂β′ , C = ∂g(Θ0,β0)

∂Θ′ and a = g(Θ0, β0).

Here we present the values of the vector of the estimator β̂II (calculated
according to Theorem 2.2) based on the model with the measurement of 3
distances from triangular points to the inner point P by the measuring tape.
The result is

β̂II =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

536622.416 m
1118094.184 m
536605.578 m

1118109.178 m
536621.752 m

1118108.403 m
536614.768 m

1118105.885 m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Its covariance matrix (see Corollary 2.1) is given by

Var(bβII) =

=

0
BBBBBBBBBB@

1.3685 0.6308 0.0797 −0.2083 −0.0443 −0.1096 0.0361 −0.3129
0.6308 3.4356 −0.7031 1.8373 0.3907 0.9667 −0.3185 2.7604
0.0797 −0.7031 1.0072 1.1309 0.0464 0.1147 0.3067 −0.5426

−0.2083 1.8373 1.1309 6.0447 −0.1212 −0.2998 −0.8014 1.4179
−0.0443 0.3907 0.0464 −0.1212 1.0490 −0.9674 0.3889 0.6979
−0.1096 0.9667 0.1147 −0.2998 −0.9674 6.6065 0.9623 1.7267

0.0361 −0.3185 0.3067 −0.8014 0.3889 0.9623 0.7083 0.1576
−0.3129 2.7604 −0.5426 1.4179 0.6979 1.7267 0.1576 3.0951

1
CCCCCCCCCCA

.

As it has already been said before, we can use the outputs from the second
step of our example as the input for the third part of the computation. This
innovation of the algorithm could result in better estimators of our parameters.
Our task is to find the estimator of the coordinates of the point P and their

covariance matrix and to determine the confidence ellipses for the coordinates
of all points.
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We now apply the same model like in the Situation II. We can consider
another covariance matrix Var(β̂I)—the result from the Situation I, where we
have better estimator of parameters than in the first stage of the measurement
because of Tr[Var(β̂I)] < Tr(Σ22) . Here we present the values of the vector of
the estimator β̂II′

(calculated according to Theorem 2.2). They are as follows:

β̂II′
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

536622.473 m
1118094.363 m
536605.361 m

1118109.341 m
536622.071 m

1118107.489 m
536614.607 m

1118106.183 m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In this case, Corollary 2.1 gives the covariance matrix in the form of

Var(bβII′
) =

=

0
BBBBBBBBBB@

1.1699 0.5461 −0.0752 −0.9390 0.0624 0.4752 0.2828 −0.0823
0.5461 2.6197 −0.2931 1.6152 −0.2011 2.5707 −0.0519 2.1943

−0.0752 −0.2931 0.5958 0.5062 0.5187 −0.2560 0.4006 0.0429
−0.9390 1.6152 0.5062 3.3453 0.3448 1.6967 0.0880 2.3429

0.0624 −0.2011 0.5187 0.3448 0.4706 −0.1745 0.3882 0.0308
0.4752 2.5707 −0.2560 1.6967 −0.1745 2.5309 −0.0447 2.2017
0.2828 −0.0519 0.4006 0.0880 0.3882 −0.0447 0.3684 0.0086

−0.0823 2.1943 0.0429 2.3429 0.0308 2.2017 0.0086 2.2611

1
CCCCCCCCCCA

.

As we can see, it is possible to use estimator β̂I from the model for the
Situation I for finding the estimator in the model for the Situation II.

We have taken into account three different cases in which we have determined
the possible way, how to obtain the coordinates from the GPS receiver, which
shows a lesser uncertainty. These results, especially variances and residuals, for
the first calculated situation are quite satisfactory. In the second situation we
have not obtain better results because we have measured shorter distances. We
have corrected this imperfection in the Situation II’, where we have arrived at
the best results. The essence of this method is based on the use of outputs of
the Situation II as the input for the Situation II’.

The confidence ellipses obtained from calculated covariance matrix (based
on Theorem 2.4) for α = 5 % are depicted in Fig. 3.
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Situation I:
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Situation II’:
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Figure 3: The (1-α) confidence ellipses for points A1, A2 and A3 (solid line),
for point P̂ (bold solid line), for point Â1 (dash line), for point
Â2 (dashdot line) and for point Â3 (dot line).
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4 Concluding remarks

We hope that our contribution has evidently pointed out a necessity to inves-
tigate the dispersion of the measuring device (the GPS receiver in our case)
before the initiation of the measurement itself. In reality, a finding of the esti-
mation of the dispersion can be complicated and infeasible in some cases. It may
happen that the measurement cannot be repeated several times. Our proposed
procedure, however, allows to estimate the dispersion without the measurement
being repeated but with the help of the additional measurement (in our case,
by a measure tape).
In the example worked out in this paper, we have calculated the values of

the uncertainty of the GPS receiver which may have at the latitude of ϕ = 49◦.
Furthermore, our contribution have shown how the theory of estimation is a
powerful tool for a modification of inaccurate data acquired by a measuring
device (the GPS receiver in our case) with the utilization of the additional
measurement. The example has also demonstrated a possibility of a successive
improvement of the estimation by a further additional measurement.
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