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Abstract. The main goal of the paper is to give a variational formulation of the behaviour
of bolt systems in rock mass. The problem arises in geomechanics where bolt systems are
applied to reinforce underground openings by inserting steel bars or cables. After giving
a variational formulation, we prove the existence and uniqueness and some other properties.
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1. Introduction

The term rock bolting is defined in geomechanics as any form of mechanical sup-

port that is inserted into the rock mass with the primary objective of increasing its
stiffness and/or strength with respect to tensile shear loads. We refer the reader

interested in the technical aspect of the procedure to [1], [2]. After describing the
variational formulation of the behaviour of isolated bolts, we will deal with the vari-

ational formulation of bolt systems. The existence and uniqueness of those two
problems as well as the relations between them will be given. But first of all let us

describe rock bolts and the way they are applied. We will deal with the following
type of rock bolts. The bolts are steel bars or cables which are inserted in rock holes

and fixed to the rock at both end points of the bolt with a special cement (Fig. 1).

There is a special technology how to do it and we refer the reader to [1], [2] for
the details of that technique.

Bolts are applied to stabilize tunnels and underground openings which can be

schematically described in the following three steps:

1. A chamber is made in the rock mass (Fig. 2a).
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Fig. 1. 1—special cement, 2—bore hole, 3—bolt, 4—bearing plate, 5—nut, 6—tunnel
or underground opening, 7—rock mass

2. After the bore holes are made, the bolts are inserted into them and fixed at the

end points (Fig. 2b).

3. In the third step the chamber is enlarged (Fig. 2c).

Because of the initial stress state in the rock mass, the bolts come into contact
with the rock surrounding which results in the stability of the underground opening.

It is very well known in practice that the stress-strain field in the area occupied by
bolts considerably differs from the stress-strain field in the same area which is not

occupied by any bolts. It is also impossible to achieve a proper result by applying
isolated bolts but bolts have to be inserted in sufficient numbers to be able to act

as a system. It is evident that it is possible to apply a model with isolated bolts
to calculate the stress-strain field. But the number of bolts, applied to support an

underground opening, obviously reaches a few hundreds. If we consider this number
and the fact that bolts are from two to three metres long and only from two to

three centimetres thick so it is almost impossible to solve such problems with finite
elements because of the difficulties arising from the construction and regularity of

such a finite element mesh as well as because of numerical difficulties. The solution
of the problem will be found in the three steps which correspond to those mentioned

above. The details of the problem will be specified in the following sections.
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Fig. 2.

2. Variational formulation of the problem
with individual bolts

Let us start with the variational formulation of the problem which makes up the

essential part of the solution to the whole problem. But first of all we will set the
conditions we will deal with through the rest of this paper.

1. Linear elastic behaviour of the rock mas.

2. Linear elastic behaviour of the bolts.

3. No contacts between the bolts and the rock mass except at the end points of
each bolt.

4. The volume of the bore holes is small in comparison with the underground
opening dimensions so that it can be neglected.

To make our explanations clearer the subsequent figures will be two-dimensional
and will represent the cross sections of the bodies in Figures 2a, 2b, 2c.

Let an elastic body occupy a bounded region Ω with a Lipschitz boundary and
let x = (x1, x2, x3) be Cartesian coordinates of the point x. Let us denote by

415



u = (u1, u2, u3) the displacement vector field and the associated strain tensor field

(2.1) eij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, 2, 3.

The stress tensor is related to the strain tensor by means of the following gener-
alized Hook’s law

(2.2) τij = cijkl ekl, i, j = 1, 2, 3.

We use the following summation convention: whereas a subscript is repeated in
a term, summation is required to be taken over that subscript from 1 to 3.

Assume that cijkl are bounded and measurable functions in Ω satisfying the con-

ditions

(2.3) cijkl = cjikl = cklij .

Moreover, there exists a positive constant K0 such that the inequality

(2.4) cijkl(x) eij ekl � K0 eij eij

holds almost everywhere in Ω for any symmetric eij . Let us have the following

decomposition of the boundary ∂Ω:

(2.5) ∂Ω = Γu ∪ Γτ ∪ Γ0 ∪R,

where Γu,Γτ ,Γ0 are mutually disjoint open parts and the surface measure of R is
zero. Let the body Ω be fixed on Γu:

(2.6) u(x) = 0, x ∈ Γu

and let the tractions be prescribed on Γτ :

(2.7) Ti(u)(x) = τij(x) νj(x) = Pi(x), i = 1, 2, 3, x ∈ Γτ ,

where ν(x) =
(
ν1(x), ν2(x), ν3(x)

)
is the unit outward normal to ∂Ω at x. Define the

normal and tangential components of the displacement and stress vectors by

(2.8)
uν = uj νj ,

Tν = τjk νj νk,

(ut)i = ui − uν νi,

(Tt)i = τij νj − Tν νi, i = 1, 2, 3
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and on Γ0 put

(2.9) uν = 0, (Tt)i = 0, i = 1, 2, 3.

Let us consider the situation in Fig. 3 which corresponds to the cross section of
the body in Fig. 2b. In Fig. 3 the bolt is described by a one-to-one transformation

ξ : S1 �→ S2, where S1, S2 are Lipschitz 2D surfaces which correspond to the two
end “points” where the bolt is fixed. The bore hole is neglected due to the condition

4 at the beginning of this chapter. Assume

K1 |x1 − x2| � |ξ(x1)− ξ(x2)| � K2 |x1 − x2|,
x1, x2 ∈ S1,

where K1, K2 are positive constants and |. | is the Euclidean norm in �3 . Let us
define a function γ : S1 �→ �3 ,

γ(x) =
ξ(x) − x

|ξ(x) − x| .

Because we deal with small deformations the deformation of the whole bolt length
can be approximated by the term

〈
u
(
ξ(x)

)
− u(x), γ(x)

〉
, where 〈., .〉 is the Euclid-

ean scalar product in �3 , u(x) is the displacement in x. In our model transversal
deformations of the bolt will be neglected.
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Denote by

V =
{
u ∈ [H1(Ω)]3 | u = 0 on Γu, un = 0 on Γ0

}

the space of virtual displacements and assume that F ∈ [L2(Ω)]3 and P ∈ [L2(Γτ )]3

are prescribed body forces and surface loads. Let us introduce the forms

A(u, v) =
∫

Ω

cijkl eij(u) ekl(v) dx,

a(u, v) =
∫

S1

c(x)
〈
u
(
ξ(x)

)
− u(x), γ(x)

〉 〈
v
(
ξ(x)

)
− v(x), γ(x)

〉
dΓ,(2.10)

L(v) =
∫

Ω

Fi vi dx+
∫

Γτ

Pi vi dΓ,

where c = E/d, E is Young’s modulus of the bolt material and d(x) = |ξ(x) − x|
is the bolt length. Under the conditions considered above the second form a(u, v)

corresponds to the bilinear form of elastic deformation energy of the bolt. Let us
define the functional of total potential energy

(2.11) L (u) =
1
2

A(u, u) +
1
2

a(u, u)− L(u).

Now we turn to the particular task of finding the weak solutions of some boundary

value problems with bolts.

Definition 2.1. An element u ∈ V will be called the solution to the bolt

problem if L (u) � L (v) for all v ∈ V .

Let us consider the subspace R ⊂ [H1(Ω)]3 defined by

R =
{
v ∈ [H1(Ω)]3 | v(x) = a+ b× x

}
,

where a, b are vectors from �
3 and × is the vector product. This subspace corre-

sponds to the rigid-body translations and the rigid-body rotations.

Theorem 2.1. Let F ∈ [L2(Ω)]3 and P ∈ [L2(Γτ )]3 and Γu �= ∅ or Γu = ∅ and
R ∩ V = {0}. Further let the conditions (2.3) be fulfilled and let the function c(x)

in (2.10) be non-negative. Then there exists one and only one weak solution u of the

bolt problem and

(2.12) ‖u‖[H1(Ω)]3 � K
(
‖F‖[L2(Ω)]3 + ‖P‖[L2(Γτ )]3

)
,

where K is a positive constant.

418



�����. Considering that a(u, u) � 0 for every u ∈ V the proof is a consequence

of Korn’s inequality [4] and can be given in the same way as the second basic problem
in the theory of elasticity [3]. �

Theorem 2.2. Let F ∈ [L2(Ω)]3, Γτ = ∂Ω, P ∈ [L2(Γτ )]3 and let the conditions

of total equilibrium
∫

Ω

Fi dx+
∫

Γτ

Pi dΓ = 0, i = 1, 2, 3,(2.13)

∫

Ω

(x × F )i dx+
∫

Γτ

(x× P )i dΓ = 0, i = 1, 2, 3(2.14)

be fulfilled. Then there exists a weak solution u of the bolt problem (V = [H1(Ω)]3)

and u′ is another solution to that problem if and only if u− u′ ∈ R.

�����. Let Q be the orthogonal complement of R with respect to the scalar

product in [H1(Ω)]3. Then from Korn’s inequality [3], [4] we can obtain in the same
way as in the proof of Theorem 2.1 that there exists a weak solution u ∈ Q. To prove

that the weak solution u is a solution on the whole space [H1(Ω)]3, it is sufficient to
check A(u, v) = a(u, v) = 0 for ∀u ∈ Q and ∀v ∈ R. These two equalities together

with the conditions (2.13), (2.14) guarantee that u is a minimum of L . The equality
A(u, v) = 0 holds because of the very well known fact that eij(v) = 0 if and only

if v ∈ R [3]. For the validity of the equation a(u, v) = 0 it is sufficient to prove〈
v
(
ξ(x)

)
− v(x), γ(x)

〉
= 0 for v ∈ R. Let us consider γ(x) =

(
ξ(x) − x

)
/|ξ(x) − x|

and v ∈ R if and only if v = Dx+ c where D is a 3× 3 skew-symmetric matrix and
c is a vector in �3 . Then

〈
v
(
ξ(x)

)
− v(x), γ(x)

〉
=

〈
Dξ(x)−Dx, ξ(x)− x

〉
/|ξ(x)− x|

=
〈
ξ(x)− x, DT ξ(x) −DT x

〉
/|ξ(x)− x|

= −
〈
ξ(x) − x, Dξ(x) −Dx

〉
/|ξ(x)− x|

= −
〈
v
(
ξ(x)

)
− v(x), γ(x)

〉
,

which results in the equality

〈
v
(
ξ(x)

)
− v(x), γ(x)

〉
= 0.

If u′ is another weak solution of the bolt problem then u, u′ satisfy the equations

A(u, u− u′) + a(u, u− u′) = L(u− u′),

A(u′, u− u′) + a(u′, u− u′) = L(u− u′).
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Subtracting them we have

A(u− u′, u− u′) + a(u − u′, u− u′) = 0,

which yields A(u − u′, u− u′) = 0 and consequently eij(u− u′) = 0. Because of the

fact mentioned above u− u′ ∈ R. �

3. Modelling of bolts as continuous systems

So far we have studied the model of a single bolt which can be easily generalized
to several bolts. In this chapter we shall put forward a new model which describes

the behaviour of bolts as the behaviour of a “continuous” system. Then we shall
compare the new model with the one dealing with distinct bolts.

Let us have a look at Figures 4a, 4b. There is a subarea Ω′ ⊂ Ω which is occupied
by two different sets of bolts and the surfaces S1, S2 form a part of the boundary

∂Ω′. Unlike in Chapter 2 the surfaces S1, S2 do not correspond to the areas where
bolts are fixed but they are wider. The two transformations ξ1, ξ2 : S1 �→ S2 in

Figures 4a-b geometrically describe the two sets of bolts. On the parts of S1 where
the bolts are fixed these transformations are defined in the usual way and on the

rest of S1 they are defined so as to be continuous on the whole surface S1. Let us
define other two functions c1, c2 : S1 �→ R in the following way: c1(x) = E/d if there

is a bolt which is fixed at the point x and c1(x) = 0 in the rest of the surface S1. We
have considered the first set of bolts and the function c2 is defined in the same way

with respect to the second set of bolts. Then we can introduce for n = 1, 2 the forms

(3.1) an(u, v) =
∫

S1

cn(x)
〈
u(ξn(x))− u(x), γn(x)

〉〈
v(ξn(x)) − v(x), γn(x)

〉
dΓ,

which correspond to the two bilinear forms of elastic deformation energy of the two

sets of bolts.
We can consider ξ1, c1 and ξ2, c2 as the first two steps of a process describing

a “spreading” of bolts over the subdomain Ω′. Let us start with the exact definition
of this process.

Definition 3.1. We say that ξn : S1 �→ S2, cn : S1 �→ R b-converge to
ξ : S1 �→ S2, c : S1 �→ R if the following conditions are fulfilled:

1. ∃K1, K2 > 0, ∀n, ∀x, y ∈ S1:

K1|x− y| � |ξn(x) − ξn(y)| � K2|x− y|,
K1|x− y| � | ξ(x) − ξ(y)| � K2|x− y|;
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2. ξn uniformly converges to ξ on S1;

3. ∃K3 > 0, ∀n : ‖cn‖L∞(S1) < K3, ‖c‖L∞(S1) < K3. L∞(S1) is the space of
bounded measurable functions on S1 with the essential norm;

4. ∀f ∈ C(S1) ∫

S1

cnf dΓ→
∫

S1

cf dΓ;

C(S1) is the space of continuous functions on S1.

Let us present a simple example to demonstrate this type of convergence.
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�����	
 3.1. First let us define S1, S2 and ξn, ξ: S1 = 〈0, 1〉 × 〈0, 1〉 × {0},
S2 = 〈0, 1〉×〈0, 1〉×{1}, ξn = ξ and ξ(x, y, 0) = (x, y, 1). Now let us define functions
cn:

cn(x, y, 0) =





1 on

〈
j

n
,

j + 12
n

)
×

〈
k

n
,

k + 12
n

)
× {0} ,

j = 0, . . . , n− 1, k = 0, . . . , n− 1,

0 on the rest of the surface S1.

If we consider Definition 3.1, it is evident that ξn, cn b-converge to ξ, c, where c = 1
4

on the whole S1.

�
���� 3.1. Let us notice that in spite of the fact that the functions cn are

discontinuous the limit function c is continuous. Due to the definition we can consider
the function c to be equal to Es�/d, where E is Young’s modulus, d is the length of

the bolt, s is the area of the bolt cross section and � is the “density” of bolts on S1.

Let us have ξn, cn which b-converge to ξ, c; then we have weak solutions un, u of

the bolt problems corresponding to ξn, cn and ξ, c. Then a natural question arises
what we can say about the convergence of un to u. This question will be answered in

this chapter but first we define a convergence of bilinear forms and prove an auxiliary
lemma.

Definition 3.2. Let an(u, v), a(u, v) be continuous bilinear forms on the
Hilbert space V . Then we say that an(u, v) converges to a(u, v) if

∀ε > 0 ∃n0, ∀n > n0, ∀u, v ∈ V :
∣∣an(u, v)− a(u, v)

∣∣ � ε ‖u‖ ‖v‖,

where ‖. ‖ is the norm in the space V .

Lemma 3.1. Let ξn, cn b-converge to ξ, c and let an(u, v), a(u, v) be bilinear forms
defined by the relation (3.1). Then an(u, v) converge to a(u, v).

�����. It is sufficient to prove that

∀ε > 0 ∃n0, ∀n > n0, ∀u, v ∈ [H1(Ω)]3, ‖u‖ � 1 ∧ ‖v‖ � 1⇒
∣∣an(u, v)− a(u, v)

∣∣ � ε.(3.2)

According to the Kondrachov theorem [5] the trace operator

T : [H1(Ω)]3 �→ [L2(S1 ∪ S2)]3
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transforms the unit ball B ⊂ [H1(Ω)]3 into a precompact set in [L2(S1 ∪ S2)]3. So

there is a finite set {u1, . . . , ul} ⊂ B satisfying

(3.3) ∀u ∈ B ∃ i ∈ {1, . . . , l} : ‖u− ui‖[L2(S1∪S2)]3 < ε.

For the sake of simplicity we will omit the sign of the trace operator T . The

functions u1, . . . , ul can be chosen to be continuous because the set of continuous
functions is dense in the space [H1(Ω)]3 (see [6]). Due to this fact and the condition 2

from Definition 3.1 the sequences
{
ui(ξn(x))

}∞
n=1
, i = 1, . . . , l,

{
γn(x)

}∞
n=1
uniformly

converge to ui

(
ξ(x)

)
, i = 1, . . . , l, γ(x), from which together with the condition 4 of

Definition 3.1 we can derive

(3.4) ∃n0, ∀ i, j ∈ {1, . . . , l} ∀n > n0 :
∣∣an(ui, uj)− a(ui, uj)

∣∣ < ε.

Now let us estimate
∣∣an(v, w) − a(v, w)

∣∣ for every v, w ∈ B and n ∈ �:

(3.5)

∣∣an(v, w) − a(v, w)
∣∣ �

∣∣an(ui, uj)− a(ui, uj)
∣∣+

∣∣an(v − ui, uj)
∣∣

+
∣∣a(v − ui, uj)

∣∣+
∣∣an(ui, w − uj)

∣∣

+
∣∣a(ui, w − uj)

∣∣+
∣∣an(v − ui, w − uj)

∣∣

+
∣∣a(v − ui, w − uj)

∣∣.

If n > n0 the first term on the right hand side can be estimated by (3.4). Because

of (3.1) we can estimate the second term in the following way:
∣∣an(v − ui, uj)

∣∣(3.6)

� K
(∥∥v(ξn(x))− ui(ξn(x))

∥∥
[L2(S1)]3

+
∥∥v(x)− ui(x)

∥∥
[L2(S1)]3

)

×
(∥∥uj(ξn(x))

∥∥
[L2(S1)]3

+
∥∥uj(x)

∥∥
[L2(S1)]3

)
,

where K is independent of v, ui, uj and n. Considering uj ∈ B and the condition 1
of Definition 3.1 we can reformulate the inequality (3.6) into

(3.7)
∣∣an(v − ui, uj)

∣∣ � K ′ ∥∥v(x) − ui(x)
∥∥
[L2(S1∪S2)]3

,

where K ′ is independent of v, ui, uj and n. Similar estimates can be derived for the

other terms on the right hand side of (3.5) and consequently that estimate can be
rewritten in the following form:

∣∣an(v, w) − a(v, w)
∣∣ �

∣∣an(ui, uj)− a(ui, uj)
∣∣(3.8)

+K ′′
(∥∥v(x) − ui(x)

∥∥
[L2(S1∪S2)]3

+
∥∥w(x) − uj(x)

∥∥
[L2(S1∪S2)]3

)
,

where K ′′ is independent of ui, uj , v, w and n. This estimate together with (3.3)
and (3.4) give the desired relation (3.2). �
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Theorem 3.1. Let the assumptions of Theorem 2.1 be fulfilled and let ξn, cn b-

converge to ξ, c. Then the sequence un of the bolt problem solutions, corresponding

to ξn, cn, converges to the bolt problem solution u, corresponding to ξ, c, in the space

[H1(Ω)]3.

�����. First let us prove that the sequence un is bounded in the norm of the
space V ⊂ [H1(Ω)]3, which is the same space as the one in Theorem 2.1. Consider
the variational equality which reflects the fact that un is the bolt problem solution
with ξn, cn:

(3.9) A(un, v) + an(un, v) = L(v) ∀v ∈ V.

Applying Korn’s inequality and replacing v by un we have

K ‖un‖2V � A(un, un) + an(un, un) = L(un) � ‖L‖V ∗ ‖un‖V ;

then

(3.10) ‖un‖V � ‖L‖V ∗

K

and there exists a subsequence unk
which converges weakly to u∗. Denoting this

subsequence by un we can rewrite (3.9) into

(3.11) A(un, v) + an(un, v)− a(un, v) + a(un, v) = L(v).

If we consider the weak convergence of un to u∗ and Lemma 3.1 for the term

an(un, v) − a(un, v), then according to (3.11) u∗ is a solution of the bolt problem
with ξ, c and therefore u∗ = u.

Let us consider other equalities corresponding to the solutions un, u:

(3.12)
A(un, un − u) + an(un, un − u) = L(un − u),

A(u, un − u) + a(u, un − u) = L(un − u).

Subtracting them we obtain

A(un − u, un − u) + an(un, un − u)(3.13)

− a(un, un − u) + a(un − u, un − u) = 0.

According to Lemma 3.1 and the inequality (3.10) the term an(un, un−u)−a(un, un−
u) converges to 0. Because of the compactness of the trace operator T (see (3.3))
and the weak convergence of un to u, a(un − u, un − u) converges to 0 and therefore

A(un − u, un − u) converges to 0, too. Then the desired result is a consequence of
Korn’s inequality. �
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�
���� 3.2. In a similar way we can prove the same result for the boundary

condition considered in Theorem 2.2. But we have restricted ourselves to a proper
subspace of [H1(Ω)]3 which guarantees the uniqueness of the problem. For instance
the subspace shown in the proof of Theorem 2.2.

�
���� 3.3. Theorem 3.1 provides an asymptotic result which encourages
us to replace a real bolt system by a “continuous” one which is easier for us to

approximate numerically. Moreover, there is a very well known fact from practice
that the efficiency of bolting increases if the bolts are inserted regularly with sufficient

density.

4. Solution of the initial problem

Let us return to the initial problem formulated in Chapter 1. The solution of this

problem corresponds to Figures 2a–c. Let us introduce the following domains and
surfaces. The domain Ω1 corresponds to the domain in Fig. 2a. It is the whole paral-

lelepiped without the cylindrical domain corresponding to the original chamber. The
domain Ω2 corresponds to the whole parallelepiped without the enlarged chamber in

Fig. 2c. The surface Γτ corresponds to the upper surface of the parallelepiped and
the surface Γ0 to the rest of the boundary of that parallelepiped. The surface Γ1
(Fig. 2a) consists of the cylindrical surface and the two front surfaces and represents
the boundary of the chamber. The surface Γ2 (Fig. 2b) consists of the cylindrical

surface and the front surface and corresponds to the part of the boundary of the
enlarged chamber, which comes into existence due to the extension of the original

chamber.
Let us introduce two subspaces of [H1(Ω1)]3 and [H1(Ω2)]3,

V1 =
{
u ∈ [H1(Ω1)]3 | un = 0 on Γ0

}
,

V2 =
{
u ∈ [H1(Ω2)]3 | un = 0 on Γ0

}
,

where un is defined by (2.8). Let us consider the forms

A1(u, v) =
∫

Ω1

cijkl eij(u) ekl(v) dx, u, v ∈ V1,

A2(u, v) =
∫

Ω2

cijkl eij(u) ekl(v) dx, u, v ∈ V2,

L1(u) =
∫

Ω1

Fi ui dx +
∫

Γτ

Pi ui dΓ, u, v ∈ V1,
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where Fi ∈ [L2(Ω1)]3 represents the body forces corresponding to the gravitational
force and Pi ∈ [L2(Γτ )]3 are the loads corresponding to the weight of the rock cover.
The following form, like in Chapter 3, models the behaviour of the bolt system:

a(u, v) =
∫

S1

c(x)
〈
u(ξ(x)) − u(x), γ(x)

〉 〈
v(ξ(x)) − v(x), γ(x)

〉
dΓ.

Define the functional of total potential energy

(4.1) L1(u) =
1
2

A1(u, u)− L1(u), u ∈ V1.

Now we shall describe the solution to our problem in three steps.

1. Let us find a minimum of L1(u) on the space V1. Due to the boundary con-

ditions there exists a unique minimum of the functional. Let us denote this
minimum by u1, which is a solution of the boundary value problem of elasticity

depicted in Fig. 2a (problem without bolts).

2. Let us introduce another form

(4.2)

L2(v) = −
∫

Ω2

cijkl eij(u1) ekl(v) dx +
∫

Ω2

Fi vi dx

+
∫

Γτ

Pivi dΓ, v ∈ V2.

Let u2 be the minimum of the functional

(4.3) L2(u) =
1
2

A2(u, u) +
1
2

a(u, u)− L2(u) + a(u1
∣∣
Ω2

, u), u ∈ V2.

3. Let us set u = u1
∣∣
Ω2
+u2, where u1

∣∣
Ω2
is the restriction of u1 to the subdomain

Ω2 ⊂ Ω1.
The strain-stress field induced by the displacement field u corresponds to the

strain-stress field in the rock mass after the whole process (Figures 2a–c) took place,

which is the solution to our problem.

�
���� 4.1. In this chapter we have described three steps typical for tun-

nelling. A tunnel is made by the gradual extraction of rock mass accompanied by
the gradual installation of bolts for the stabilization of the whole tunnel. The three

steps described above give an idea how to go on with the modelling in a more realistic
situation, which is shown in Fig. 2d.
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�
���� 4.2. Let us assume that all functions in (4.2) are sufficiently smooth.

Then applying Green’s formula, the boundary condition and the fact that u1 is the
minimum of L1(u), we can write

(4.4) L2(v) = −
∫

Γ2

Ti(u1) vi dΓ, v ∈ V2,

where Ti(u) is defined by (2.7). Then we can interpret L2(v) as the loads induced on

Γ1 by enlarging the chamber. Due to these loads, the bolts come into contact with
the rock surrounding, as was described in Introduction. Then u2 together with the

corresponding stress field describe the part of displacement and stress fields in Ω2,
which arise because of the enlarging of the chamber and the contact between rock

and bolts.

5. Some other properties of the modelling of a single bolt

So far we have been interested in the behaviour of bolts like “continuous” systems.
Now we pay our attention to some properties of a single bolt. Sometimes in geome-

chanical literature this type of bolts is modelled in the following way. After the body
is approximated by a finite element grid the bolt is described by a relation between

the two points of this grid corresponding to the end points of that bolt. The result
of this chapter will show that such a modelling can bring about some difficulties. Let

us start with the situation described in Fig. 1. Consider the sequences ξn : Sn
1 �→ Sn

2 ,
cn : Sn

1 �→ R possessing the following properties:

Sn
1 ⊃ Sn+1

1 , Sn
2 ⊃ Sn+1

2 ,(5.1)

lim
n→∞

diam(Sn
1 ) = 0, lim

n→∞
diam(Sn

2 ) = 0.(5.2)

The functions cn : Sn
1 �→ R are constant and the following relation is fulfilled:

(5.3) mes(Sn
1 ) cn = K0,

where K0 is a constant common for all n and mes is the surface measure.

�
���� 5.1. The properties (5.1)–(5.3) demonstrate the fact that we gradually

replace the bolt by a new one, which is thinner but made of harder material, in the
way that the “whole” stiffness of the bolts remains identical.
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Theorem 5.1. Let the assumptions of Theorem 2.1 be fulfilled and let ξn, cn

satisfy (5.1)–(5.3). Assume that cijkl(x) are of class C1
(
Ω

)
and the boundary of Ω is

of class C2. Let un be the sequence of solutions to the bolt problems corresponding

to ξn, cn. Then un converges to u in the space [H1(Ω)]3, which is a solution to the

elasticity problem (without bolts) with the same boundary conditions.

�����. Let x1, x2 be two points which belong to Ω and satisfy the conditions

(5.4) ∀n ∈ � : x1 ∈ Sn
1 , x2 ∈ Sn

2 .

Such points are uniquely determined because of (5.2). Let us consider a function

g : �3 �→ R defined by

g = 1 if |x| > 2,
g = 0 if |x| < 1,(5.5)

g ∈ 〈0, 1〉 if 1 � |x| � 2.

Moreover, this function is of class C∞(�3 ). Now let us consider the sequence gn(x) =

g(x/dn), where dn is a sequence of positive real numbers chosen in the way that the
following conditions are fulfilled: diam(Sn

1 ) < dn, diam(Sn
2 ) < dn and dn converges

to 0, which is possible because of (5.2). These conditions imply

(5.6)
∀n ∈ � ∀x ∈ Sn

1 gn(x− x1) = 0,

∀n ∈ � ∀x ∈ Sn
2 gn(x− x2) = 0.

Let u be the solution to the elasticity problem and consider the sequence

(5.7) ũn(x) = gn(x − x1) gn(x− x2)u(x).

Define sequences of subdomains Ω′n,Ω′′n ⊂ Ω

Ω′n =
{
x ∈ Ω | |x− x1| < 2dn or |x− x2| < 2dn

}
,

Ω′′n = Ω \ Ω′n.

Then the following equality holds:

(5.8)
‖u− ũn‖2[H1(Ω)]3 = ‖u− ũn‖2[H1(Ω′n)]

3 + ‖u− ũn‖2[H1(Ω′′n)]
3

= ‖u− ũn‖2[H1(Ω′n)]
3 .

The last equality is a consequence of the fact that u(x) = ũn(x) on Ω′′n. For this

reason, the following inequality holds:

(5.9) ‖u− ũn‖[H1(Ω)]3 � ‖u‖[H1(Ω′n)]
3 + ‖ũn‖[H1(Ω′n)]

3 .
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The first term on the right hand side converges to 0, which we can get from

the absolute continuity of the integral [6]. Now we also note that the smoothness
hypotheses put on Ω and the coefficients cijkl(x) imply u ∈ [H2(Ω)]3 (see [7]).
Moreover, u ∈

[
C

(
Ω

)]3
which follows from the Sobolev imbedding theorem [6].

Considering some properties of distributional derivatives we can get the inequality

∥∥∥∥
∂

∂xi
ũn(x)

∥∥∥∥
[L2(Ω′n)]

3

�
∥∥∥∥

∂

∂xi
gn(x − x1) gn(x− x2)u(x)

∥∥∥∥
[L2(Ω′n)]

3

+

∥∥∥∥gn(x− x1)
∂

∂xi
gn(x− x2)u(x)

∥∥∥∥
[L2(Ω′n)]

3

(5.10)

+

∥∥∥∥gn(x− x1) gn(x − x2)
∂

∂xi
u(x)

∥∥∥∥
[L2(Ω′n)]

3

.

The third term on the right hand side of (5.10) converges to 0 because of the ab-
solute continuity of the integral. The convergence of the first and the second term
is a consequence of the following inequality and the continuity of u:

(5.11)

∥∥∥∥
∂

∂xi
gn(x)

∥∥∥∥
L2(�3)

< K
√

dn,

where K is a constant independent of u. This result easily follows from the definition
of gn(x). We have just proved that ũn converges to u in [H1(Ω)]3. We also note that

the following relation holds for any v ∈ V :

(5.12)
an(ũn, v) =

∫

Sn
1

cn(x)
〈
ũn(ξn(x)) − ũn(x), γn(x)

〉

×
〈
v(ξn(x) − v(x), γn(x)

〉
dΓ = 0.

This result is a simple consequence of the definition of gn(x) and the relations (5.6).

The fact that u is a solution to the elasticity problem, results in

(5.13) A(u, v) = L(v) ∀v ∈ V.

The continuity of A(., .) implies

(5.14) |A(u− ũn, v)| < K ‖u− ũn‖[H1(Ω)]3 ‖v‖[H1(Ω)]3 ,

where K is a constant independent of u, ũn, v. Subtracting (5.13), (5.14) and apply-
ing (5.12) we get the inequality

(5.15) A(ũn, v) + an(ũn, v)− L(v) � K‖u− ũn‖[H1(Ω)]3 ‖v‖[H1(Ω)]3 .
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Let un be the sequence of solutions to the bolt problems, then

(5.16) A(un, v) + an(un, v)− L(v) = 0

holds for any v ∈ V . Subtracting (5.15) and (5.16) we obtain

(5.17) A(ũn − un, v) + an(ũn − un, v) � K‖u− ũn‖[H1(Ω)]3 ‖v‖[H1(Ω)]3 .

Replacing v by ũn − un and applying Korn’s inequality we get the relation

(5.18)
K1‖ũn − un‖2[H1(Ω)]3 � A(ũn − un, ũn − un) + an(ũn − un, ũn − un)

� K‖u− ũn‖[H1(Ω)]3 ‖ũn − un‖[H1(Ω)]3 ,

where K1, K are constants independent of u, ũn, un. This result together with the

convergence of ũn to u gives the convergence of un to u. �

�
���� 5.2. We also note that some of the smoothness hypotheses on Ω and

the coefficients cijkl(x) can be weakened. We can restrict the validity of these smooth-
ness conditions to any neighbourhoods of the points x1, x2.

�
���� 5.3. The condition (5.3) was not exploited in the proof of Theorem 5.1
so this convergence result remains valid without this condition. The essential condi-

tion is (5.2) and the stiffness of the bolt material can increase without any limit.

6. Some other properties of solutions to the bolt problem

So far we have been interested in the existence, uniqueness, and continuous depen-
dence of the solution on the data (F, P ). Now we will prove a continuous dependence

of the solution on the data characterizing the bolt system.

Theorem 6.1. Let the assumptions of Theorem 2.1 be fulfilled. Moreover, let
ξ(x) : S1 �→ S2, c(x) : S1 �→ R, c′(x) : S1 �→ R be given, which characterize two

different bolt systems and satisfy the usual conditions. Let u, u′ be two solutions to

the bolt problems corresponding to the data (F, P, ξ, c) and (F, P, ξ, c′). Then there

exists a constant K independent of F, P, ξ, c, c′ and such that the inequality

(6.1) ‖u− u′‖[H1(Ω)]3 � K ‖c(x)− c′(x)‖L∞(S1)
(
‖F‖[L2(Ω)]3 + ‖P‖[L2(Γτ )]3

)

holds.
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�����. Considering that u, u′ are solutions to the bolt problems we have the

following equations:

A(u, u− u′) + a (u, u− u′)− L(u− u′) = 0,(6.2)

A(u′, u− u′) + a′(u′, u− u′)− L(u− u′) = 0,(6.3)

where a(., .), a′(., .), L(.) are the forms defined by (2.10) and the first two forms
correspond to ξ, c and ξ, c′. Subtracting the equalities (6.2), (6.3) and applying
Korn’s inequality we obtain

(6.4)
K1 ‖u− u′‖2[H1(Ω)]3 � A(u− u′, u− u′) + a(u− u′, u− u′)

= a′(u′, u− u′)− a(u′, u− u′),

where the constant K1 is independent of the data mentioned in Theorem 6.1. Let
us estimate the right hand side of (6.4):

(6.5)

a′(u′, u− u′)− a(u′, u− u′)

=
∫

S1

(
c′(x) − c(x)

)〈
u′(ξ(x)) − u′(x), γ(x)

〉

×
〈
u(ξ(x)) − u′(ξ(x)) − u(x) + u′(x), γ(x)

〉
dΓ

� K2
∥∥c′(x) − c(x)

∥∥
L∞(S1)

‖u′‖[H1(Ω)]3 ‖u− u′‖[H1(Ω)]3 ,

where K2 is independent of the data mentioned. Let us assume that u′ is a solution

to the bolt problem. After applying Korn’s inequality we get

(6.6)
K3 ‖u′‖2[H1(Ω)]3 � A(u′, u′) + a′(u′, u′) = L(u′)

� K4
(
‖F‖[L2(Ω)]3 + ‖P‖[L2(Γτ )]3

)
‖u′‖[H1(Ω)]3 ,

where the constants K3, K4 are also independent of the given data. Combining the

inequalities (6.4)–(6.6) we get the desired estimate (6.1). �

�
���� 6.1. If we fixed F, P in the estimate (6.1), we could handle it as

a continuous dependence of the solution on c(x). Theorem 3.1 gives another type of
such a dependence but that dependence cannot be derived from the estimate (6.1).

If we consider the sequence cn(x) in Example 3.1 we can see that cn(x) does not
converge to c(x) in the essential norm so we cannot apply the estimate.

Let V be the subspace of [H1(Ω)]3 defined in Chapter 2 and let Vξ be a subspace
of V defined in the following way:

Vξ =
{
u ∈ V |

〈
u(ξ(x)) − u(x), γ(x)

〉
= 0 on S1

}
,
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where ξ : S1 �→ S2 is a given transformation.

Theorem 6.2. Let the assumptions of Theorem 6.1 be fulfilled and let ξ(x) : S1 �→
S2, c(x) : S1 �→ R be given. Moreover, let there exist a positive constant K such

that c(x) � K for each x ∈ S1. Let λn be a sequence of positive numbers which

converges to infinity and let un be the sequence of the solutions to the bolt problems

corresponding to ξ(x), λnc(x). Then un converges to u in [H1(Ω)]3, which is the
minimum of the following functional on Vξ:

L0 =
1
2

A(u, u)− L(u), u ∈ Vξ,

where A(., .), L(.) are defined by (2.10).

�����. Let an(., .) be the bilinear forms which are defined by (3.1), where cn(x)

are equal to λnc(x). Due to Korn’s inequality

(6.7) ∃K1 > 0, ∀n : K1 ‖un‖2[H1(Ω)]3 � A(un, un) + an(un, un) = L(un),

which implies

(6.8) ∃K2 > 0, ‖un‖[H1(Ω)]3 � K2.

Applying (6.7), (6.8) we get the relation

(6.9) ∃K3 > 0, an(un, un) � K3,

which implies that
∥∥〈

un(ξ(x)) − un(x), γ(x)
〉∥∥

L2(S1)
converges to 0. The inequal-

ity (6.8) implies that there exists a subsequence of un, which weakly converges to u∗.

Because of the Kondrachov theorem [5] and some results from the measure theory [6]
we get that u∗ belongs to Vξ. Let us consider the sequence of equalities

(6.10) A(un, v) + an(un, v) = L(v), v ∈ Vξ.

Because v ∈ Vξ then an(un, v) = 0 for all n, which implies that u∗ is a minimum of

L0(.) on Vξ. Consider the terms

(6.11)
A(un, un − u∗) + an(un, un − u∗)− L(un − u∗),

A(u∗, un − u∗) + an(u∗, un − u∗)− L(un − u∗).

The first term equals 0 for all n and the other one converges to 0, because un weakly

converges to u∗ and an(u∗, un − u∗) = 0. Subtracting the terms (6.11) and applying
Korn’s inequality we get

Kn ‖un − u∗‖2[H1(Ω)]3 � A(un − u∗, un − u∗) + an(un − u∗, un − u∗).

The right hand side of this inequality converges to 0, which is the desired result. �
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�
���� 6.2. This theorem says that if we gradually replace the material of

bolts by a harder one, then this process has got its limit point, which is a solution
to the elasticity problem with constrains.

7. Another variational problem arising in the modelling

of bolt systems

We have been dealing with the linear problems so far but let us notice the situ-

ation in Fig. 1. It is standard practice in geomechanics that the bolts are fixed by
bearing plates at the ends, which are located on the wall of the underground opening

supported by these bolts. These bearing plates rest against the wall without the
possibility of penetrating into the rock mass. So any contractions of bolts are im-

possible. On the other hand, there can exist boundary conditions which cause such
contractions in the formulation of the bolt problem given above. For this reason, it

is necessary to reformulate the problem.

Let us introduce other two forms

a(u, v) =
∫

S1

c(x)
[〈

u(ξ(x)) − u(x), γ(x)
〉]+〈

v(ξ(x)) − v(x), γ(x)
〉
dΓ,

a(u, v) =
∫

S2

c(x)
[〈

u(ξ(x)) − u(x), γ(x)
〉]+[〈

v(ξ(x)) − v(x), γ(x)
〉]+
dΓ,

where the symbol [ ]+ is defined in the following way:

[
f(x)

]+
=

{
f(x) if f(x) � 0,
0 if f(x) < 0.

For the restrictions imposed on the bolts, the functional of the total potential energy

has to be defined in the following way:

(7.1) L (u) =
1
2

A(u, u) +
1
2

a(u, u)− L(u), u ∈ V,

where the forms A(., .), L(.) and the space V are defined in Chapter 2.

Definition 7.1. An element u ∈ V will be called a solution to the problem P

if L (u) � L (v) for all v ∈ V .

433



Under the assumptions mentioned above, the functional L (.) is coercive, differ-

entiable and convex, which results in the existence of the unique solution to the
problem P. We refer the reader to [8], [9]. Moreover, the existence of a solution to
the problemP is equivalent to the existence of a solution to the variational equality

(see e.g. [8])

(7.2) A(u, v) + a(u, v) = L(v) ∀v ∈ V.

Let us notice that the Gateaux differential Dϕ(u, v) at the point u, where ϕ(u) =
1
2 a(u, u), is equal to a(u, v).

There is a question whether some of the theorems given above can be proved for
the problem P. Let us mention that the forms a(., .), a(., .) are not bilinear, which

results in the non-linearity of the problem P.

Theorem 7.1. Let the assumptions of Theorem 2.1 be fulfilled and let ξn, cn

b-converge to ξ, c. Then the sequence un of the solutions to the problem Pn corre-

sponding to ξn, cn converges to the solution u to the problem P corresponding to

ξ, c in the space [H1(Ω)]3.

�����. We will only give a sketch of the proof because the method is similar to
the proof of Theorem 3.1. We will only notice the parts in which these proofs differ

from each other.
Let us notice that we can define the convergence of an(., .) to a(., .) in the same

way by replacing the forms an(., .), a(., .) in Definition 3.2 by an(., .), a(., .). Then we
can prove a similar version of Lemma 3.1 for this convergence, which is based on the

fact that the trace operator T : H1(Ω) �→ L2(S) is compact, where S is the surface
of Ω. This result is a simple consequence of the compact embedding theorem. The

proof of this theorem is parallel to the one of Theorem 3.1, we only have to replace
an(., .), a(., .) by an(., .), a(., .). The only exception is the relation (3.13) which has

to be replaced by

A(un − u, un − u) + an(un, un − u)− a(un, un − u)(7.3)

+ a(un, un − u)− a(u, un − u) = 0,

where an(un, un − u) − a(un, un − u) converges to 0, because of the new version
of Lemma 3.1. Because of the compactness of the trace operator T (see (3.3)),

a(un, un − u), a(u, un − u) converge to 0, too. The rest of the proof coincides with
the part of the proof of Theorem 3.1 which follows from the equation (7.3). �

The following two theorems are the versions of Theorem 6.1 and Theorem 6.2 for
the problem P.
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Theorem 7.2. Let the assumptions of Theorem 2.1 be fulfilled. Moreover, let
there be ξ(x) : S1 �→ S1, c(x) : S1 �→ R, c′(x) : S1 �→ R which characterize two

different bolt systems and satisfy the usual conditions. Let u, u′ be solutions to the

problems P, P ′ corresponding to the data (F, P, ξ, c) and (F, P, ξ, c′). Then there

exists a constant K independent of F, P, ξ, c, c′ such that the following inequality

holds:

(7.4) ‖u− u′‖[H1(Ω)]3 � K‖c(x)− c′(x)‖L∞(S1)
(
‖F‖[L2(Ω)]3 + ‖P‖[L2(Γτ )]3

)
.

�����. The proof of this theorem is parallel to the one of Theorem 6.1. We
only have to replace a(., .), a′(., .) by a(., .), a′(., .). Let us notice the following term

which corresponds to the term (6.4)

K1‖u− u′‖2[H1(Ω)]3 � A(u− u′, u− u′) + a(u, u− u′)− a(u′, u− u′)

= a′(u′, u− u′)− a(u′, u− u′),(7.5)

where the constant K1 is independent of the given data and the inequality in that
term is a consequence of Korn’s inequality K1 ‖u − u′‖2[H1(Ω)]3 � A(u − u′, u − u′).

To prove the first inequality in the relation (7.5), it is necessary to verify a(u, u −
u′)− a(u′, u− u′) � 0.

a(u, u− u′)− a(u′, u− u′)

=
∫

S1

c(x)
([〈

u(ξ(x)) − u(x), γ(x)
〉]+ −

[〈
u′(ξ(x)) − u′(x), γ(x)

〉]+)

×
(〈

u(ξ(x)) − u(x), γ(x)
〉
−

〈
u′(ξ(x)) − u′(x), γ(x)

〉)
dΓ.(7.6)

The right hand side is non-negative because of the fact that

(
[a]+ − [b]+

)
(a− b) � 0

for all real numbers. Let us estimate the right hand side of (7.5):

(7.7)

a′(u′, u− u′)− a(u′, u− u′)

=
∫

S1

(
c′(x)− c(x)

)[〈
u′(ξ(x)) − u′(x), γ(x)

〉]+

×
〈
u(ξ(x)) − u′(ξ(x)) − u(x) + u′(x), γ(x)

〉
dΓ

� K2 ‖c′(x) − c(x)‖L∞(S1) ‖u′‖[H1(Ω)]3 ‖u− u′‖[H1(Ω)]3 ,

where the constant K2 is independent of the given data for the same reasons as

those given in the proof of Theorem 6.1. The rest of the proof coincides with the
corresponding part of the proof of Theorem 6.1. �

435



The reformulation of Theorem 6.2 needs some modifications. Let V be the space

defined in Chapter 2. Let Kξ be a subset of V defined in the following way:

Kξ =
{
u ∈ V |

〈
u(ξ(x)) − u(x), γ(x)

〉
� 0 on S1

}
.

It is evident that Kξ is closed and convex. The inequality in the definition of Kξ

reflects the fact that the bolts are infinitely stiff but they can be pushed out of the
rock mass.

Theorem 7.3. Let the assumptions of Theorem 7.2 be fulfilled and let ξ(x) : S1 �→
S1, c(x) : S1 �→ R be given. Moreover, let there exist a positive constant K such

that c(x) � K for each x ∈ S1. Let λn be a sequence of positive numbers which

converges to infinity and let un be the sequence of the solutions to the problem P

corresponding to ξ(x), λnc(x). Then un converges to u in [H1(Ω)]3, which is the
minimum of

L0 =
1
2

A(u, u)− L(u)

on Kξ.

�����. The proof is similar to the proof of Theorem 6.2 so we will briefly give

the main ideas. The sequence un satisfies the sequence of equations

(7.8) A(un, un) + an(un, un) = L(un).

Let us mention that a(un, un) � 0. Then applying Korn’s inequality, we get

(7.9) ‖un‖[H1(Ω)]3 � K1,

where K1 is a constant. Combining (7.8) and (7.9) we obtain that there exists
a positive constant K2 such that

(7.10) an(un, un) � K2.

This fact together with the definitions of an(., .) gives that

(7.11)
∥∥∥
[〈

un(ξ(x)) − un(x), γ(x)
〉]+∥∥∥

L2(S1)
→ 0.

According to (7.9), (7.11) there is a subsequence of un that converges to u∗ in

[L2(S1 ∪ S2)]3, and u∗ belongs to Kξ. Consider the sequence of equalities

(7.12) A(un, un − v) + an(un, un − v) = L(un − v),
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where v is an arbitrary element from Kξ, which results in the fact that an(un, un −
v) � 0 for all n. Then the sequence of equalities (7.12) leads to the sequence of
inequalities

(7.13) A(un, un − v) � L(un − v).

If we notice that the functional ϕ(u) = A(u, u) is weakly lower semi-continuous (see
e.g. [8]), then (7.13) leads to the inequality

(7.14) A(u∗, u∗ − v) � L(u∗ − v),

which implies that u∗ is a minimum of L0 on Kξ. Consider the two sequences

(7.15)
A(un, un − u∗) + an(un, un − u∗)− L(un − u∗),

A(u∗, un − u∗)− L(un − u∗).

The first sequence identically equals 0 while the other one converges to 0. Let us
notice that an(un, un−u∗) � 0, hence after subtracting these sequences and applying
Korn’s inequality, we get the desired result. �

8. Conclusion

Geomechanical problems are specific in comparison with mechanical engineering
ones. It is very difficult for the engineer to obtain the input data for individual

geomechanical problems. On the other hand mathematical modelling in this area is
important from the following point of view: In mechanical engineering the designer

can make a prototype of the detail to test, but in geomechanics it is impossible to
make any prototype of the underground construction. So calculations are a very

important way how to deal with these problems. We cannot expect a high exact-
ness from the calculations, but we rather expect that they provide us with certain

information which reveals the main features of the behaviour of the rock mass in the
surrounding of the underground construction. The model of the bolt support dis-

cussed in this paper is based on the hypotheses given in Chapter 2. In Chapter 3 an
asymptotic result, which makes the finite element approximation easier, is verified.

The numerical code based on the model of rock bolt systems developed above
was written and inserted in GEM 22, which is the numerical code developed in the

Institute of Geonics for solving geomechanical problems.
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